
ar
X

iv
:1

20
2.

48
83

v3
 [

cs
.F

L
]

 1
2

D
ec

 2
01

2

The Dissecting Power of Regular Languages

Tomoyuki Yamakami
∗

and Yuichi Kato
∗

Abstract. A recent study on structural properties of regular and context-free languages has
greatly promoted our basic understandings of the complex behaviors of those languages. We
continue the study to examine how regular languages behave when they need to cut numerous
infinite languages. A particular interest rests on a situation in which a regular language needs to
“dissect” a given infinite language into two subsets of infinite size. Every context-free language is
dissected by carefully chosen regular languages (or it is REG-dissectible). In a larger picture, we
show that constantly-growing languages and semi-linear languages are REG-dissectible. Under
certain natural conditions, complements and finite intersections of semi-linear languages also
become REG-dissectible. Restricted to bounded languages, the intersections of finitely many
context-free languages and, more surprisingly, the entire Boolean hierarchy over bounded context-
free languages are REG-dissectible. As an immediate application of the REG-dissectibility, we
show another structural property, in which an appropriate bounded context-free language can
“separate with infinite margins” two given nested infinite bounded context-free languages.

keywords. theory of computing, formal languages, regular language, context-free language,
bounded language, semi-linear, constantly growing, dissectible, i-separate

1 Background Knowledge and the Results’ Overview

The exquisitely complex behaviors of formal languages are often dictated by multiple-layers of inner struc-
tures of the languages and a mathematical theory over those languages has been developed in the past
six decades alongside the discovery of some of the hidden structures. In an early stage of the study of
context-free languages, for instance, a notion of semi-linearity—a structural property on the frequency of
occurrences of symbols—was found in [8] and a pumping lemma—another property regarding the growth
rate of strings—was proven in [1]. Similarly, underlying structures of regular languages have been analyzed
within a number of different frameworks, including the Myhill-Nerode theorem, monadic second-order logic,
and finitely generated monoids. Recently, new realms of structural properties of languages have been stud-
ied by obvious analogy with structural complexity issues of polynomial time-bounded complexity classes.
Such properties include primeimmunity as well as pseudorandomness against the regular and context-free
languages, introduced in [11], and a notion of minimal cover, which was applied to the regular languages in
[3]. In the literature, numerous key questions concerning the behaviors of languages have been raised but
left unsolved. We suspect that the difficulty in answering those questions may be rooted in yet-unknown
structures that constitute the languages.

To promote our understandings of formal languages in general, it may be desirable to unearth the hidden
structural properties of the languages. In this line of study, this paper aims at exploring another structural
property, which is seemingly innocent but possibly fundamental, concerning the ability to partition a target
infinite set into two portions of infinite size. This simple property, which we name “dissectibility,” seems
more suitable for weak computations, because, as shown in Section 3, polynomial-time decidable languages,
for instance, are powerful enough to dissect any recursive languages of infinite size. Among models of weak
computations, we are focused on the regular languages, because they are generally regarded as weak in
recognition power; however, they could exhibit surprisingly high power in dissecting infinite languages. To
be more precise at this point, an infinite set C is said to dissect a target infinite set L, as illustrated in
Fig.1, if two disjoint sets C ∩L and C ∩L (= L−C) are both infinite, where C expresses the complement of
C. When C is particularly a regular language, we succinctly say that L is REG-dissectible. We are mostly
interested in clarifying exactly what kind of languages are REG-dissectible. A typical example of REG-
dissectible language is the aforementioned context-free languages (Corollary 4.2). As for another example,
let us consider a language L1 generated by a grammar whose productions include a special form S → SS,
where S is the start symbol. Irrelevant to its computational complexity, the language L1 can be dissected
by a regular language composed of strings of lengths that are equal to zero modulo 3, because L1 contains
a series of strings of lengths 2k, 3k, 4k, . . . for an appropriately chosen constant k > 0. A more concrete

∗Present Affiliation: Department of Information Science, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan.

1

http://arxiv.org/abs/1202.4883v3

example is the language L2 = {wn! | w ∈ {a, b}2, n ∈ N}. Although this language L2 is not even context-
free, it can be easily dissected by a regular language consisting of strings, each of which begins with the
letter a. The third example language is L3 = {(abn)n | n ∈ N}, whose complement is context-free. This
language L3 can be easily dissected by a regular language whose strings contain an even number of a’s. As
a relevant notion, a C-pseudorandom language [11] also dissects any language in C with quite large margins,
where the intuitive term “margin” refers to the difference between two given sets.

