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Abstract. Given strings P of length m and T of length n over an al-
phabet of size σ, the string matching with k-mismatches problem is to
find the positions of all the substrings in T that are at Hamming dis-
tance at most k from P . If T can be read only one character at the
time the best known bounds are O(n

√
k log k) and O(n + n

√

k/w log k)
in the word-RAM model with word length w. In the RAM models (in-
cluding AC0 and word-RAM) it is possible to read up to ⌊w/ log σ⌋
characters in constant time if the characters of T are encoded us-
ing ⌈log σ⌉ bits. The only solution for k-mismatches in packed text
works in O((n log σ/ log n)⌈m log(k+log n/ log σ)/w⌉+nε) time, for any
ε > 0. We present an algorithm that runs in time O( n

⌊w/(m log σ)⌋
(1 +

log min(k, σ) log m/ log σ)) in the AC0 model if m = O(w/ log σ) and
T is given packed. We also describe a simpler variant that runs in time
O( n

⌊w/(m log σ)⌋
log min(m, log w/ log σ)) in the word-RAM model. The al-

gorithms improve the existing bound for w = Ω(log1+ǫ n), for any ǫ > 0.
Based on the introduced technique, we present algorithms for several
other approximate matching problems.

1 Introduction

The string matching problem consists in reporting all the occurrences of a pat-
tern P of length m in a text T of length n, both strings over a common alphabet.
The occurrences may be exact or approximate according to a specified match-
ing model. For most matching problems, all the characters from the text and
the pattern need to be read at least once in the worst case; hence, if they are
read one at a time, the worst-case lower bound is Ω(n). Interestingly, for some
standard problems (e.g., exact pattern matching) it is possible to achieve a sub-
linear search time, for short patterns, even in the worst case, if the word-RAM
computational model is assumed and the text is packed. In a packed encoding,
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the characters of a string are stored adjacently in memory and each character is
encoded using log σ bits4, where σ is the alphabet size. A single machine word,
of size w ≥ logn bits, thus contains up to α = ⌊w/ log σ⌋ characters. While the
word size of current architectures is 64 (which, for example, permits up to 32
DNA symbols to be encoded in a word), there are also vector instruction sets
where the word size is larger, such as SSE and AVX (128 and 256 bits) or the
Intel Xeon Phi coprocessor (512 bits).

For this setting and the exact string matching problem, several sublinear-time
algorithms have been given in recent years [13, 7, 5, 6, 8].

In this paper we study the string matching with k-mismatches problem in
the packed scenario. This problem is to find the positions of all the substrings
in T that are at Hamming distance at most k from P , i.e., that match P with
at most k mismatches. For this problem, the best known bounds in the worst-
case are O(n

√
k log k) time for the algorithm by Amir et al. [2] and O(n +

n
√

k/w log k) time for its implementation based on word-level parallelism [14].
One classical result in the word-RAMmodel that is also practical is Shift-Add [4].
The best worst-case bound of this algorithm, based on the Matryoshka counters
technique [15], is O(n⌈m/w⌉).

In [13] Fredriksson presented a Shift-Add variant, based on the super-
alphabet technique, that works in O((n log σ/ logn)⌈m log(k+log n/ logσ)/w⌉+
nε) time, for any ε > 0. To our knowledge, this is the only solution for the k-
mismatches problem that works on packed text and that achieves sublinear time
complexity when m and k are sufficiently small.

In this work, we present an algorithm for the k-mismatches problem that
runs in time O( n

⌊w/(m log σ)⌋ (1+logmin(k, σ) logm/ logσ)) in the AC0 model for

m ≤ α if T is given packed. We also describe a simpler variant that runs in time
O( n
⌊w/(m log σ)⌋ logmin(m, logw/ log σ)) in the word-RAM model. In particular,

it achieves sublinear worst-case time when m log σ logmin(m, logw/ log σ) =
o(w). Note that for w = Θ(log n) Fredriksson’s solution is better, but our al-
gorithm dominates if w = Ω(log1+ǫ n), for any ǫ > 0, or, more precisely, if
w = ω(logn log logw).

