
ar
X

iv
:1

30
7.

00
99

v1
 [

cs
.F

L
]

 2
9

Ju
n

20
13

On a compact encoding of the swap automaton

Kimmo Fredriksson1 and Emanuele Giaquinta2

1 School of Computing, University of Eastern Finland kimmo.fredriksson@uef.fi
2 Department of Computer Science, University of Helsinki, Finland

emanuele.giaquinta@cs.helsinki.fi

Abstract. Given a string P of length m over an alphabet Σ of size
σ, a swapped version of P is a string derived from P by a series of
local swaps, i.e., swaps of adjacent symbols, such that each symbol can
participate in at most one swap. We present a theoretical analysis of the
nondeterministic finite automaton for the language

⋃
P ′∈ΠP

Σ∗P ′ (swap
automaton for short), where ΠP is the set of swapped versions of P . Our
study is based on the bit-parallel simulation of the same automaton due
to Fredriksson, and reveals an interesting combinatorial property that
links the automaton to the one for the language Σ∗P . By exploiting this
property and the method presented by Cantone et al. (2010), we obtain
a bit-parallel encoding of the swap automaton which takes O(σ2⌈k/w⌉)
space and allows one to simulate the automaton on a string of length n
in time O(n⌈k/w⌉), where ⌈m/σ⌉ ≤ k ≤ m.

1 Introduction

The Pattern Matching with Swaps problem (Swap Matching problem, for short)
is a well-studied variant of the classic Pattern Matching problem. It consists in
finding all occurrences, up to character swaps, of a pattern P of length m in a
text T of length n, with P and T sequences of characters over a common finite
alphabet Σ of size σ. More precisely, the pattern is said to match the text at a
given location j if adjacent pattern characters can be swapped, if necessary, so as
to make it identical to the substring of the text ending (or, equivalently, starting)
at location j. All swaps are constrained to be disjoint, i.e., each character can
be involved at most in one swap.

The Swap Matching problem was introduced in 1995 as one of the open
problems in nonstandard string matching [9]. The first result that improved
over the naive O(nm)-time bound is due to Amir et al. [1], who presented an

O(nm
1
3 logm)-time algorithm for binary alphabets and described how to reduce

the case of a general alphabet to that of a binary one with a O(log σ)-time
overhead. The best theoretical result to date is due to Amir et al. [2]. Their
algorithm runs in time O(n logm) for binary alphabets and can also solve the
case of general alphabets in time O(n logm log σ) by using again the alphabet
reduction technique of Amir et al. [1]. Both solutions are based on reducing
the problem to convolutions. Note that this problem can also be solved using
more general algorithms for Approximate String Matching [10], albeit with worse
bounds.

http://arxiv.org/abs/1307.0099v1

There also exist different practical solutions, based on word-level parallelism.
To our knowledge, the first one is due to Fredriksson [7], who presented a gener-
alization of the nondeterministic finite automaton (NFA) for the language Σ∗P
(prefix automaton) for the Swap Matching problem and a fast method to simu-
late it using bit-parallelism [3]. The resulting algorithm runs in O(n⌈m/w⌉)-time
and uses O(σ⌈m/w⌉) space, where w is the machine word size in bits. In the same
paper Fredriksson also presented a variant of the BNDM algorithm [11], based on
the generalization of the NFA for the language of the suffixes of P (suffix automa-
ton), which achieves sublinear time on average and runs in O(nm⌈m/w⌉)-time
in the worst-case. In 2008 Iliopoulos and Rahman presented a variant of Shift-
Or for this problem, based on a Graph-Theoretic model [8]. Their algorithm
runs in time O(n⌈m/w⌉ logm) and uses O(m⌈m/w⌉) space (the logm term can
be removed at the price of O(σ2⌈m/w⌉) space). The improvement over the al-
gorithm by Fredriksson is that the resulting bit-parallel simulation is simpler,
in that it requires fewer bitwise operations. Later, Cantone and Faro presented
an algorithm based on dynamic programming that runs in time O(n⌈m/w⌉)
and requires O(σ⌈m/w⌉) space [5]. Subsequently Campanelli et al. presented
a variant of the BNDM algorithm based on the same approach which runs in
O(nm⌈m/w⌉)-time in the worst-case [4].