Through Sections 3 to 4, two wider families of languages, constantly-growing languages and semi-linear

languages, will be shown to be REG-dissectible. Under certain natural conditions, the complements, the
intersections, and the differences of semi-linear languages are proven to be REG-dissectible using a simple
analysis of length patterns of strings inside a given language. This analysis involves a manipulation of solu-
tions of semi-linear equations and those conditions are indeed necessary to guarantee the REG-dissectibility.
On the contrary, a rather obvious limitation exists for the REG-dissectibility; namely, as shown in Section 3,
there is a logarithmic-space computable language that cannot be REG-dissectible (Theorem 3.5). Taking a
step further forward, when limited to bounded languages of Ginsburg and Spanier [5], we will be able to show
that the intersections of finitely many context-free languages are dissected by appropriate regular languages,
despite the fact that the intersections of k bounded context-free languages for k ≥ 1 form an infinite hierar-
chy within the family of context-sensitive languages [7]. By elaborating our argument further, we will prove
that the entire Boolean hierarchy over the class of bounded context-free languages is also REG-dissectible
(Theorem 4.4). These results will be presented in Section 4.

The REG-dissectibility notion has intimate connections to other notions. Earlier, Domaratzki, Shallit,
and Yu [3] studied a notion of minimal cover, which means the “smallest” superset A of a given set B,
where “smallest” means that there is no set between A and B with infinite margins. Motivated by their
notion and results, we pay a special attention to a structural property of separating two infinite “nested”
languages with infinite margins. In our term of “separation with infinite margins” (or i-separation, in short),
we actually mean, as illustrated in Fig.2, that a pair of infinite sets A and B, denoted by i(B,A), for which
A covers B with an infinite margin, can be separated by an appropriate set C that lies in between the two
sets with infinite margins. As an immediate application of the aforementioned REG-dissectibility results for
the bounded context-free languages, we will show in Section 5 that two bounded context-free languages can
be i-separated by bounded context-free languages. This i-separation result will be further extended into any
level of the Boolean hierarchy over bounded context-free languages (Theorem 5.2).

From the next section, we will formally introduce the key notions of the REG-dissectibility and the
i-separation and we will present detailed proofs of our major results mentioned above.

2 Notions and Notations

We briefly explain a set of basic notions and notations that will be used in the subsequent sections. First,
we denote by N the set of all natural numbers (i.e., nonnegative integers) and we write N+ for N−{0}. For
each number n ∈ N+, the notation [n] denotes the integer interval {1, 2, 3, . . . , n}. Associated with three
arbitrary numbers a, b, k ∈ N, we define Aa,b,k to be the set {an+ b | n ∈ N, n ≥ k}. The generic notation O
denotes both an all-zero vector and an all-zero matrix of appropriate dimension. For two sets A and B, the
set {x | x ∈ A, x 6∈ B} is the difference between A and B and is expressed as A−B. When A is a countable

set, the succinct notation |A| = ∞ (resp., |A| < ∞) indicates that A is an infinite (resp., a finite) set. Given
two countable sets A and B, we write A ⊆ae B to mean |A − B| < ∞, and the notation A =ae B is used
whenever both A ⊆ae B and B ⊆ae A hold, where the subscript “ae” stands for “almost everywhere.”

An alphabet Σ is a finite nonempty set of “symbols” and a string over Σ is a finite sequence of symbols
in Σ. The set of all strings over Σ is denoted Σ∗, and Σ+ expresses the set Σ∗ − {λ}, where λ is the empty

string. The length |x| of any string x is the total number of occurrences of symbols in x. For any string x and

Figure 1: C dissects L. Figure 2: C i-separates i(B,A).

2

any symbol σ, the notation #σ(x) stands for the number of occurrences of σ in x. Given a language S, the
length set of S, denoted LT (S), is the collection of all lengths |x| for any strings x in S. We often identify a
language S with its characteristic function, which is also denoted S (i.e., S(x) = 1 if x ∈ S, and S(x) = 0
otherwise). The sets of all regular languages and of all context-free languages are expressed respectively as
REG and CFL.

The complement of a language B over alphabet Σ is the set Σ∗ − B and it is denoted B as far as
its underlying alphabet Σ is clear from the context. For ease of our notations, we use the following four
class operations: (1) C ∧ D = {C ∩ D | C ∈ C, D ∈ D}, (2) C ∨ D = {C ∪ D | C ∈ C, D ∈ D}, (3)
C −D = {C −D | C ∈ C, D ∈ D}, and (4) co-C = {C | C ∈ C}, where C and D are language families. Given
any family F of languages, a language S is said to be F-immune if S is infinite and S has no infinite subset
belonging to F (see, e.g., [11]).

3 How to Dissect Languages

Let us recall from Section 1 that an infinite language S is REG-dissectible exactly when there exists a regular
language C that dissects S (i.e., |C ∩S| = |C ∩S| = ∞). Moreover, a nonempty language family F is REG-

dissectible if and only if every infinite language in F is REG-dissectible. Notice that, since this definition
disregards all finite languages inside F , we implicitly assume that F contains infinite languages. We can
naturally expand the REG-dissectibility to a more general notion of C-dissectibility simply by replacing REG
with an arbitrary nonempty language family C; however, the choice of REG is actually of great importance.
In fact, it is more interesting to consider low-complexity language families like REG as a candidate for C.
One reason is that polynomial-time decidable languages, for instance, are powerful enough to dissect any
infinite recursive languages.

