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Abstract

We study the approximability of instances of the minimum entropy

set cover problem, parameterized by the average frequency of a ran-
dom element in the covering sets. We analyze an algorithm combining
a greedy approach with another one biased towards large sets. The al-
gorithm is controled by the percentage of elements to which we apply
the biased approach. The optimal parameter choice has a phase tran-

sition around average density e and leads to improved approximation
guarantees when average element frequency is less than e.

1 Introduction

The minimum entropy set cover problem (MESC) [Halperin and Karp(2005)]
arose from a maximum likelihood approach to haplotype inference in com-
putational biology (see also [Mãndoiu and Paşaniuc(2005)]). Halperin and
Karp showed that the problem is NP-complete and provided an additive up-
per bound (equal to three) on the performance of the Greedy algorithm. This
was later improved by Cardinal et al. [Cardinal et al.(2008a)], who showed a
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tight additive upper bound of log2(e). Cardinal et al.
[Cardinal et al.(2012)] also studied several versions of this problem, notably
minimum entropy graph coloring [Cardinal et al.(2004)] and minimum en-
tropy orientation [Cardinal et al.(2008b)], as well as a generalization to ar-
bitrary objective functions [Cardinal and Dumeunier(2008)]. Minimum en-
tropy graph coloring has found applications to problems related to functional
compression in information theory [Cardinal et al.(2004)].

Minimum entropy set cover also lies behind a recently proposed family
of measures of worst-case fairness in cost allocations in cooperative game
theory [Bonchiş and Istrate(2012a)]. This was accomplished by first studying
[Bonchiş and Istrate(2012b)] a minimum entropy version of the well-known
submodular set cover problem [Wolsey(1982), Fujita(2000)]. Submodularity
corresponds in the setting of cooperative game theory to concavity of the
associated game, a property that guarantees many useful features of the game
such as the non-emptiness of the core, membership of the Shapley value in the
core, equivalence between group-strategyproofness and cross-monotonicity in
mechanism design [Moulin(1999)] and so on.

In this paper we further study MESC restricted to sparse instances, that
is to instances of Set Cover parameterized by f (formally defined below), the
average number of sets that cover a random element. In the spirit of the
minimum entropy orientation problem (a version of MESC for which f = 2)
we aim to provide better approximation guarantees than those valid for the
Greedy algorithm. To accomplish this goal we study the performance of
an approximation algorithm BiasedGreedy(δ) parameterized by a constant
δ ∈ [0, 1].

Our main result can be summarized as follows: we give general upper
bounds on the performance of our proposed algorithm. These bounds im-
prove on the approximation guarantee of the greedy algorithm when average
element frequency is less than the constant e. Furthermore, the best choice of
control parameter δ depends on this frequency: it corresponds to the choice
of a "biased" algorithm below critical value e, and to the greedy algorithm
above it.

The paper is structured as follows: in Section 2 we review basic notions
and define the algorithm BiasedGreedy. The main result is presented and
further discussed in Section 3. Its proof is given in Section 4. Next we
present several applications of our main result to the Minimum Entropy
Graph Coloring problem.
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2 Preliminaries

In this paper we need the definition of Shannon entropy and its associated
divergence of two distributions P and Q:

D(P ‖ Q) =
∑

i

pi log2
pi
qi
.

We recall that D(P ‖ Q) ≥ 0 for all P and Q.

We are concerned with the following problem:

Definition 1. [MINIMUM ENTROPY SET COVER (MESC)]: Let
U = {u1, u2, . . . , un} be an n−element ground set, for some n ≥ 1, and let
P = {P1, P2, . . . , Pm} be a family of subsets of U which cover U . A cover is
a function g : U → [m] such that for every 1 ≤ i ≤ n,

ui ∈ Pg(ui)(“ui is covered by set Pg(ui)”)

The entropy of cover g is defined by:

Ent(g) = −

m
∑

i=1

|g−1(i)|

|U |
log2

|g−1(i)|

|U |
. (2.1)

[OBJECTIVE:] Find a cover g of minimum entropy.

Consider an instance (U,P) as above. Define

f =

∑m
i=1 |Pi|

|U |
,

the average frequency of a random element in U .
In the algorithm below we divide the elements of the ground set into Light

and Heavy elements, based on their frequency of occurrence. Parameter δ
controls this division: the least frequent δn elements are deemed Light, while
the rest are considered Heavy.

Informally, the algorithm will first covers Light elements in a biased man-
ner, simultaneously covering each such elemen by a set of maximum cardinal-
ity containing it. Once this phase is complete all Light elements are deleted
from all sets. The Heavy elements are handled in an incremental manner via
a Greedy approach. The algorithm is formally presented in the following:
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INPUT: An instance (U,P) of MESC

PH := {PH
1 , PH

2 , . . . , PH
k } where PH

i = Pi \ L for all i ∈ [k]

While (there exists e ∈ L)
choose ie ∈ [k] to maximize |Pie | where Pie ∋ e;

let g(e) = ie;
L := L \ {e};

While (there exists e ∈ H)
choose ie ∈ [k] to maximize |PH

ie
| where PH

ie
∋ e;

let g(e) = ie;
erase e from all PH

i ;
H := H \ {e};

OUTPUT: the cover g.