In [6] Cantone et al. presented a technique to encode the prefix automaton
in O(σ2⌈k/w⌉) space and simulate it on a string of length n in O(n⌈k/w⌉)
time, where ⌈m/σ⌉ ≤ k ≤ m. In this paper we extend this result to the NFA
described in [7]. First, we present a theoretical analysis of this NFA, from which
the correctness of the bit-parallel simulation presented in the same paper follows.
We then show that, by exploiting the properties of this NFA that we reveal in
the following, we can solve the Swap Matching problem in time O(n⌈k/w⌉) and
space O(σ2⌈k/w⌉), where ⌈m/σ⌉ ≤ k ≤ m, using the method presented in [6].
Our result also applies, with small changes, to the case of the generalized suffix
automaton for the Swap Matching problem.

2 Notions and Basic Definitions

Given a finite alphabet Σ of size σ, we denote by Σm, with m ≥ 0, the collection
of strings of length m over Σ and put Σ∗ =

⋃

m∈N
Σm. We represent a string

P ∈ Σm as an array P [0 ..m − 1] of characters of Σ and write |P | = m (in
particular, for m = 0 we obtain the empty string ε). Thus, P [i] is the (i+ 1)-st
character of P , for 0 ≤ i < m, and P [i . . . j] is the substring of P contained
between its (i+1)-st and (j +1)-st characters, inclusive, for 0 ≤ i ≤ j < m. For
any two strings P and P ′, we write PP ′ to denote the concatenation of P and
P ′.

Given a string P ∈ Σm, we indicate with A(P) = (Q,Σ, δ, q0, F) the non-
deterministic finite automaton (NFA) for the language Σ∗P of all words in Σ∗

ending with an occurrence of P (prefix automaton for short), where:

– Q = {q0, q1, . . . , qm} (q0 is the initial state)

– the transition function δ : Q ×Σ −→ P(Q) is defined by:

δ(qi, c) =Def

{q0, q1} if i = 0 and c = P [0]

{q0} if i = 0 and c 6= P [0]

{qi+1} if 1 ≤ i < m and c = P [i]

∅ otherwise

– F = {qm} (F is the set of final states).

The valid configurations δ∗(q0, S) which are reachable by the automaton
A(P) on input S ∈ Σ∗ are defined recursively as follows:

δ∗(q0, S) =Def

{

{q0} if S = ε,
⋃

q′∈δ∗(q0,S′) δ(q
′, c) if S = S′c, for some c ∈ Σ and S′ ∈ Σ∗.

Definition 1. A swap permutation for a string P of length m is a permutation
π : {0, ...,m− 1} → {0, ...,m− 1} such that:

(a) if π(i) = j then π(j) = i (characters are swapped);
(b) for all i, π(i) ∈ {i− 1, i, i+ 1} (only adjacent characters are swapped);
(c) if π(i) 6= i then P [π(i)] 6= P [i] (identical characters are not swapped).

For a given string P and a swap permutation π for P , we write π(P) to denote
the swapped version of P , namely π(P) = P [π(0)]P [π(1)] . . . P [π(m− 1)].

Definition 2 (Pattern Matching with Swaps Problem). Given a text T
of length n and a pattern P of length m, find all locations j ∈ {m− 1, ..., n− 1}
for which there exists a swap permutation π of P such that π(P) matches T at
location j, i.e. P [π(i)] = T [j −m+ i+ 1], for i = 0...m− 1.

Finally, we recall the notation of some bitwise infix operators on computer
words, namely the bitwise and “&”, the bitwise or “|”, the left shift “≪”
operator (which shifts to the left its first argument by a number of bits equal to
its second argument), and the unary bitwise not operator “∼”.

2.1 1-factorization encoding of the prefix automaton

A 1-factorization u of size k of a string P is a sequence 〈u1, u2, . . . , uk〉 of
nonempty substrings of P such that:

(a) P = u1u2 . . . uk ;
(b) each factor uj in u contains at most one occurrence of any of the characters

in the alphabet Σ, for j = 1, . . . , k .