Example 3.1 We claim that every infinite recursive language is P-dissectible, where P is the family of
all polynomial-time decidable languages. Let L be any infinite language over alphabet Σ recognized by a
two-way single-tape deterministic Turing machine M that eventually halts on all inputs. For simplicity, let
Σ = {0, 1} and assume that L 6=ae Σ∗ because, otherwise, a regular set C = {0x | x ∈ Σ∗} easily dissects
L. Now, we define C as follows. Let z0, z1, z2, . . . be a standard lexicographic order of all strings over Σ.
Given each string x, to determine the value C(x), we go through the following procedure P from round 0 to
round |x|. Initially, we set A = R = Ø. At round i, we first compute the value C(zi) by calling P recursively
round by round. We then simulate M on the input zi within |x| steps. When M(zi) = 1, we update A to
A ∪ {i} if C(zi) = 1, and R to R ∪ {i} if C(zi) = 0. On the contrary, when either M(zi) = 0 or M(zi) is
not obtained within |x| steps, we do nothing. After round |x|, if |A| > |R|, then define C(x) = 0; otherwise,
define C(x) = 1. Clearly, C is in P. By a diagonalization argument, we can show that |C∩L| = |C∩L| = ∞.
Therefore, every infinite recursive language can be dissected by an appropriate language in P.

In the following second example, we will show that a simple use of advice makes it possible to dissect
arbitrary languages by appropriate regular languages. For basic properties of the advice, the reader may
refer to [9, 10, 11].

Example 3.2 We claim that every infinite language is REG/n-dissectible, where REG/n is the collection of
advised regular languages, each of which is of the form {x | M accepts [

x
h(|x|)]} for an appropriate deterministic

finite automaton (or dfa), an advice alphabet Γ, and an advice function h : N → Γ∗ satisfying |h(n)| = n
for all n ∈ N, where [x

y] is a track notation used in [9]. To verify this claim, take any infinite language
L over alphabet Σ. Since L is infinite, the length set LT (L) is also infinite. Hence, we partition LT (L)
into two infinite subsets, say, S1 and S2; that is, S1 ∩ S2 = Ø, LT (L) = S1 ∪ S2, and |S1| = |S2| = ∞.
Without loss of generality, we assume that 0 6∈ S1. Now, let us define an advice function h : N → {0, 1}∗ as
h(n) = 10n−1 if n ∈ S1 and h(n) = 0n otherwise. We also define a dfa M that behaves as follows: on input
[xy], if y = 10|x|−1 with |x| ≥ 1, then M accepts the input; otherwise, it rejects the input. The language
C = {x | M accepts [

x
h(|x|)]} then belongs to REG/n. Obviously, for any string x ∈ L with |x| ∈ S1, since

h(|x|) = 10|x|−1, M accepts [x
h(|x|)]. It thus holds that |C ∩ L| = ∞. Similarly, for any x ∈ S with |x| ∈ S2,

M rejects [x
h(|x|)], implying |C ∩ L| = ∞. In conclusion, C dissects L.

As noted in Section 1, a pattern of the lengths of strings in a target language surely plays a key role in
proving its REG-dissectibility. This fact turns our attention to languages composed of strings satisfying a
certain length condition, known as a “constant growth property.” Formally, a nonempty language L is said

3

to be constantly growing if there exist a constant p > 0 and a finite subset K ⊆ N+ that meet the following
condition: for every string x in L with |x| ≥ p, there exist a string y ∈ L and a constant c ∈ K for which
|x| = |y| + c holds. Such languages can be easily dissected by appropriately chosen regular languages as
shown in the next lemma.

Lemma 3.3 Every infinite constantly-growing language is REG-dissectible.

Proof. Let L be any infinite language over alphabet Σ and assume that L is constantly growing with a
constant p > 0 and a finite set K ⊆ N+. Now, let c denote the maximal element in K and set c′ = c + 1.
For each index i ∈ [c], we take a special language Li = {x ∈ L | |x| ≡ i (mod c′)}, and we wish to prove
that at least two distinct indices i1, i2 ∈ [c] satisfy that |Li1 | = |Li2 | = ∞. Toward a contradiction, we
assume otherwise. Since L =

⋃

i∈[c] Li, exactly one index i ∈ [c] must make Li infinite. Let us fix such

an index, say, i. Given any index j ∈ [c], we set Si,j to be {y ∈ L | ∃x ∈ Li [|x| = |y| + j]}. Since
L is constantly growing, a set Si,j must be infinite for a certain index j. Note that Si,j ⊆ Lℓ holds for
ℓ = i− j mod c′. This containment implies that Lℓ is infinite, contradicting the uniqueness of i since i 6= ℓ.
Therefore, we can choose two distinct indices i1, i2 ∈ [c] for which |Li1 | = |Li2 | = ∞. Finally, we define
C = {x ∈ Σ∗ | |x| ≡ i1 (mod c′)}, which is clearly regular. Since Li1 ⊆ C and Li2 ⊆ C, it obviously follows
that |C ∩ L| = |C ∩ L| = ∞. In other words, C dissects L, as requested. ✷

For a wider application of Lemma 3.3, it is desirable to strengthen the lemma slightly. In what follows, we
succinctly write CGL for the family of all constantly-growing languages and use the notion of CGL-immunity

to describe our proposition.

