
ar
X

iv
:1

31
0.

33
41

v1
  [

cs
.D

M
] 

 1
2 

O
ct

 2
01

3

Exact Algorithm for Graph Homomorphism

and Locally Injective Graph Homomorphism

Paweł Rzążewski

p.rzazewski@mini.pw.edu.pl

Warsaw University of Technology

Koszykowa 75 , 00-662 Warsaw, Poland

Abstract

For graphs G and H , a homomorphism from G to H is a function

ϕ : V (G) → V (H), which maps vertices adjacent in G to adjacent vertices

of H . A homomorphism is locally injective if no two vertices with a

common neighbor are mapped to a single vertex in H . Many cases of

graph homomorphism and locally injective graph homomorphism are NP-

complete, so there is little hope to design polynomial-time algorithms for

them. In this paper we present an algorithm for graph homomorphism

and locally injective homomorphism working in time O
∗((b + 2)|V (G)|),

where b is the bandwidth of the complement of H .

1 Introduction

Graphs homomorphism problem (or H-coloring, as it is sometimes called) is
a natural generalization of a well-known graph coloring problem. For graphs
G and H we say that ϕ : V (G) → V (H) is a homomorphism from G to H is
ϕ(v)ϕ(u) ∈ E(H) for any uv ∈ V (G). In other words, a homomorphism is
an edge-preserving mapping from V (G) to V (H). Thus k-coloring problem is
equivalent to the problem of finding a homomorphism to the complete graph
Kk. We refer the reader to the monography by Hell and Nešetřil [13] for more
information about graph homomorphisms.

Some special cases of graph homomorphism, namely locally constrained graph

homomorphisms have also received a considerable attention. We say that the
homomorphism ϕ is locally injective (locally surjective; locally bijective) if the
neighborhood of v ∈ V (G) is mapped injectively (resp.: surjectively; bijectively)
to the neighborhood of ϕ(v). See the survey by Fiala and Kratochvíl [6] for more
information about locally constrained homomorphisms.

Homomorphisms and locally constrained homomorphisms generalize and
unify many known problems in graph theory, e.g. colorings, graph covers, role
assignments etc. For example (m, k)-coloring (see Zhu [18]), i.e. the problem of
finding an assignment f : V (G)→ {0, 1, ..,m−1}, such that k ≤ |f(v)−f(u)| ≤

m− k whenever vu ∈ E(G), is equivalent to finding a homomorphism to C
k−1

m ,
a complement of a (k − 1)’th power of an m-cycle†.

†We consider C0
m to be a graph with m vertices and no edges.
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Another example is the so-called H(2, 1)-labeling problem (where H is a
graph), in which vertices adjacent in G are mapped onto distinct, nonadjacent
vertices of H , and vertices, which have a common neighbor in G, are mapped
onto distinct distinct vertices of H . Fiala and Kratochvíl [5] showed a close
relation between locally injective homomorphisms and H(2, 1)-labelings: an
H(2, 1)-labeling of G is exactly a locally injective homomorphism from G to
H , where H denotes the complement of H .

A well-known L(2, 1)-labeling problem (see Griggs, Yeh [11]) can be seen
as a problem of finding the minimum k such that the input graph admits an
H(2, 1)-labeling for H being a path with k+1 vertices. Another interesting case
of H(2, 1)-labeling is a circular L(2, 1)-labeling, sometimes denoted by Lc(2, 1)-
labeling (see Liu,Zhu [3]). It is equivalent to finding the minimum k, for which
the input graph G has an H(2, 1)-labeling for H being a cycle with k+1 vertices.

Graph homomorphisms are also interesting from the computational point
of view. In their celebrated theorem, Hell and Nešetřil [14] showed that de-
termining if G has a homomorphism to H is polynomial if H is bipartite
and NP-complete otherwise. For a locally surjective homomorphism Fiala and
Paulusma [9] showed that determining the existence of a locally surjective ho-
momorphism from G to a connected graph H is polynomial if H has at most
2 vertices and NP-complete otherwise. They also showed a full dichotomy for
the case when H is disconnected, but the description of polynomial cases is
more complicated. There is no similar characterization for the case of locally
injective homomorphisms and locally bijective homomorphisms, but still we can
find some partial results (see for example [5, 7, 8] for some results on locally
injective homomorphisms and [1, 17] for locally bijective homomorphisms).