The following result was presented in [6]:

Theorem 1 (cf. [6]). Given a string P of length m and a 1-factorization of P
of length ⌈m/σ⌉ ≤ k ≤ m, we can encode the automaton A(P) in O(σ2⌈k/w⌉)
space and simulate it in time O(n⌈k/w⌉) on a string of length n.

We briefly recall how the encoding of Theorem 1 works. A 1-factorization 〈u1, u2, . . . , uk〉
of P induces a partition {Q1, . . . , Qk} of the set Q \ {q0} of states of the au-
tomaton A(P), where

Qi =Def

{

qri+1, . . . , qri+1

}

, for i = 1, . . . , k ,

and rj = |u1u2 . . . uj−1|, for j = 1, . . . , k+1. We denote with qi,a the unique state
in Qi with an incoming transition labeled by a, if such a state exists; otherwise
qi,a is undefined. The configuration δ∗(q0, Sa) of A(P) on input Sa can then be
encoded by the pair (D, a), where D is the bit-vector of size k such that D[i] is
set iff qi,a ∈ δ∗(q0, Sa). We also denote with id(i, ui[j]) = ri + j the position of
symbol ui[j] in P , for 0 ≤ j ≤ |ui| − 1. Equivalently, id(i, ui[j]) is the index of
state qi,ui[j] in the original automaton.

3 An analysis of the swap automaton

Let P be a pattern of length m and let ΠP be the set including all the swapped
versions of P . The swap automaton of P is the nondeterministic finite automaton
that recognizes all the words in Σ∗ ending with a swapped version of P . Formally,
it is the NFA Aπ(P) = (Q,Σ, δ, q0, F), where:

– Q = {q0, q1 . . . , q2m−1}
– the transition function δ : Q ×Σ −→ P(Q) is defined by:

δ(qi, c) =Def

{q0, q1} if i = 0 and c = P [0]

{q0, qm+1} if i = 0 and c = P [1]

{q0} if i = 0 and c 6= P [0] and c 6= P [1]

{qi+1} if 1 ≤ i < m and c = P [i]

{qi+m+1} if 1 ≤ i < m− 1 and c = P [i+ 1]

{qi−m+1} if m+ 1 ≤ i < 2m and c = P [i−m− 1]

∅ otherwise

– F = {qm}

The language accepted by Aπ(P) is L(Aπ(P)) =
⋃

P ′∈ΠP
Σ∗P ′. An example of

this automaton for the string cagca is depicted in Fig. 1. Compared to the NFA
A(P) for the language Σ∗P , this automaton has m − 1 additional states and
2m− 2 additional transitions. To our knowledge, this automaton was described
for the first time by Fredriksson in [7]. In the same paper, Fredriksson presented
an efficient simulation of this automaton based on word-level parallelism. Let
φ(S) = S′ be the string of length |S| defined as follows:

S′[i] =

S[i] if i ≥ ⌊m/2⌋2

S[i− 1] if i mod 2 = 1

S[i+ 1] if i mod 2 = 0

0 1 2 3 4 5

6

7

8

9

c

Σ

a g c a

a c c g

g a a c

0 1 2 3 4 5
c

Σ
a g c a

0 1 2 3 4 5
c

Σ
g a a c

0 1 2 3 4 5
a

Σ
c c g a

Fig. 1. (a) The swap automaton for the pattern cagca; (b) The decomposition of the
swap automaton for the pattern cagca.

The method is based on the decomposition of the swap automaton for P into
the three automata A(P), A(Pe) and A(Po), where Pe = P [0]φ(P [1 . . . m− 1])
and Po = φ(P). In the case of the string cagca we have that Pe = cgaac and
Po = accga. The corresponding automata are depicted in Fig. 1. Observe that
all the automata have exactly m + 1 states. We denote with q1i , q

2
i and q3i the

i-th state of the automata A(P), A(Pe) and A(Po), respectively. Likewise for
the corresponding transition functions. Given a string S, let Di

j(S) be the set
recursively defined as

Di
j(S) =

{

⋃

q∈Di
j−1

(S)∪Ci
j−1

(S) δi(q, S[j]) if 1 ≤ j ≤ |S| − 1

δi(q
i
0, S[0]) if j = 0.