Proposition 3.4 Every language that is not CGL-immune is REG-dissectible.

The above proposition comes from Lemma 3.3 as well as the following transitive closure property of
REG-dissectibility: for any two infinite languages A and B, if A is REG-dissectible and A ⊆ B, then B is
also REG-dissectible.

Luckily, a length pattern of strings in a language is not the only feature used to dissect the target language.
For example, the languages L2 and L3 exemplified in Section 1 are not constantly growing; however, they
are dissected by regular languages. Before presenting more examples of REG-dissectible languages in the
next section, we will show a plausible limitation of the dissecting power of the regular languages. Following a
standard convention, the notation L stands for the family of all languages that can be recognized by two-way
deterministic Turing machines using a read-only input tape together with a constant number of logarithmic
space-bounded read/write work tapes. In the next proposition, we will show that L contains a language that
cannot be dissected by any regular languages.

Theorem 3.5 The language family L is not REG-dissectible.

Proof. Let us consider the unary language S = {0n! | n ∈ N} over the alphabet Σ = {0}. Firstly, we will
show that S is in L. For this purpose, it suffices to design a logarithmic-space deterministic Turing machine
that recognizes S. On input of the form 0m, the desired machine M writes m in binary on its 1st work tape
using O(logm) cells and 1 on its 2nd work tape. At each round, M reads out a number, say, n in binary
written on the 2nd tape and checks if m is a multiple of n using the 3rd work tape as a counter up to n. If
not, then M immediately rejects the input; otherwise, it increases n by one (in binary) before entering the
next round. If the machine does not reject until n reaches m, then it accepts the input.

Secondly, we want to show that no regular language can dissect S. Assume otherwise; that is, there exists
an infinite language C ∈ REG over Σ that dissects S. We need the following technical property (Claim 1)
of this unary regular language C regarding its length set LT (C). Let us recall the notation Aa,b,k and, in
addition, set G = {(a, b, k) | a, b, k ∈ N, b < a} for the description of the property.

Claim 1 For any unary language C, C is regular iff there exists a finite set G ⊆ G for which LT (C) =
⋃

(a,b,k)∈G Aa,b,k.

Claim 1 is attributed to Parikh [8] and, since C ∈ REG, the claim guarantees the existence of a finite set
G that characterizes C; namely, LT (C) =

⋃

(a,b,k)∈GAa,b,k.

Since |C ∩ S| = ∞, there exists a triplet (a, b, k) in G satisfying |{m | ∃n ≥ k [m! = an + b]}| = ∞.
Now, we argue that b = 0. First, take two integers m,n with n ≥ k and m > a satisfying an + b = m!.
Since a < m, m! ≡ 0 (mod a) holds. From an + b ≡ b (mod a), we obtain b ≡ 0 (mod a). Since b < a, b

4

must be zero, as requested. Moreover, it holds that a > 1. To see this fact, suppose that a = 1. Since A1,0,k

equals {n | n ≥ k}, we conclude that |N − A1,0,k| < ∞. Therefore, it follows that |LT (C) ∩ LT (S)| < ∞,
contradicting |C ∩ S| = ∞.

Since a > 1 and b = 0, for a certain large constant k′, it holds that {m! | m ≥ k′} ⊆ Aa,0,k. This implies
that |LT (C) ∩ LT (S)| < ∞. This is a clear contradiction, and therefore C cannot dissect S. ✷

For convenience, we denote by REG-DISSECT the collection of all infinite REG-dissectible languages.
It is not difficult to prove the following closure/non-closure properties. (1) The set REG-DISSECT is closed
under concatenation, reversal, Kleene star, and union. (2) REG-DISSECT is not closed under intersection
with regular languages. (3) Moreover, REG-DISSECT is not closed under λ-free homomorphism as well as
under quotient with regular languages, where λ is the empty string. The last two properties can be proven
using certain languages derived from the one presented in the proof of Theorem 3.5.

4 Context-Free Languages and Bounded Languages

Parikh [8] discovered that the number of times that each symbol occurs in each string of a given context-free
language L must satisfy a certain system of linear Diophantine equations. This result inspired a notion
of semi-linear languages. Context-free languages are an important example of semi-linear languages and
a semi-linear nature of languages will be exploited in certain cases of the REG-dissectibility proofs of the
languages. First, we will explain the notion of semi-linear sets and languages using a matrix formalism. A
subset A of Nk is called linear if there exist a number m ∈ N and an (m+1)× k nonnegative integer matrix
(called a critical matrix) T satisfying the following condition: for every point v ∈ Nk, v is in A if and only
if (1, z1, z2, . . . , zm)T = v holds for a certain tuple (called a solution) (z1, z2, . . . , zm) ∈ Nm. A semi-linear

set is a union of finitely many linear sets. Given any string x over alphabet Σ = {σ1, σ2, . . . , σk}, a Parikh

image of x, denoted by Ψ(x), is a point (#σ1
(x),#σ2

(x), . . . ,#σk
(x)) in the space Nk, and the commutative

image (or the Parikh image) Ψ(L) of a language L over Σ refers to the set {Ψ(x) | x ∈ L}. A language L is
called semi-linear whenever Ψ(L) is semi-linear.