2 Basic notions and definitions

LetΣ = {0, 1, . . . , σ−1} denote an integer alphabet andΣm the set of all possible
sequences of lengthm overΣ. S[i], i ≥ 0, denotes the (i+1)-th character of string
S, and S[i . . . j] its substring between the (i+1)-st and the (j+1)-st characters
(inclusive).

The k-mismatches problem consists in, given a pattern (string) P of length
m and a text (string) T of length n, reporting all the positions 0 ≤ j ≤ n −m
such that |{0 ≤ h < m : T [j + h] 6= P [h]}| ≤ k, i.e., such that the Hamming
distance between P and the substring T [j . . . j +m− 1] is at most k.

4 Throughout the paper, all logarithms are in base 2. W.l.o.g. we also assume that σ
is a power of two.



The word-RAM model is assumed, with machine word size w ≥ logn. We use
some bitwise operations following the standard notation as in C language: &, |,
∧, ∼, <<, >> for and, or, xor, not, left shift and right shift, respectively.

3 Operations on words

We define a (f)-word as a machine word logically divided into ⌊w/f⌋ fields of f
bits. Given a (f)-wordW , we denote with W [i] its i-th field, for i = 1, . . . , ⌊w/f⌋.
The most significant bit in a field is called the top bit. A field where only the top
bit is set is thus equal to 2f−1. We also define, for a given field size f , the mask
Vf where Vf [i] = 2f−1, for i = 1, . . . , ⌊w/f⌋. We define the following primitives
on words:

find non-zero fields (fnf(A, f)): given a (f)-word A, return a (f)-word A′ such
that A′[i] is equal to 2f−1 if A[i] 6= 0, and to 0 otherwise, for i = 1, . . . , ⌊w/f⌋.
How to implement this primitive in O(1) time was presented in [8, Sect. 4], but
we give a simpler method, in three simple steps and in constant time.

1. W ← A & ∼Vf

2. X ← Vf −W
3. A′ ← (∼X | A) & Vf

The first two steps generate a (log σ)-word X such that X [i] = 2log σ−1 if A[i]
with the top-bit masked is zero, and < 2logσ−1 otherwise. It is then not hard
to see that A[i] is non-zero iff either A[i] ≥ 2log σ−1 or (∼X)[i] ≥ 2logσ−1, from
which follows the correctness of the last step.

sideways addition (sa(A)): given a word A, return the number of bits set in A.

This primitive is a well-known bitwise operation, also known as popcount. The
folklore method [19] to compute it in the word-RAM model has O(log logw)
time complexity.

interleaved blockwise sideways addition (ibsa(A, f, b)): Given a (f)-word A, such
that f divides log σ and only the top bit of each field may be set, and a power
of two b, return a (f)-word A′ such that A′[i] is equal to

min(b,⌈i/(log σ/f)⌉)−1
∑

j=0

X [i− j(log σ/f)] ,

where X = A >> (f − 1), i.e., the i-th field contains the number of bits set in
the sequence of min(b, ⌈i/(logσ/f)⌉) fields in A spaced by log σ bits ending at
i.

This operation is a variant of the parallel prefix-sum operation described in [16]
and can be implemented in O(log b) steps, where the j-th step computes

A′j =

{

A′j−1 + (A′j−1 << (2j−1 × log σ)) if j > 0

A >> (f − 1) otherwise



Since f ≥ log(b + 1) does not necessarily hold, the top bits of all the fields are
masked out before each addition and restored afterwards. In this way, if a sum
is ≥ 2f−1, its encoded value is ≥ 2f−1 but the exact value is undetermined.

blockwise sideways addition (bsa(A, f, b)): Given a (f)-word A, such that only
the top bit of each field may be set, and a power of two b, return a (bf)-word A′

such that A′[i] is equal to
b−1
∑

j=0

X [ib− j] ,

where X = A >> (f − 1), i.e., the i-th field contains the number of bits set in
the block of b fields in A ending at ib.