As many cases of graph homomorphism and locally constrained graph homo-
morphism are NP-complete, there is little hope to obtain polynomial algorithms
for them. Therefore a natural approach is to design exponential algorithms with
the basis of the exponential factor in a complexity bound expressed as a func-
tion of some invariant of H . Fomin et al. [10] presented the algorithm for graph
homomorphism from G to H working in time O∗((2 tw(H)+1)n)‡, where tw(H)
denotes a treewidth of the graph H (see Diestel’s book [4] for some information
about treewidth of graphs) and n is the number of vertices of G. For a locally
injective homomorphisms, Havet et al. [12] presented an algorithm working in
time O∗((∆(H) − 1)n). To our best knowledge there are no similar results for
a locally surjective and a locally bijective graph homomorphism problem.

In this paper we show how to adapt the algorithm for L(2, 1)-labeling by
Junosza-Szaniawski at al. [15] to solve graph homomorphism and locally injec-
tive graph homomorphism problems. We have already mentioned that graph
homomorphism to a complete graph is equivalent to graph coloring problem and
therefore can be solved in time O∗(2n), using the algorithm by Björklund et al.

[2]. Finding a locally injective homomorphism to a complete graph can also be
reduced to the classical graph coloring, since it is equivalent to coloring a square
of the graph. Therefore in this paper we shall focus on the case when H is not
a complete graph. The main result of this paper is the following theorem.

Theorem 1 The existence of a homomorphism from G to H can be decided in

time O∗
(

(bw(H) + 2)n
)

, where n is the number of vertices of G and bw(H) is

the bandwidth of the complement of H.

‡In the O∗ notation we suppress polynomial factors.
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After a small adaptation in the algorithm for the graph homomorphism prob-
lem, we obtain the algorithm for the locally injective homomorphism problem,
working within the same time bound.

Theorem 2 The existence of a locally injective homomorphism from G to H
can be decided in time O∗

(

(bw(H) + 2)n
)

, where n is the number of vertices of

G and bw(H) is the bandwidth of the complement of H.

2 Preliminaries

In his paper we consider simple graphs without loops and multiple edges. For
a graph G = (V,E), let G denote its complement, i.e. G = (V,

(

V
2

)

\ E).
For graphsG andH , a homomorphism fromG to H is a mapping ϕ : V (G)→

V (H) such that ϕ(v)ϕ(w) ∈ E(H) whenever vw ∈ E(G). If ϕ is a homomor-
phism from G to H , we will write ϕ : G → H shortly. A homomorphism is
partial if we allow that some vertices of G are not mapped to any vertices of H .

A homomorphism ϕ from G to H is locally injective if a neighborhood of
any vertex v ∈ V (G) is mapped injectively into the neighborhood of ϕ(v). In
other words, no two vertices from G with a common neighbor are mapped to
the same vertex of H .

An H(2, 1) labeling of G is a mapping ψ : V (G) → V (H), such that (1)
distH(ψ(v), ψ(w)) ≥ 2 if distG(v, w) = 1 and (2) distH(ψ(v), ψ(w)) ≥ 1 if
distG(v, w) = 2. According to Fiala and Kratochvíl [5], an H(2, 1)-labeling of
G is exactly a locally injective homomorphism from G to H .

Let G be a graph and let L = v1v2 . . . vn be some ordering of its vertices. A
bandwidth of a graph G, denoted by bw(G), is the minimum over all orderings L
of the value max{|i − j| : vivj ∈ E(G)}. Informally speaking, we want to place
the vertices of G on integer points of a number line in such a way, that the
longest edge is as short as possible.

For ℓ ∈ N let [ℓ] denote the set {0, 1, 2, .., ℓ}. Moreover, let JℓK denote the
set [ℓ] ∪ {0̄}, where 0̄ is a special symbol, whose meaning will be clarified later.

For a set of vectors A ⊆ Σn and a symbol x ∈ Σ let Ax denote the set
{v ∈ Σn−1 : xv ∈ A} where xv denotes concatenating x and v.

3 Exact Algorithm for Graph Homomorphism

Let us consider a problem of deciding if a graph G has a homorphism to H . Let
V (G) = {v1, v2, .., vn} and V (H) = {h1, h2, .., hm}. The ordering of vertices in
G is arbitrary. The vertices of H are arranged in the order corresponding to the
bandwidth of H , i.e. in such a way that the value max({|i − j| : hihj /∈ E(H)}
is minimum possible (recall that this minimum value is equal to bw(H)). Let
β = bw(H) + 1 and let Hk = H [{h1, h2, . . . , hk}] for any k ∈ {1, 2, . . . ,m}.