The family of all semi-linear languages is denoted by SEMILIN, and SEMILIN(2) expresses the family
SEMILIN ∧ SEMILIN.

Lemma 4.1 SEMILIN ⊆ REG-DISSECT but SEMILIN(2) * REG-DISSECT.

Proof. Every semi-linear language L is defined by a finite set of certain linear equations and this fact
proves that L has the property of constant growth. Lemma 3.3 therefore leads to the first part of the lemma.
To see that SEMILIN(2) is not REG-dissectible, let us consider two example languages L1 = {0n1n | n ∈ N}
and L2 = {1n0n | n ∈ N} ∪ {0n!1n! | n ∈ N} over the binary alphabet Σ = {0, 1}. Since Ψ(L1) = Ψ(L2) =
{(n, n) | n ∈ N}, L1 and L2 are semi-linear. However, the intersection L1 ∩L2 ∈ SEMILIN(2), which equals
{0n!1n! | n ∈ N}, can be shown to be non-REG-dissectible by an argument similar to the proof of Theorem
3.5. ✷

Since CFL ⊆ SEMILIN [8], Lemma 4.1 immediately yields the following consequence.

Corollary 4.2 The language family CFL is REG-dissectible.

To utilize well-studied properties on semi-linear languages, we limit our attention within a restricted
part of context-free languages. A language L over alphabet Σ is said to be bounded if there are fixed
nonempty strings w1, w2, . . . , wm in Σ∗ such that L is a subset of L[w1, w2, . . . , wm] =def {w

i1
1 wi2

2 · · ·wim
m |

i1, i2, . . . , im ∈ N} [5]. For readability, we abbreviate as BCFL the family of all bounded context-free lan-
guages. The k-conjunctive closure of BCFL, denoted BCFL(k), is defined inductively as follows: BCFL(1) =
BCFL and BCFL(k) = BCFL(k − 1) ∧ BCFL for every index k ≥ 2. Earlier, Liu and Weiner [7] proved
that the collection {BCFL(k) | k ∈ N+} forms an infinite hierarchy within the family of context-sensitive
languages.

Theorem 4.3 For any index k ≥ 1, BCFL(k) is REG-dissectible.

For the proof of Theorem 4.3, we define Ψ̃(w) to be {(i1, i2, . . . , im) ∈ Nm | w = wi1
1 wi2

2 · · ·wim
m } for

each string w in L[w1, w2, . . . , wm]. Notice that Ψ̃(w) could contain numerous elements because w may
have more than one expression of the form wi1

1 wi2
2 · · ·wim

m . Finally, we define Ψ̃(L) =
⋃

w∈L Ψ̃(w) for any

5

bounded language L. This operator Ψ̃ works similarly as Ψ does and, by exploiting this similarity, Ginsburg
[4] exhibited a close relationship between a bounded context-free language L and the semi-linearity of Ψ̃(L).
What we need for our proof given below is the following slightly weaker form of [4, Theorem 5.4.2]: for any
subset L of L[w1, . . . , wk] in BCFL, Ψ̃(L) is semi-linear, and thus L belongs to SEMILIN.

Proof of Theorem 4.3. We start with the following general claim regarding Ψ. By viewing w1, w2, . . . , wm

as “different” symbols σ1, σ2, . . . , σm as in [4], a similarity between Ψ(w) and Ψ̃(w) makes the claim true for
Ψ̃ as well.

Claim 2 For any languages L1, L2 ∈ SEMILIN, if |L1∩L2| = ∞ and Ψ(L1)∩Ψ(L2) ⊆ Ψ(L1∩L2) hold, then
L1 ∩L2 is REG-dissectible. More generally, let k be any number ≥ 2 and let L1, L2, . . . , Lk be k semi-linear

languages. If

∣

∣

∣

⋂k

i=1 Li

∣

∣

∣
= ∞ and

⋂k

i=1 Ψ(Li) ⊆ Ψ(
⋂k

i=1 Li) hold, then
⋂k

i=1 Li is REG-dissectible.

Proof. Since Ψ(L1 ∩ L2) ⊆ Ψ(L1) ∩ Ψ(L2) always holds, our assumption actually means Ψ(L1 ∩ L2) =
Ψ(L1)∩Ψ(L2). Since the set of all semi-linear sets is closed under Boolean operations (as well as projections)
[6], we conclude that L1∩L2 belongs to SEMILIN. Lemma 4.1 implies that L1∩L2 ∈ REG-DISSECT. The

above proof can be easily extended to the case of the intersection
⋂k

i=1 Ψ(Li) of k commutative images. ✷

Now, let L′ = L[w1, w2, . . . , wm] and take any k subsets L1, L2, . . . , Lk ∈ BCFL of L′. As noted earlier, it