This operation can be implemented in time O(logmin(b, logw/f)) in word-RAM
and in time O(log b) in AC0 using the following method. We assume that the
word size w is a power of two. Let r be the smallest power of two greater than
or equal to log(w + 1)/f . The first step consists in computing a word logically
divided into fields of min(b, r)f bits, such that each field contains the number of
bits set in the corresponding min(b, r) fields in the original word. This widening
operation can be performed in logmin(b, r) = O(logmin(b, logw/f)) steps using
simple bitwise operations and logmin(b, r) masks.

Since both r and b are a power of two, each block of bf bits spans an integral
number of fields of min(b, r)f bits. Observe that there can be at most w bits set
in a word, so rf bits are enough to encode the total number of bits. If b ≤ r,
then since b is a power of two after the last widening step we have a word divided
into fields of bf bits, each one containing the desired number of ones. Otherwise,
if b > r, we compute the prefix sum of the sequence of numbers given by the
fields, i.e., we store into each field the sum of the previous fields including itself.
In word-RAM we do this by performing a multiplication (which is O(1)), with
the mask 0rf−11 . . . 0rf−11. Instead, in AC0 we use again the parallel prefix-sum
algorithm described in [16], which is O(log b). It is not hard to see that, after
this operation, the number of bits in a block is equal to the last field of the block
minus the last field of the previous block. This operation can be implemented
in parallel for all the blocks with a shift and a subtraction. Finally, to obtain
the desired output word we reset to zero all the fields but the last of each block,
using an and with the mask 1rf0(b−r)f . . . 1rf0(b−r)f , and shift the word to the
right by (b − r)f bits.

The pseudocode of bsa in word-RAM is the following:

1. X ← A >> (f − 1)
2. l ← f
3. for i← 1 to logmin(b, r) do
4. H ← X >> l
5. X ← (X & 0l1l . . . 0l1l) + (H & 0l1l . . . 0l1l)
6. l ← l × 2
7. if min(b, r) = r then
8. X ← X × 0rf−11 . . . 0rf−11



9. X ← X − (X << bf)
10. A′ ← (X & 1rf0(b−r)f . . . 1rf0(b−r)f) >> (b− r)f

parallel minima (maxima) [18] (pmin (pmax)(A,B, f)): Given two (f)-words A
and B, return a (f)-word W such that W [i] is equal to 2f−1 if A[i] ≤ B[i]
(A[i] ≥ B[i]), and to 0 otherwise, for i = 1, . . . , ⌊w/f⌋. pvmin (pvmax) is similar,
but W [i] is equal to min(A[i], B[i]) (max(A[i], B[i])).

These operations can be implemented in constant time, as demonstrated by the
following code (pmin):

1. TA ← A & Vf

2. TB ← B & Vf

3. A′ ← A & ∼Vf

4. A′′ ← (B | Vf )−A′

5. H1 ← ∼TA & TB

6. H2 ← A′′ & (TA
∧ TB

∧ Vf )
7. W ← (H1 | H2) & Vf

All the given bounds do not include the time to compute the used masks, if
any.

4 The algorithm

We start the presentation with a simple idea, which is then extended and modi-
fied in some ways. Consider two (log σ)-words A and B, each containing a packed
string of length m ≤ α in its m log σ least significant bits (i.e., each field of log σ
bits encodes a character). The higher bits in both words, if any, are all 0s We
perform the xor operation of A and B and the number of non-zero fields in the
result is exactly the Hamming distance between the two strings. To count the
number of such fields, we first convert, using the fnf operation, each non-zero
field into a field with only the top-bit set, and then count the number of bits
set using the sa operation. The procedure to compute the Hamming distance
of A and B can thus be implemented in time O(log logw) with the following
operations:

1. X ← A ∧ B
2. A′ ← fnf(X, logσ)
3. return sa(A′)

For arbitrarym, observe that the packed encoding of a string of lengthm requires
⌈m log σ/w⌉ words, and the Hamming distance between two such strings can
be computed by running the above procedure for each word and summing the
outputs.