Figure 2.1: BiasedGreedy(δ)

3 Main result

Our main result shows that the following upper bound on the performance
of algorithm BiasedGreedy holds:

Theorem 1. Algorithm BiasedGreedy(δ) produces a cover BG : U 7−→ [k]
satisfying:

Ent(BG) ≤ Ent(OPT )− (1− δ) log2

(

1− δ

e

)

+ log2 f + o(1). (3.1)

Corollary 1. The Biased algorithm, defined as the BiasedGreedy algorithm
with δ = 1, produces a cover BI whose entropy satisfies

Ent(BI) ≤ Ent(OPT ) + log2 f. (3.2)

Observation 1. Optimizing over constant δ in inequality (3.1) reveals an
interesting fact: the optimal choice of δ is always δ ∈ {0, 1}, i.e. the pure
Biased or Greedy algorithms. More precisely
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• choice δ = 1 (i.e. Biased) is optimal for f < e.

• when f > e choice δ = 0 (i.e. Greedy) becomes best.

Thus the optimal choice for δ has a phase transition from δ = 1 to δ = 0
around average density f = e.

4 Proof of the main result

Proof. Let BG be the cover generated by the BiasedGreedy algorithm, and

denote by p♭i =
|BG−1(i)|

n
the associated probability distribution.

If OPT is the optimal solution of the same instance, denote xi = |OPT−1(i)|
and yi = |OPT−1(i) ∩Heavy| for all 1 ≤ i ≤ k. By choice of δ,

∑k
i=1 yi =

n− ⌈δn⌉ ≤ (1− δ)n while
∑k

i=1 xi = n.
We rewrite the entropy of BG as follows:

Ent(BG) =−

k
∑

i=1

p♭i log2 p
♭
i = −

k
∑

i=1

p♭i log2

(

|Pi|
p♭i
|Pi|

)

Denoting by # = (#i) the distribution #i =
|Pi|∑k

j=1
|Pj |

we obtain:

Ent(BG) =−

k
∑

i=1

p♭i log2 |Pi| −

k
∑

i=1

p♭i log2
p♭i
#i

+ log2

k
∑

i=1

|Pi|

=−
k

∑

i=1

p♭i log2 |Pi| −D(BG ‖ #) + log2

k
∑

i=1

|Pi| (4.1)

Considering now just the first sum we obtain

−

k
∑

i=1

p♭i log2 |Pi| =−

k
∑

i=1

|BG−1(i)|

n
log2 |Pi| = −

1

n

k
∑

i=1

∑

v∈BG−1(i)

log2 |PBG(v)|

=−
1

n

∑

v∈U

log2 |PBG(v)| = −
1

n

∑

v∈U

log2 av

where av is the size of the set assigned by BiasedGreedy to cover v.
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Continuing, we infer

−

k
∑

i=1

p♭i log2 |Pi| =−
1

n

k
∑

i=1

∑

v∈OPT−1(i)

log2 av = −
1

n

k
∑

i=1

log2
∏

v∈OPT−1(i)

av

=−
1

n

k
∑

i=1

log2
∏

v∈OPT−1(i)∩Light

av ·
∏

v∈OPT−1(i)∩Heavy

av

From the definition of the algorithm we conclude the following:

• for all v ∈ OPT−1(i) ∩ Light,

av =|PBG(v)| = max
j,Pj∋v

|Pj| ≥ |POPT (v)| ≥ |OPT−1(i)| = xi

• On the other hand, for v ∈ OPT−1(i) ∩Heavy we analyze the Greedy
phase of BiasedGreedy algorithm in a manner completely similar to the
analysis of the Greedy algorithm in [Cardinal et al.(2008a)] and infer
that

∏

v∈OPT−1(i)∩Heavy

av ≥ yi!

Therefore,

−
k

∑

i=1

p♭i log2 |Pi| ≤ −
1

n

k
∑

i=1

log2





∏

v∈OPT−1(i)∩Light

xi



 (yi!) =

= −
1

n

k
∑

i=1

log2
(

xxi−yi
i

)

(yi!) = −
1

n

k
∑

i=1

(xi − yi) log2 xi −
1

n

k
∑

i=1

log2 yi!

= −

k
∑

i=1

xi

n
log2

xi

n
− log2 n+

1

n

k
∑

i=1

yi log2 xi −
1

n

k
∑

i=1

log2 yi!