follows that L1, L2, . . . , Lk ∈ SEMILIN. Here, we assume that L =
⋂k

i=1 Li is an infinite set. By Claim 2, we

only need to prove that
⋂k

i=1 Ψ̃(Li) ⊆ Ψ̃(
⋂k

i=1 Li). Firstly, choose any point v ∈
⋂k

i=1 Ψ̃(Li) and fix i ∈ [k]

arbitrarily. Since the inverse image Ψ̃−1(v) = {w ∈ L′ | v ∈ Ψ̃(w)} must be a singleton, there exists a unique

string w ∈ L′ for which Ψ̃−1(v) = {w}. From v ∈ Ψ̃(Li), we obtain the membership w ∈ Li. Moreover,

since i is arbitrary, we conclude that w is in
⋂k

i=1 Li. It therefore follows that v ∈ Ψ̃(w) ⊆ Ψ̃(
⋂k

i=1 Li). In
conclusion, L is REG-dissectible. ✷

Without the condition Ψ(L1) ∩ Ψ(L2) ⊆ Ψ(L1 ∩ L2) of Claim 2, nevertheless, it is impossible to prove
the intersection of two semi-linear languages to be REG-dissectible since SEMILIN(2) * REG-DISSECT.

Next, we will show the REG-dissectibility of the Boolean hierarchy over BCFL, where the Boolean
hierarchy over BCFL is defined as follows: BCFL1 = BCFL, BCFL2k = BCFL2k−1 ∧ co-BCFL, and
BCFL2k+1 = BCFL2k ∨ BCFL for every number k ∈ N+. Finally, we set BCFLBH =

⋃

k≥1 BCFLk.

Theorem 4.4 The Boolean hierarchy BCFLBH is REG-dissectible.

Proof. Since BCFL2k−1 ⊆ BCFL2k holds for every number k ∈ N+, it is sufficient to prove that BCFL2k

is REG-dissectible for all indices k ∈ N. We will show this claim by induction on k. For the basis case of
BCFL2 (= BCFL− BCFL), let L1 and L2 be languages over alphabet Σ in BCFL and concentrate on the
difference L1 − L2. First, we intend to prove Claim 3. In the claim, the notation ‖v‖1 for any vector v in a
Euclidean space denotes the ℓ1-norm of v; that is, ‖v‖1 =

∑

i |vi| if v = (vi)i.

Claim 3 Let L1 and L2 be any two infinite semi-linear languages satisfying Ψ(L1) 6⊆ae Ψ(L2). If Ψ(L1)−
Ψ(L2) ⊆ Ψ(L1 − L2) holds, then the difference L1 − L2 is REG-dissectible.

Proof. Since Ψ(L1) and Ψ(L2) are both semi-linear, the difference Ψ(L1) − Ψ(L2) is semi-linear as well
[6]. By our assumption follows the equality Ψ(L1) − Ψ(L2) = Ψ(L1 − L2). There exists a series of critical
matrices that characterizes Ψ(L1−L2). Here, we want to fix one of them, say, T = (vj)1≤j≤m, where each vj
is a column vector. For simplicity, we assume that v1 6= O and, moreover, the second entry of v1 is non-zero.
Given each index i ∈ {0, 1}, let us consider a set Ai = {w ∈ Σ∗ | ∃z1 ∈ N [(1, 2z1 + i, 0, . . . , 0)T = Ψ(w)]}.
Since Ψ(A0 ∪A1) ⊆ Ψ(L1 −L2), we conclude that A0 ∪A1 ⊆ L1 −L2. It is clear that Ai is infinite and the
language Ci = {w ∈ Σ∗ | |w| = ‖(1, 2z1 + i, 0, . . . , 0)T ‖1} is also infinite because of Ai ⊆ Ci. In addition,
Ci is regular because every string w in Ci satisfies |w| = ‖v0‖1 + (2z1 + i)‖v1‖1 and it is easy to determine
whether or not this is true for any given string w by running an appropriate dfa. Since C0 ∩ C1 = Ø and
Ai ⊆ Ci ∩ (L1 − L2) for each index i ∈ {0, 1}, Ci must dissect L1 − L2. Hence, L1 − L2 is REG-dissectible.
✷

Now, we claim that Ψ̃(L1) − Ψ̃(L2) ⊆ Ψ̃(L1 − L2) for two arbitrary languages L1 and L2 in BCFL. To
prove this claim, take any point v ∈ Ψ̃(L1) − Ψ̃(L2). Since v ∈ Ψ̃(L1), there exists a string w ∈ L1 for
which v ∈ Ψ̃(w). Note that w 6∈ L2 because, otherwise, we obtain v ∈ Ψ̃(w) ⊆ Ψ̃(L2), a contradiction. Since

6

w ∈ L1 − L2, it follows that v ∈ Ψ̃(w) ⊆ Ψ̃(L1 − L2). Using a similarity between Ψ(w) and Ψ̃(w) as in the
proof of Theorem 4.3, we can apply Claim 3 and then obtain the REG-dissectibility of L1 − L2.

The remaining task is to deal with the induction case of BCFL2k for any number k ≥ 2. For this purpose,
we will present a simple fact on the even levels of the Boolean hierarchy over BCFL.