Using this method, we can obtain an algorithm for the string matching with
k-mismatches problem that runs in O(n⌈m log σ/w⌉ log logw) time for any m.
Note that the resulting algorithm is also practical and compares favorably with



the classical Shift-Add [4] for small alphabets and large k, although it is less
flexible (no support for classes of characters). It is also worth noting that recent
processors include a POPCNT instruction to compute the sideways addition of
a word, so the log logw term disappears in practice.

We now show how to apply the described ideas in an (improved) algorithm
for the k-mismatches problem on packed text for short patterns. In the following,
we shall assume m ≤ α. Our method exploits a general technique [17] to increase
the parallelism in string matching algorithms based on word-level parallelism.
We present a solution in the AC0 model and a simpler variant in the word-RAM
model. We start with the word-RAM algorithm. Let m̄ be the smallest power of
two greater than or equal to m and let ℓ = ⌊w/(m̄ log σ)⌋. We first preprocess
the pattern P to create a word A with ℓ copies of P of length m̄ log σ starting
from the least significant bit. The last m̄ − m fields of each copy are set to
zero. We perform this padding because the bsa and ibsa operations which we
shall use require the size of the blocks to be a power of two. Let Bi be the word
containing the packed encoding of the substrings T [j+sm̄ . . . j+sm̄+m−1], for
s = 0, . . . , ℓ−1, where j = ℓ⌊i/m⌋m+imod m, with m̄−m zero (padding) fields
every m fields (i.e., at the end of each substring). For example, if σ = 4, m = 3,
T = 01 10 11 11 10 11 01 10 and w = 16, then we have B0 = 01 10 11#10 11 01#
and B1 = 10 11 11#11 01 10#, where # denotes a padding field. Note that
because of this partitioning we do not process all the text substrings in linear
order. The word Bi can be computed in constant time by extracting the substring
T [j . . . j + ℓm̄− 1] from the packed text and clearing the padding fields with a
mask. Our search algorithm performs the following main steps, for each 0 ≤ i <
n/ℓ:

1. X ← A ∧ Bi

2. A′ ← fnf(X, logσ)
3. M ← pmin(bsa(A′, log σ, m̄),K, f)
4. report(M)

where f = m̄ log σ and K is a (f)-word with a copy of the integer k in each
field. At each iteration, our algorithm processes ℓ substrings of T in paral-
lel using the technique to compute the Hamming distance of two words de-
scribed before. First, we perform the xor and fnf operations to identify the
mismatches for the ℓ substrings encoded in Bi. Then, we use the bsa opera-
tion to count the number of mismatches for each substring, i.e., we compute
a (f)-word such that each field of m̄ log σ bits contains the number of bits set
(mismatches) in the corresponding block of m̄ fields of A′. Observe that in this
setting bsa has O(logmin(m, logw/ log σ)) time complexity. Then, to find all
the occurrences with at most k mismatches we use the pmin operation with
the word K to identify the blocks with a bit count less than or equal to k.
Finally, to iterate over all the occurrences we use the well-known bitwise op-
eration that computes the position of the highest bit set in a word. Observe
that this operation is in AC0 and takes constant time [3]. Hence, our algorithm
has O( n

⌊w/(m log σ)⌋ logmin(m, logw/ log σ)) time complexity, and it obtains the

O( n
⌊w/(m log σ)⌋ ) bound, corresponding to no overhead for the bitwise operations,



A ← 01 10 01 00 01 10 01 00
B0 ← 01 10 11 00 10 11 01 00

X ← A ∧ B0 = 00 00 10 00 11 01 00 00
A′ ← fnf(X, 2)

A ← 00 00 10 00 11 01 00 00
V ← 10 10 10 10 10 10 10 10

W ← A & ∼ V = 00 00 00 00 01 01 00 00
X ← V −W = 10 10 10 10 01 01 10 10

A′ ← (∼X | A) & V = 00 00 10 00 10 10 00 00
X ← bsa(A′, 2, 4) = 00000001 00000010