In this section we prove Theorem 1 by presenting an algorithm from deter-
mining the existence of the homomorphismG→ H , working in timeO∗

(

(bw(H) + 2)n
)

.
We shall proceed in a way similar to the algorithm by Junosza-Szaniawski et

al. [15]. We will use dynamic programming and try to extend partial homomor-
phisms from G to Hk to partial homomorphisms from G to Hk+1.
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Let P be a set of characteristic vectors of independent sets in G. In other
words, p ∈ P if and only if there exists an independent set X in G such that
pi = 1 iff vi ∈ X and pi = 0 otherwise.

For every k = 1, ..,m we introduce a set T [k] ⊆ [β]n such that a ∈ T [k]
if and only if there exists a partial homomorphism ϕ : G → Hk, satisfying the
following condition:

ai =











0 if vi is not mapped,

1 if ϕ(vi) = hℓ with ℓ ≤ k − β + 1,

x ∈ {2, .., β} if ϕ(vi) = hℓ with ℓ = k − β + x.

Moreover, let us define T [0] := {0n}. Note that vectors a with no 0’s cor-
respond to homomorphisms G → Hk. Therefore there exists a homomorphism
G→ H if and only if T [m] ∩ {1, 2, . . . , β}n 6= ∅.

To compute sets T [k] (for k ∈ {1, . . . ,m}) we shall introduce two operations.
Let k ∈ {1, . . . ,m− 1} be fixed and assume we have computed the set T [k]. Let
a be a vector from T [k]. Let a ∈ JβKn be defined as follows:

ai =































0 if ai = 0 and there is no vj ∈ NG(vi)

with aj ≥ 2 and hk−β+aj
/∈ NH(hk+1),

0̄ if ai = 0 and there exists vj ∈ NG(vi)

with aj ≥ 2 and hk−β+aj
/∈ NH(hk+1),

x ∈ {1, .., β} if ai = x.

Notice that for any a ∈ T [k] (for k ≤ m − 1) and partial homomorphism
ϕ corresponding to a, we have ai = 0 if and only if ϕ can be extended by
mapping vi to hk+1. Since the vertices ofH are arranged according to bw(H), all
non-neighbors of hk+1 are in {hk−bw(H)+1, hk−bw(H)+2, . . . , hk}. This justifies
the unification of the sets of vertices mapped to h1, h2 . . . , hk−bw(H) in our

representation of partial homomorphisms. Let T [k] denote the set {a : a ∈ T [k]}.
Note that computing T [k] from T [k] takes time O(|T [k]|·n2), since in each vector
a ∈ T [k] we just have to check all pairs of vertices vi, vj such that vivj ∈ E(G)
and ai = 0. Moreover observe that |T [k]| = |T [k]| for every k.

Now let us define the partial function ⊕ : JβK × {0, 1} → [β] as follows:

x⊕ y =























0 if x ∈ {0, 0̄} and y = 0,
1 if x ∈ {1, 2} and y = 0,
x− 1 if x ∈ {3, 4, .., β} and y = 0,
β if x = 0 and y = 1,
undefined otherwise.

We generalize this operation to vectors coordinate-wise (x1x2..xn ⊕ y1y2..yn
is (x1 ⊕ y1)..(xn ⊕ yn) if xi ⊕ yi is defined for all i ∈ {1, ..,m} or is undefined
otherwise); and sets of vectors: A⊕B = { a⊕b : a ∈ A, b ∈ B, a⊕b is defined }.

Observe that for a ∈ T [k] and p ∈ P , computing a ⊕ p corresponds to
extending a partial homomorphism by mapping all the vertices from the set
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encoded by p to vertex hk+1. Now we are ready to present the algorithm.

Algorithm 1: Determine-Hom (G,H)

1 P ← a set of characteristic vectors of independent sets of G
2 T [0]← {0n}
3 for k ← 1 to m do

4 compute T [k − 1] from T [k − 1]

5 T [k]← T [k − 1]⊕ P

6 if T [m] ∩ {1, 2, . . . , β}n 6= ∅ then return Yes

7 else return No

To prove the correctness, it is enough to show that T [k] = T [k − 1]⊕ P for
any k = 1, 2, . . . ,m. Let a ∈ T [k] and ϕ : G→ Hk be a partial homomorphism
corresponding to a. Let p be a characteristic vector of the set X := ϕ−1(hk).
This set is clearly independent, so p ∈ P . Let ϕ′ : G → Hk−1 be a partial
homomorphism obtained from ϕ by unmapping all vertices from X , and let a′

be a vector in T [k − 1] corresponding to ϕ′. Let vi be a vertex from X . Every
neighbor of vi has to be mapped to some neighbor of hk or be not mapped at
all, so a′i = 0. We observe that a = a′ ⊕ p and therefore a ∈ T [k − 1]⊕ P .