Applying now the inequality y! ≥ (y/e)y we obtain:
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−

k
∑

i=1

p♭i log2 |Pi| ≤ Ent(OPT )− log2 n+
1

n

k
∑

i=1

yi log2 xi −
1

n

k
∑

i=1

log2
y

yi

i

eyi

= Ent(OPT )− log2 n +
1

n

k
∑

i=1

yi log2 xi −
1

n

k
∑

i=1

yi log2 yi +
1

n

k
∑

i=1

yi log2 e

≤ Ent(OPT )− log2 n−
1

n

k
∑

i=1

yi log2
yi
xi

+ (1− δ) log2 e (4.2)

Considering now distributions xi =
xi

n
, yi =

yi∑
j yj

we obtain

−
1

n

k
∑

i=1

yi log2
yi
xi

=−
1

n

k
∑

i=1

(n− ⌈δn⌉)yi log2
(n− ⌈δn⌉)yi

nxi

=−
(n− ⌈δn⌉)

n

k
∑

i=1

yi log2
yi
xi

−
(n− ⌈δn⌉)

n
log2

(n− ⌈δn⌉)

n

=−
(n− ⌈δn⌉)

n
D(y ‖ x)−

(n− ⌈δn⌉)

n
log2

(n− ⌈δn⌉)

n

Putting all things together:

Ent(BG) ≤Ent(OPT )− (1− δ) log2(1− δ) + (1− δ) log2 e+ log2 f + o(1).

and the proof is complete.

5 Application to minimum entropy graph col-

oring

Just as it is the case with the Greedy algorithm [Cardinal et al.(2012)], our
result has implications for the minimum entropy coloring problem. This
problem can be recast as an implicit set cover problem [Karp(2011)], where
the sets are the maximal independent sets in G. Given the intractability of
the maximum independent set problem, we can only efficiently implement the
Biased algorithm on special classes of graphs, where this problem is easier.
On the other hand algorithm Biased has some nice properties, similar to
those discussed in [Cardinal et al.(2012)]) for the Greedy algorithm:
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1. it can be implemented in polynomial time on perfect graphs. Indeed,
the largest independent set containing a given vertex can easily be
computed in a perfect graph.

2. it allows the use of η-approximately optimal independent sets (for some
constant η ≥ 1) instead of optimal ones at the expense of introducing
an extra factor of log2(η) in the upper bound of equation (3.1). This
follows easily by simply redoing the proof of the main Theorem in this
setting. We can apply this observation to get a slight improvement of
Theorem 8 from [Cardinal et al.(2012)] when f < e:

Corollary 2. Algorithm Biased produces a coloring of a graph G =
(V,E) with maximum degree ∆ satisfying

Ent(Biased) ≤ Ent(OPT ) + log2(∆ + 2) + log2(f/3).

The proof of the corollary directly parallels that of Theorem 8 from
[Cardinal et al.(2012)].

Applying Theorem 1 to graph coloring problems is rather inconvenient as
parameter f involves maximal independent sets and is not easy to compute.
The situation is slightly better for graphs with independence number α(G) ≤
3. In this case maximal independent sets correspond either to triangles,
edges, or isolated vertices in the complement graph G. Parameter f also has
an easier interpretation: Let I be the number of isolated vertices in G. Let
T be the number of distinct triangles in G. Finally, let M be the number of
edges that are not contained in any triangle. Then

f =
I + 2M + 3T

n

Furthermore, in this case the algorithm Biased has a very natural inter-
pretation: we create a tentative color cW for any maximal independent set
(triangle, edge or isolated vertex) W and add color cW to a list coloring of all
vertices in W . Then for each vertex we select a random color from its list.

The algorithm Biased can be improved in practice by employing a number
of heuristics such as:

• Attempt to color all elements of a largest independent set with the
same color.
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• Collapse two colors into one if legal.

These heuristics can only decrease the entropy of the resulting coloring.
There are instances (e.g. edge orientations of a cycle from [Cardinal et al.(2008b)])

where Biased outperforms Greedy. But even when it doesn’t, our analysis
may provide better theoretical guarantees than those available for Greedy.

Example 1. Consider graph G = (V,E) from Figure 5.1 (a) (its complement
is displayed in Figure 5.1 (b)).

2 3

1 4

8 5

7 6

2 3

1 4

8 5

7 6

Figure 5.1: (a) graph G (b) its complement G

a a

a c

b c

b b

b a

b a

c d

c a

Figure 5.2: Two colorings C1 and C2 of graph G. For convenience the com-
plement graph G is pictured, rather than G. C1 is an optimal solution.

Graph G provides an easy instance where Greedy and Biased (may) pro-
duce different colorings. Indeed, node 4 is colored by Biased with a color cor-
responding to a triangle, whereas 5 takes a color corresponding to an edge, so
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nodes 4 and 5 must assume different colors in a Biased coloring, whereas they
may have the same color in a Greedy coloring. With the optimizations de-
scribed above both Greedy and Biased produce one of the two colorings C1, C2

from Figure 1, with color classes of cardinalities (3; 3; 2; 0) and (3; 2; 2; 1),
respectively. The first one corresponds to the optimal solution. On the other
hand for this graph the average element frequency f = 3×3+1×2

8
= 11

8
< e, so

the upper bound on the entropy of coloring C2 given by Corollary 3.2 is tighter
than the one provided by the Greedy algorithm in [Cardinal et al.(2012)].
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