for i = 1, . . . , 3, where

C1
j (S) = {q1i | (i mod 2 = 1 ∧ q2i ∈ D2

j (S)) ∨ (i mod 2 = 0 ∧ q3i ∈ D3
j (S))} ,

C2
j (S) = {q2i | (i mod 2 = 1 ∧ q1i ∈ D1

j (S))} ,

C3
j (S) = {q3i | (i mod 2 = 0 ∧ q1i ∈ D1

j (S))} ,

for j = 0, . . . , |S|− 1. The idea is to simulate the three automata simultaneously
on S. However, at each iteration, we also activate some states of each automaton
depending on the configuration of the others. More precisely, we activate state q2i
if i is odd and state q1i is active, and viceversa. Similarly, we activate state q3i if
i is even and state q1i is active, and viceversa. The sets Di

j encode the described
configurations. Now, consider the automaton Aπ(P). It is not hard to see that
the following Lemma holds:

Lemma 1. In a simulation of the automaton Aπ(P) on a given string S, state qi
is active at the j-th iteration, i.e., qi ∈ δ∗(q0, S[0 . . . j]), iff one of the following
three conditions hold:

1. 1 ≤ i ≤ m and q1i ∈ D1
j (S);

2. m < i < 2m, i−m is even and q2i−m ∈ D2
j (S);

3. m < i < 2m, i−m is odd and q3i−m ∈ D3
j (S).

Hence, to simulate Aπ(P) it is enough to simulate the automata A(P), A(Pe)
and A(Po), and compute the sets Di

j . To this end, Fredriksson uses the well
known technique of bit-parallelism [3] to encode each automaton in O(σ⌈m/w⌉)
space. For a given string T of length n, the simulation of the three automata on
T can be then computed in time O(n⌈m/w⌉), since the number of automata is
constant. For the details concerning the bit-parallel simulation see [7].

We now show how to exploit Lemma 1 to devise an improved algorithm for
the Swap Matching problem. Our result will be a combination of Lemma 1 and
Theorem 1. The idea is to encode each automaton using a 1-factorization of the
corresponding string. However, for the simulation to work, we must be able to
compute the sets Ci

j(S) in constant time (per word), which is not trivial using the
1-factorization encoding. The first prerequisite for a constant time computation
is the following property:

Property 1. For any pair of states (q1i , q
2
i) or (q

1
i , q

3
i), the two states in the pair

map onto the same bit position in the bit-vector encoding of the corresponding
automaton.

For this to hold, given a sequence of factorizations u1, u2, . . . , uℓ we must have
that

1. |ui| = |uj |, for any 1 ≤ i, j ≤ ℓ

2. |ui
l| = |uj

l |, for any 1 ≤ i, j ≤ ℓ and 1 ≤ l ≤ |ui|

These conditions are not satisfied in general by the minimal 1-factorizations of
the strings. For example, the minimal 1-factorizations of cagca, cgaac and accga
are 〈cag, ca〉, 〈cga, ac〉 and 〈ac, cga〉, and the last factorization does not satisfy
condition 2. Let 1-len(S, s) = i, where i is the length such that all the symbols
in S[s . . . s+ i− 1] are distinct and either s+ i− 1 = |S|− 1 or S[s+ i] occurs in
S[s . . . s+ i− 1], for s = 0, . . . , |S| − 1. We introduce the following definition:

Definition 3. Given a sequence S of strings S1, S2, . . . , Sℓ of the same length,
we define the 1-collection of S as the sequence of 1-factorizations u

1,u2, . . . ,uℓ

of length k, where u
i = 〈ui

1, u
i
2, . . . u

i
k〉, such that

(a) Si = ui
1u

i
2 . . . u

i
k;

(b) |ui
j| = min

S∈S
1-len(S,

∑j−1
l=1 |ui

l|).

Observe that the 1-collection of S satisfies conditions 1 and 2.