K ← 00000001 00000001
M ← pmin(X,K, 4) = 10000000 00000000

Fig. 1. Example of the algorithm and of the fnf operation for σ = 4, P = 01 10 01,
T = 01 10 11 11 10 11 01 10, w = 16 and k = 1. The word A encodes two pattern
copies while the word B0 encodes the text substrings T [0 . . . 2] and T [4 . . . 6]. Padding
fields are underlined. The pattern matches the first and second substring with 1 and 2
mismatches, respectively. Since k = 1, only the first field is nonzero in the pmin output
word.

for log σ = Ω(logw) or constant m. An example of the algorithm is depicted in
Figure 1.

We now present the algorithm in the AC0 model. Let k̄ be the smallest power
of two greater than k. We distinguish two cases: if log σ < log k̄+1 we simply run
the word-RAM solution. In AC0 bsa has O(logm) time complexity and so the
algorithm runs in O( n

⌊w/(m log σ)⌋ logm) time. Otherwise, the algorithm performs

the following main steps, for each 0 ≤ i < n/ℓ:

1. X ← A ∧ Bi

2. A′ ← fnf(X, logσ)
3. H ← (H << f) | A′
4. if i > 0 and i mod ⌊log σ/f⌋ = 0
5. M ← pmin(ibsa(H, f, m̄),K, f)
6. report(M)
7. H ← 0

where in this case f = log k̄ + 1 and H is a word initialized to 0. The main
difference in this algorithm is that we report the occurrences every ⌊log σ/f⌋ it-
erations, so as to reduce the overhead due to counting the number of mismatches
when log k = o(log σ). To this end, we compact the fields in the word fnf(A ∧

Bi, log σ) into fields of size f in the word H . If i > 0 and i mod ⌊log σ/f⌋ = 0,
i.e., every ℓ⌊log σ/f⌋ processed substrings, we report the occurrences as follows.
First, observe that the word H contains ℓm̄⌊log σ/f⌋ fields of f bits, encod-
ing the mismatches for the substrings of T of length m corresponding to the
words Bi−j , for j = 0, . . . , ⌊log σ/f⌋ − 1. More precisely, the l-th sequence of
fnf(A ∧ Bi−j , log σ) spans the fields s, s + ⌊log σ/f⌋, . . . , s + ⌊log σ/f⌋(m̄ − 1) ,
where s = j+(l− 1)m̄⌊log σ/f⌋, for l = 1, . . . , ℓ. Using a suitable algorithm, i.e,
the ibsa operation, we compute a word such that the last field of each sequence
has value equal to the number of bits set (mismatches) in all the fields of the se-
quence if the number of mismatches is less than k̄ and to a value ≥ k̄ otherwise.



Then, we proceed as in the word-RAM algorithm. We assumed for simplicity
that f divides log σ so that H is a (f)-word. In general, we have log σ mod f un-
used bits every ⌊log σ/f⌋ fields in H . The algorithm works correctly also in this
case, by suitably honoring this layout in K, ibsa and pmin. The time complexity
of this algorithm is O( n

⌊w/(m log σ)⌋ (1+ logmin(k, σ) logm/ logσ)). It obtains the

O( n
⌊w/(m log σ)⌋ ) bound if logmin(k, σ) logm = O(log σ).

Finally, we give a variant useful for two extreme cases: either k orm−k is very
small. More precisely, it is competitive when k = o(logmin(k, σ) logm/ log σ) or
m − k = o(logmin(k, σ) logm/ logσ). It uses only AC0 instructions. In this
variant, first presented for the case of small k, we compute A and Bi using m̄ =
m+1. Each block in A and Bi has thus one padding field and p = (m+1) log σ
associated bits. The most significant bit of the padding field is a sentinel that
will signal that there are more than k mismatches, as will be shown shortly. The
idea is to parallelize the well-known sideways addition implementation in which
the least significant bit set is cleared in a loop5. To this end, we perform the
following procedure:

1. X ← A ∧ Bi

2. A′ ← fnf(X, logσ)
3. for i← 1 to k + 1
4. A′ ← A′ | Vp

5. A′ ← A′ & (A′ − (Vp >> (p− 1)))
6. M ← (A′ & Vp)

∧ Vp

7. report(M)

At each iteration of the loop we add the value 2p−1 (corresponding to the sentinel
bit) to each block in A′ and clear the least significant bit set. In this way, after
k+1 iterations, the sentinel bit of any block is set iff the number of mismatches
is at least k+1. We then replace the value of each block with 2p−1 if the sentinel
bit is not set and with 0 otherwise. The complexity of the described operation is
O(k). The time complexity of this algorithm is O( n

⌊w/(m log σ)⌋ k). A twin solution

handles the case of small m−k. The idea is to find the blocks where the number
of matching symbols is at least m−k, which basically consists in using the same
method on the bitwise complement of the top bits of A′.

5 Applications

The presented technique can be used for several other string matching problems.
We show how to adapt it for particular models in the following subsections.

5.1 Matching with k-mismatches and wildcards

Assume that the integer alphabet Σ, of size σ, contains a wildcard symbol φ , i.e.,
a special symbol that matches any other symbol of the alphabet. We consider the

5 http://graphics.stanford.edu/~seander/bithacks.html#

CountBitsSetKernighan



k-mismatches problem with wildcards [11], which consists in reporting all the
positions j such that |{0 ≤ h < m : T [j+h] 6= P [h]∧T [j+h] 6= φ∧P [h] 6= φ}| ≤
k. Let A and Bi be defined as in Sect. 4. The idea is to modify our algorithm
so as to reset to zero all the fields j in fnf(A ∧ Bi, log σ) such that A[j] = φ or
Bi[j] = φ, since there can be no mismatch in a position where either a pattern
or text wildcard occurs.

In the preprocessing we create two (log σ)-words WP and HT . A field WP [i]
in WP is equal to 0 if i > ℓm̄ or A[i] = φ, to 2log σ−1 otherwise. A field HT [i] in
HT is equal to φ if i ≤ ℓm̄, to 0 otherwise.

At each iteration i of the searching phase, we compute the word WT =
fnf(Bi

∧ HT , log σ). Analogously to WP , a field WT [j] in WT is equal to 0 if
i > ℓm̄ or Bi[j] = φ, to 2log σ−1 otherwise.

Then, we and the result of operation 2 of the algorithm with WP & WT (i.e.,
A′ ← A′ & (WP & WT )). The rest of the procedure is unchanged. The overall
time complexity is also unchanged.

5.2 δ-matching with k-mismatches and (δ, γ)-matching

We consider the problem of δ-matching [9, 10] with k-mismatches. In this
problem we want to report, given an integer δ, all the positions j such that
|{0 ≤ i < m : |T [j+ i]−P [i]| > δ}| ≤ k. In the exact case, i.e., when k = 0, this
is equivalent to matching under the L∞ distance [10]. In δ-matching any two
characters t and p are defined to match iff |t−p| ≤ δ. Note that in the algorithm
to be presented in this section we can allow δi to be different for each pattern
position i, while usually in δ-matching the allowed error δ is the same for each
character. This also yields an alternate solution to matching with wildcards in
the pattern, by simply using δi = σ − 1 for pattern positions i corresponding to
wildcards, and δi = 0 elsewhere.

The idea is to compute the absolute difference |A[j] − Bi[j]| for each
field j using pvmax and pvmin, i.e., we compute a (log σ)-word X such that
X [j] = max(A[j], Bi[j])−min(A[j], Bi[j]). Then we replace each difference with
2log σ−1 if it is greater than δj mod m and with 0 otherwise, using pmin and a xor
operation. In this way we can count the number of symbols that do not δ-match
using ibsa or bsa. In the preprocessing phase we compute D′[j] = δj and con-
struct its packed representation D, a (log σ)-word holding ℓ copies of D′. Let W
be a (log σ)-word such that W [i] is equal to 2log σ−1 if i ≤ ℓm, to 0 otherwise.
Then at iteration i of the searching phase we compute

1. X ← pvmax(A,Bi, log σ)− pvmin(A,Bi, log σ)

2. A′ ← pmin(X,D, log σ) ∧ W

The result is that each field of A′ is equal to 2log σ−1 iff the corresponding pattern
and text characters do not δ-match. The rest of the algorithm is as before, only
the steps 1–2 of either of the main algorithms (for AC0 and word-RAM models)
are replaced with the two steps above. The time complexities remain the same.