Claim 4 For every number k ≥ 2, BCFL2k = BCFL2k−2 ∨ BCFL2.

Proof. Here, we want to prove that (*) for every number k ≥ 2, BCFL2k−2 ∧ co-BCFL = BCFL2k−2.
Write F for BCFL2k−2 ∧ co-BCFL for simplicity. Since BCFL2k−2 = BCFL2k−3 ∧ co-BCFL holds by the
definition, F equals BCFL2k−3 ∧ (co-BCFL∧ co-BCFL), which is actually BCFL2k−3 ∧ co-(BCFL∨BCFL).
Since BCFL is closed under union (i.e., BCFL∨BCFL = BCFL), it follows that F = BCFL2k−3∧co-BCFL.
By the definition again, the right-hand side of this equation coincides with BCFL2k−2. Therefore, Statement
(*) holds.

Recall that BCFL2k equals BCFL2k−1 ∧ co-BCFL, which also coincides with (BCFL2k−2 ∨ BCFL) ∧
co-BCFL. By DeMorgan’s law, it holds that BCFL2k = (BCFL2k−2 ∧ co-BCFL) ∨ (BCFL ∧ co-BCFL).
Statement (*) then leads to BCFL2k = BCFL2k−2 ∨ BCFL2, as requested. ✷

Notice that the induction hypothesis ensures the REG-dissectibility of BCFL2k−2. Since BCFL2 has been
already proven to be REG-dissectible, BCFL2k−2 ∨BCFL2 must be REG-dissectible by the closure property
of REG-DISSECT discussed in Section 3. By Claim 4, this family is exactly BCFL2k. This completes the
proof of Theorem 4.4 ✷

5 Separation with Infinite Margins

In this final section, we will seek a meaningful application of our previous results regarding the REG-
dissectibility of certain bounded languages. To describe this application, we need to introduce extra termi-
nology. Given two infinite sets A and B, we say that A covers B with an infinite margin (A i-covers B, or A
is an i-cover of B, in short) if both B ⊆ A and A 6=ae B hold. When A i-covers B, we briefly write i(B,A)
and call it an i-covering pair. A language C is said to separate i(B,A) with infinite margins (or i-separate

i(B,A), in short) if (i) B ⊆ C ⊆ A, (ii) A 6=ae C, and (iii) B 6=ae C. For convenience, we use the notation
i(B,A) for two language families A and B to denote the set of all i-covering pairs i(B,A) satisfying A ∈ A
and B ∈ B. Another language family C is said to i-separate i(B,A) if, for every pair i(B,A) in i(B,A), there
exists a set in C that i-separates i(B,A).

The following is a key lemma that bridges between the REG-dissectibility and the i-separation.

Lemma 5.1 Let A and B be any two language families and assume that A−B is REG-dissectible. It then

holds that, for any A ∈ A and any B ∈ B, if A i-covers B, then there exists a language in E that i-separates

i(B,A), where E expresses the set {B ∪ (A ∩ C) | A ∈ A, B ∈ B, C ∈ REG}. In other words, E i-separates

i(B,A).

Proof. Let A ∈ A and B ∈ B be two infinite languages. Let D = A − B and assume that D is infinite.
Our assumption guarantees the existence of a regular language C for which C dissects D. For convenience,
we set E = B ∪ (A ∩ C). Since C dissects D, it follows that |(A ∩ C) − B| = ∞ and |(A ∩ C) − B| = ∞.
These conditions imply that B ⊆ E ⊆ A and |A−E| = |E −B| = ∞. Thus, E i-separates i(B,A). Since C
is regular, E clearly belongs to the language family E . ✷

Concerning bounded context-free languages, we can show the following i-separation result.

Theorem 5.2 For any index k ∈ N+, BCFLk i-separates i(BCFLk,BCFLk). Thus, BCFLBH i-separates

i(BCFLBH,BCFLBH).

Proof. Hereafter, we intend to show that BCFLk − BCFLk is REG-dissectible because an application of
Lemma 5.1 immediately leads to the theorem. For our purpose, it suffices to prove that BCFLk − BCFLk

is included in BCFLBH, because BCFLBH is REG-dissectible by Theorem 4.3. More strongly, we will
demonstrate that, for any two indices i, j ≥ 1, BCFLi − BCFLj ⊆ BCFLBH.

Given an index pair (i, j) ∈ N+ × N+, let Fi,j = BCFLi − BCFLj = BCFLi ∧ co-BCFLj and Gi,j =
BCFLi ∧BCFLj for simplicity. We will show that Fi,j ⊆ BCFLBH by induction on (i, j). For the basis case
(1, 1), since F1,1 = BCFL2 holds, clearly F1,1 is a subset of BCFLBH. For the second case (2, 1), we first

7

note that BCFL4 = (BCFL2 ∧ co-BCFL2)∨ (BCFL2 ∧BCFL2) = F2,1 ∨G2,2. We thus obtain F2,1 ⊆ BCFL4

as well as G2,2 ⊆ BCFL4. For the induction case (i, j), it is enough to consider the case where i = 2k and
j = 2m+ 1. Similar to Claim 4, we can prove the next useful relation.