For example, the 1-collection of cagca, cgaac and accga is 〈ca, g, ca〉, 〈cg, a, ac〉
and 〈ac, c, ga〉. Indeed, we can encode the automata A(P), A(Pe) and A(Po)
using Theorem 1 and the 1-collection of P, Pe, Po in space O(σ2⌈k/w⌉), where k
is the size of any 1-factorization in the 1-collection of P, Pe, Po. By definition, the
1-collection of P, Pe, Po satisfies conditions 1 and 2, and thus Property 1 holds.

Before continuing, we first bound the size k of the factorizations in the 1-
collection of P , Pe and Po.

Lemma 2. Let k′ be the size of a minimal 1-factorization of P and let k be
the size of any factorization in the 1-collection of P , Pe and Po. Then we have
k ≤ min(3k′ − 2,m).

Proof. Let 〈u1, u2, . . . , uk′〉 be the (greedy) minimal 1-factorization of P such

that |uj | = 1-len(P,
∑j−1

l=1 |ul|), for j = 1, . . . , k′. Let s =
∑j−1

l=1 |ul| for a given
j, and suppose that |uj | = 1-len(P, s) = i, so that P [s+ i] occurs in P [s . . . s+
i− 1]. If s+ i is even, then Pe[s+ i− 1] = P [s+ i] and Po[s+ i+ 1] = P [s+ i];
viceversa if s+ i is odd. Suppose that s+ i is even (the other case is analogous).

If s is even then Po[s . . . s+ i−1] is a permutation of P [s . . . s+ i−1], which
implies 1-len(Po, s) ≥ i. Instead, in the case of Pe, Pe[s + 1 . . . s + i − 2] is a
permutation of P [s+1 . . . s+ i− 2]. This implies that 1-len(Pe, s+1) ≥ i− 2.

If s is odd then Pe[s . . . s+ i− 2] is a permutation of P [s . . . s+ i− 2], which
implies that 1-len(Pe, s) ≥ i−1. Instead, in the case of Po, Po[s+1 . . . s+ i−1]
is a permutation of P [s+1 . . . s+i−1]. This implies that 1-len(Pe, s+1) ≥ i−1.

Observe that 1-len(S, s) ≥ i implies 1-len(S, s+1) ≥ i−1. In both cases, we
assume pessimistically that minS∈{P,Pe,Po} 1-len(S, s) = 1 ,minS∈{P,Pe,Po} 1-len(S, s+
1) = i−2 , and minS∈{P,Pe,Po} 1-len(S, s+ i−1) = 1 . This arrangement is com-
patible with the constraints described above.

In this way each factor uj covers three factors in the 1-collection of P , Pe

and Po. However, a finer analysis reveals that u1 and uk can cover two factors
only. Indeed, in the case of u1 we have that Pe[0 . . . i − 2] is a permutation of
P [0 . . . i − 2] and Po[0 . . . i − 1] is a permutation of P [0 . . . i − 1], so we can
assume minS∈{P,Pe,Po} 1-len(S, 0) = i−1 and minS∈{P,Pe,Po} 1-len(S, i−1) = 1.
Instead, in the case of uk we have that Po[s . . . m − 1] is a permutation of
P [s . . . m− 1] and Pe[s+ 1 . . . m− 1] is a permutation of P [s+ 1 . . . m− 1], if
s is even, viceversa if s is odd. So we can assume minS∈{P,Pe,Po} 1-len(S, s) = 1
and minS∈{P,Pe,Po} 1-len(S, s+ 1) = m− s− 1. The claim then follows.

⊓⊔

We now describe a property of the 1-collection of strings P , Pe and Po that
will be the key for the constant time computation of Ci

j :

Lemma 3. Let u1, u2 and u
3 be the 1-collection of P , Pe and Po. Then, the

following facts hold:

– id
1(i, P [j]) = id

2(i, P [j − 1])
id

2(i, Pe[j]) = id
1(i, Pe[j − 1]) if j mod 2 = 0

– id
1(i, P [j]) = id

3(i, P [j − 1])
id

3(i, Po[j]) = id
1(i, Po[j − 1]) if j mod 2 = 1

for 1 ≤ i ≤ k and max(r1i , 1) ≤ j ≤ r1i + |u1
i | − 1.