If we are interested in the (more conventional) exact δ-matching variant (i.e.
assume that k = 0), we can improve the time to O( n

⌊w/(m/ log σ)⌋ ) using the

following algorithm:

1. X ← pvmax(A,Bi, log σ)− pvmin(A,Bi, log σ)
2. A′ ← pmin(X,D, log σ) ∧ W
3. M ← fnf(A′,m log σ) ∧ Vm log σ

4. report(M)

The fnf operation interprets the word A′ as a (m log σ)-word, and returns a
(m log σ)-word where the i-th field is equal to 2m log σ−1 if at least one character
of the i-th pattern copy did not δ-match, and to 0 otherwise. The xor operation
then inverts the fields’ values, so that a field is equal to 2m log σ−1 if all the
characters of the corresponding pattern copy did δ-match.

We note that a close relative to δ-matching is less-than matching, where
characters p and t match if p ≤ t. This model has applications in other pattern
matching problems, see e.g. [1]. The less-than matching problem can be easily
solved with our methods in the same way as δ-matching, that is, the first two
lines are simply replaced with A′ ← pmin(A,Bi, log σ)

∧ W . It is also possible
to solve δ-matching, with the same time complexity, by combining less-than and
greater-than matching.

The γ-matching problem consists in, given an integer γ, finding all the posi-
tions j such that

∑

0≤i<m |T [j + i]− P [i]| ≤ γ. If both δ and γ conditions must
hold, we speak of (δ, γ)-matching. There are many algorithms devoted to this
model, see e.g. [12]. In order to solve γ-matching we need to sum the fields of
each pattern copy in X and compare each value against γ (note that we need to
check also the δ condition). If we do not use field compaction and deferred re-
porting of occurrences, this is easiest to do in the same way as the first widening
phase of bsa operation, i.e. by simply shifting and adding the fields in parallel
in O(logm) time, giving O( n

⌊w/(m log σ)⌋ logm) total time in AC0. This result

can be improved in both AC0 and word-RAM models. We first define one more
operation:

interleave two words (interleave(A,B,Z, f)): given three (f)-words A, B and Z,
return a (f)-word W such that W [i] is equal to A[i] if Z[i] = 0, and to B[i]
otherwise. This can be implemented in O(1) time as follows:

1. Z ← fnf(Z, f)
2. Z ← (Z − (Z >> (f − 1))) | Z
3. W ← (A & ∼Z) | (B & Z)

The idea is to first find all the pattern copies with at least one difference greater
than δ, by computing the (m̄ log σ)-word Z = fnf(A′, m̄ log σ), as in the algorithm
described before for δ-matching. Then, we prevent all these pattern copies from
γ-matching by replacing all the corresponding differences in X with δ. The effect
is that the sum of the fields for a pattern copy with at least one difference
greater than δ is equal to mδ instead of the exact sum. This works because in



γ-matching it always holds that mδ > γ, as otherwise the γ condition does not
prune anything. To this end, using Z and interleave, we interleave the words X
and D, interpreted as (m log σ)-words, into the (log σ)-word X ′. In this way, a
field X ′[i] is equal to X [i] if no difference is greater than δ for the corresponding
pattern copy (i.e., if Z[⌊i/m̄⌋] = 0), and to D[i] otherwise.