Claim 5 co-BCFL2k+1 = BCFL2k−1 ∨ BCFL2.

By Claims 4 and 5, F2k,2m+1 equals (BCFL2k−2∨BCFL2)∧(co-BCFL2m−1∨BCFL2), which can be trans-
formed into F2k−2,2m−1 ∨F2,2m−1 ∨ G2k−2,2 ∨ G2,2. By the induction hypothesis, there are two indices ℓ1, ℓ2
such that F2k−2,2m−1 ⊆ BCFL2ℓ1 and F2,2m−1 ⊆ BCFL2ℓ2 . By applying Claim 4 repeatedly, we then ob-

tain BCFL2ℓ1 =
∨ℓ1

i=1 BCFL2 and BCFL2ℓ2 =
∨ℓ2

i=1 BCFL2. Likewise, we obtain BCFL2k−2 =
∨k−1

i=1 BCFL2.

Hence, G2k−2,2 equals (
∨k−1

i=1 BCFL2)∧BCFL2 =
∨k−1

i=1 G2,2, which is included in
∨k−1

i=1 BCFL4 = BCFL4(k−1).
This fact implies the containment G2k−2,2 ∨ G2,2 ⊆ BCFL4k. It thus follows that F2k,2m+1 ⊆ BCFL2ℓ1 ∨

BCFL2ℓ2 ∨ BCFL4k =
∨ℓ1+ℓ2+2k

i=1 BCFL2. As discussed before, this is equivalent to BCFL2(ℓ1+ℓ2+2k), which
is obviously included in BCFLBH. Therefore, we conclude that F2k,2m+1 ⊆ BCFLBH. ✷

6 Future Challenges

We have initiated a fundamental study on the dissecting power of regular languages and an application of
the REG-dissectibility to the i-separation. Throughout our initial study, a number of open questions have
arisen for future research. An important open question concerns the REG-dissectibility of co-CFL and, more
widely, CFLk and CFL(k), which are respectively CFL-analogues of BCFLk and BCFL(k), for every level
k ≥ 2. Slightly apart from CFL, two other language families 1-C=LIN and 1-PLIN, introduced in [9], are,
at this moment, unknown to be REG-dissectible. Much anticipated is a development of a coherent theory
of a more general notion of C-dissectibility. Concerning the i-separation of i(CFL,CFL), on the contrary, a
key question of whether CFL i-separate i(CFL,CFL) still awaits its answer. Lately, we have learned that
Bucher [2] had raised essentially the same question back in 1980.

Acknowledgments The first author is grateful to Jeffrey Shallit for drawing his attention to [3] whose
core concept has helped formulate an initial notion of “dissectibility” and to Jacobo Torán and a reviewer
for pointing to [2] and providing its hard copy in the last moment.

References

[1] Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of simple phrase-structure grammars. Z.

Phonetik Sprachwiss. Kommunik., 14, 143–172, 1961.

[2] W. Bucher. A density problem for context-free languages. Bulletin of EATCS, 10, p.53, 1980.

[3] M. Domaratzki, J. Shallit, and S. Yu. Minimal covers of formal languages. In Proc. of the 5th International

Conference on Developments in Language Theory (DLT 2001), Lecture Notes in Computer Science, Springer,
Vol.2295, pp.319–329, 2002.

[4] S. Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York, 1966.

[5] S. Ginsburg and E. H. Spanier. Bounded ALGOL-like languages. Trans. Amer. Math. Soc., 113, 333–368,
1964.

[6] S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas and languages. Pacific J. Math., 16,
285–296, 1966.

[7] L. Y. Liu and P. Weiner. An infinite hierarchy of intersections of context-free languages. Math. Systems

Theory, 7, 185–192, 1973.

[8] R. J. Parikh. On context-free languages. J. ACM, 13, 570–581, 1961.

[9] K. Tadaki, T. Yamakami, and J. C. H. Lin. Theory of one-tape linear-time Turing machines. Theor. Comput.

Sci., 411, 22–43, 2010. An extended abstract appeared in the Proc. of the 30th SOFSEM Conference on
Current Trends in Theory and Practice of Computer Science (SOFSEM 2004), Lecture Notes in Computer
Science, Springer, Vol.2932, pp.335–348, 2004.

8

[10] T. Yamakami. The roles of advice to one-tape linear-time Turing machines and finite automata. Int. J.

Found. Comput. Sci., 21, 941–962, 2010. An early version appeared in the Proc. of the 20th International
Symposium on Algorithms and Computation (ISAAC 2009), Lecture Notes in Computer Science, Springer,
Vol.5878, pp.933–942, 2009.

[11] T. Yamakami. Immunity and pseudorandomness of context-free languages. Theor. Comput. Sci., 412, 6432–
6450, 2011.

9

	1 Background Knowledge and the Results' Overview
	2 Notions and Notations
	3 How to Dissect Languages
	4 Context-Free Languages and Bounded Languages
	5 Separation with Infinite Margins
	6 Future Challenges