Proof. By definition, id1(i, P [j]) = j, for any i, j as above, since u
1 is a fac-

torization of P . Similarly, id2(i, Pe[j]) = j, since r2i = r1i and |u2
i | = |u1

i |. If
j mod 2 = 0, then Pe[j] = P [j − 1] and P [j] = Pe[j − 1] so that id2(i, Pe[j]) =
id2(i, P [j − 1]) and id1(i, P [j]) = id1(i, Pe[j − 1]). The case of j mod 2 = 1 is
analogous with Po and id3 in place of Pe and of id2, respectively.

⊓⊔

We now present how to compute the sets C2
j and C3

j . The case of C
1
j is analogous.

More precisely, we need to compute the 1-factorization encoding of C2
j and C3

j ,

given the pair (D1, T [j]) encoding the setD1
j (T). Let E(c) be a bit-vector of k bits

such that bit i is set in E(c) iff id
1(i, c) is even, for any c ∈ Σ. First we compute

the bit-vector D′ such that bit i is set iff bit i is set in D
1 and id

1(i, T [j]) is even.
This can be done in constant time by performing a bitwise and ofD1 with E(T [j]).
Observe that the pair (D′, T [j]) encodes the set {q1i | (i mod 2 = 1∧q1i ∈ D1

j (T))}.

We claim that the pair (D′, T [j−1]) encodes the set C2
j . This follows by Lemma 3

by observing that if bit i is set in D
′ then id

1(i, T [j]) = id
2(i, T [j − 1]). The

case of C3
j is symmetric, i.e., the pair (D1 & ∼E(T [j]), T [j − 1]) encodes C3

j .
Given a string of length n, we can then simulate the swap automaton using

Lemma 1 in time O(n⌈k/w⌉). Hence, we obtain the following result:

Theorem 2. Given a string P of length m, we can encode the automaton Aπ(P)
in O(σ2⌈k/w⌉) space, where ⌈m/σ⌉ ≤ k ≤ m, and simulate it in time O(n⌈k/w⌉)
on a string of length n.

References

1. Amihood Amir, Yonatan Aumann, Gad M. Landau, Moshe Lewenstein, and Noa
Lewenstein. Pattern matching with swaps. J. Algorithms, 37(2):247–266, 2000.

2. Amihood Amir, Richard Cole, Ramesh Hariharan, Moshe Lewenstein, and Ely
Porat. Overlap matching. Inf. Comput., 181(1):57–74, 2003.

3. R. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Commun.

ACM, 35(10):74–82, 1992.
4. Matteo Campanelli, Domenico Cantone, and Simone Faro. A new algorithm for

efficient pattern matching with swaps. In IWOCA, volume 5874 of Lecture Notes

in Computer Science, pages 230–241. Springer, 2009.
5. Domenico Cantone and Simone Faro. Pattern matching with swaps for short pat-

terns in linear time. In SOFSEM, volume 5404 of Lecture Notes in Computer

Science, pages 255–266. Springer, 2009.
6. Domenico Cantone, Simone Faro, and Emanuele Giaquinta. A compact represen-

tation of nondeterministic (suffix) automata for the bit-parallel approach. Inf.

Comput., 213:3–12, 2012.
7. Kimmo Fredriksson. Fast algorithms for string matching

with and without swaps. 2000. Unpublished manuscript,
http://www.cs.uef.fi/~fredriks/pub/papers/sm-w-swaps.pdf .

8. Costas S. Iliopoulos and M. Sohel Rahman. A new model to solve the swap match-
ing problem and efficient algorithms for short patterns. In SOFSEM, volume 4910
of Lecture Notes in Computer Science, pages 316–327. Springer, 2008.

9. S. Muthukrishnan. New results and open problems related to non-standard
stringology. In CPM, volume 937 of Lecture Notes in Computer Science, pages
298–317. Springer, 1995.

10. Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput.

Surv., 33(1):31–88, 2001.
11. Gonzalo Navarro and Mathieu Raffinot. Fast and flexible string matching by com-

bining bit-parallelism and suffix automata. ACM Journal of Experimental Algo-

rithmics, 5:4, 2000.

http://www.cs.uef.fi/~fredriks/pub/papers/sm-w-swaps.pdf

	On a compact encoding of the swap automaton