In word-RAM we then use bsa and pmin to accumulate the absolute differ-
ences in X ′ and compare the sums against the threshold value γ in parallel. Note
that we need to adjust bsa to use as r the smallest power of two greater than or
equal to log(wδ + 1)/ log σ, so as to not cause overflows. The algorithm is

1. X ← pvmax(A,Bi, log σ)− pvmin(A,Bi, log σ)
2. A′ ← pmin(X,D, log σ) ∧ W
3. Z ← fnf(A′, m̄ log σ)
4. X ′ ← interleave(X,D,Z, m̄ log σ)
5. M ← pmin(bsa(X ′, log σ, m̄), G, f)
6. report(M)

where f = m̄ log σ and G is a (f)-word containing a copy of the integer γ in each
field. The time complexity is O( n

⌊w/(m log σ)⌋ logmin(m, log(wδ)/ log σ)) which

again obtains O( n
⌊w/(m log σ)⌋ ) time for log σ = Ω(log(wδ)) or constant m.

Consider now the AC0 model. We use an approach similar to the one used in
the k-mismatches case, the only difference is that we need more bits to represent
the accumulated sums. That is, we replace k̄ with γ̄ = 2⌈log(γ+1)⌉ (the smallest
power of two greater than γ), and use f = log γ̄ + 1. The ibsa operation then
works correctly, i.e. accumulates the absolute differences without overflowing
the sums, provided that all characters δ-match, as otherwise the corresponding
absolute difference may be σ− 1, which in turn can be larger than γ̄. This holds
because no difference is greater than δ in X ′. The complete pseudocode follows.

1. X ← pvmax(A,Bi, log σ)− pvmin(A,Bi, log σ)
2. A′ ← pmin(X,D, log σ) ∧ W
3. Z ← fnf(A′, m̄ log σ)
4. X ′ ← interleave(X,D,Z, m̄ log σ)
5. H ← (H << f) | X ′
6. if i > 0 and i mod ⌊log σ/f⌋ = 0
7. M ← pmin(ibsa(H, f, m̄), G, f)
8. report(M)
9. H ← 0

The total time is O( n
⌊w/(m log σ)⌋ (1 + logm log γ/ log σ)), This becomes

O( n
⌊w/(m log σ)⌋ ) for logm log γ = O(log σ).

We can also combine the two models, δ-matching with k-mismatches and
(δ, γ)-matching, to obtain (δ, k, γ)-matching. In this model we limit the number
of characters not δ-matching by k, and the accumulated sum of the absolute
differences by γ. The basic idea is to compute two match vectors, Mδ and Mγ ,
take their bitwise and as M ← Mδ & Mγ and then report the occurrences with



respect to M . The vector Mδ can be computed as was already shown. To com-
pute Mγ we just skip the interleave operation to take the absolute differences
raw without saturating them with δ. In AC0 we can use the basic algorithm
to compute Mγ in O( n

⌊w/(m log σ)⌋ logm) time, which dominates the total time.

However, since the sums need more bits now, there is a significant overhead in
the case of the word-RAM algorithm and of the improved AC0 algorithm. In
particular, in the case of the word-RAM algorithm, the time complexity becomes
O( n
⌊w/(m log σ)⌋ logmin(m, log(wσ)/ log σ)), i.e., slightly worse. Instead, in the

case of the improved AC0 algorithm, the overhead makes the algorithm useless.
However, we can still manage to obtain O( n

⌊w/(m log σ)⌋(1 + logm log γ/ logσ))

time by modifying the model so that we accumulate the absolute differences
only on δ-matching character positions. This can be easily done with the tools
already presented, namely using the interleave operation to set non-δ-matching
character positions to 0 in word X ′.

6 Conclusion

We presented a novel technique for approximate pattern matching with k-
mismatches when the text is given in packed form. Assuming the pattern is
short enough, it is possible to achieve a sublinear search time, if several pattern
copies are matched against different text substrings at the same time. We de-
scribed variants of our simple method in the AC0 and word-RAM models and
also considered the case when the number k of allowed errors is small. Moreover,
we showed how to adapt our algorithms to other matching models, including
approximate matching with wildcard (don’t-care) symbols, δ-matching with k-
mismatches and (δ, γ)-matching.
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