On the other hand, let a′ ∈ T [k−1] (with a corresponding partial homomor-
phism ϕ′ : G → Hk−1) and p ∈ P . Let us extend ϕ′ to partial homomorphism
ϕ : G → Hk with every vertex vi from the independent set corresponding to p

mapped to vertex hk. It is possible if and only if each neighbor of vi is not
mapped or is mapped to a neighbor of hk. In other words, we require that
ai = 0. Therefore a′ ⊕ p ∈ T [k] with corresponding partial homomorphism ϕ.

We shall perform the computation of T [k − 1]⊕ P recursively. We consider
vectors starting with each element from [β] separately.

T [k]⊕ P =
⋃

b∈JβK,p∈{0,1}
s.t. b⊕p is defined

(b ⊕ p)(T [k]b ⊕ Pp)

= 0
[

(T [k]0 ∪ T [k]0)⊕ P0

]

∪ 1
[(

T [k]1 ∪ T [k]2
)

⊕ P0

]

∪
⋃

a∈{2,..,β−1}

a [T [k]a+1 ⊕ P0] ∪ β [T [k]0 ⊕ P1] .

To compute ⊕ on two sets of vectors of length n, we have to compute ⊕ on
β+1 pairs of sets of vectors of length n−1. The size of P is at most n·2n bits, the
size of T [k− 1] is at most n · (β+1)n bits. Recall that computing T [k− 1] takes
time at most O(|T [k− 1]| ·n2) = O(n3 · (β+1)n). Therefore time complexity is
given by: F (n) = O

(

n ·2n+n3 · (β+1)n+(β+1) ·F (n− 1)
)

. One can verify by

induction that this recursion is satisfied by F (n) = O
(

n3 · 2n + n3 · (β + 1)n
)

.

Recall that β = bw(H) + 1 and therefore β + 1 = bw(H) + 2 ≥ 2. Finally we
obtain F (n) = O∗

(

(bw(H) + 2)n
)

, which proves Theorem 1.

Recall that (m, k)-coloring is equivalent to a homomorphism to C
k−1

m . Since

a complement of C
k−1

m is Ck−1
m and bw(Ck−1

m ) = 2(k−1), we obtain the following.

Corollary 1 The (m, k)-coloring problem on a graph G with n vertices can be

solved in time O∗ ((2k)n).
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4 Locally Injective Homomorphism and H(2, 1)-
labeling

In this section we prove Theorem 2 by modifying Algorithm Determine-Hom to
determine the existence of a locally injective homomorphism from G to H .

We observe that the vertices of G that can be mapped to a single vertex of H
(in a locally injective manner) must be in a distance at least 3 from each other.
Therefore they form a 2-independent set, which is exactly an independent set
in a square of the graph (see for example [16] for more information about such
sets). Since it is the only additional requirement for locally injective homomor-
phisms, the only thing that has to be changed in Algorithm Determine-Hom is
the initialization of the set P . Now it has to contain characteristic vectors of all
2-independent sets. This proves Theorem 2.

Recall that H(2, 1)-labelings are exactly locally injective homomorphisms to
H . Since the complement of H is H , we obtain the following corollary.

Corollary 2 For any graphs G and H we can solve the H(2, 1)-labeling problem

in time O∗ ((bw(H) + 2)n), where n is the number of vertices of G.

Let us see how this bound works for the Lc(2, 1)-labeling problem. Recall
it is equivalent to finding the smallest m, such that the input graph admits
a Cm(2, 1)-labeling. We shall check the existence of such a labeling for m =
3, .., 2n and stop when we find one. Since bw(Cm) = 2, we obtain the following.

Corollary 3 The Lc(2, 1)-labeling problem on a graph G with n vertices can be

solved in time O∗ (4n).

The bounds presented here can be slightly improved, using the methods
presented in [16] and [15]. However, it requires many technical calculations and
the improvement gets smaller as bw(H) grows.

Acknowledgement. The author is sincerely grateful to Konstanty Junosza-
Szaniawski for valuable discussion and advice.
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