
ar
X

iv
:1

40
2.

57
69

v1
 [

cs
.D

S]
 2

4
Fe

b
20

14

Fractional programming formulation for the vertex coloring problem

Tomomi Matsui∗, Noriyoshi Sukegawa†, and Atsushi Miyauchi‡

Graduate School of Decision Science and Technology, Tokyo Institute of Technology, Ookayama 2-12-1,

Meguro-ku, Tokyo 152-8552, Japan

Abstract

We devise a new formulation for the vertex coloring problem. Different from other formulations,
decision variables are associated with the pairs of vertices. Consequently, colors will be distinguish-
able. Although the objective function is fractional, it can be replaced by a piece-wise linear convex
function. Numerical experiments show that our formulation has significantly good performance for
dense graphs.

1 Introduction

The vertex coloring problem (VCP) is a well-known NP-hard [4] combinatorial optimization problem
with a large number of applications including scheduling, register allocation, and timetabling (see the
survey [9] for the details). In this problem, we are given a simple and undirected graph G = (V,E).
The objective is to find an assignment of colors to V such that no two adjacent vertices share the
same color and the number of colors used is minimized.

In the standard formulation for VCP, letting C be a set of colors, we introduce a decision variable
xvc (∀v ∈ V , ∀c ∈ C) which takes 1 if v receives color c and takes 0 otherwise. Since every graph can be
colored with n = |V | colors, it suffices to set C = {1, 2, . . . , n}. Although this formulation is intuitive
and simple, there exists a strong symmetry in the feasible region resulting from the indistinguishability
of colors. Suppose that we have a solution using k colors. Then we see that this model has

(|C|
k

)

k!
equivalent solutions. This property will be a great disadvantage when we use ILP solvers. For this
reason, cuts that remove the symmetry have been studied [11, 12]. On the other hand, recently,
alternative formulations for VCP have received a considerable attention. For instance, there are
studies on a set partitioning formulation [10], an asymmetric representative formulation [2, 3], an
unconstrained quadratic binary programming formulation [8], and a supernodal formulation [1]. For
further discussion on these formulations, see Burke et al. [1].

In this study, we focus on the pairs of vertices which can be colored by the same color, and
associate decision variables with these pairs. As a result, we obtain a new formulation for VCP. Our
model does not suffer the symmetry which is discussed above and has a linear fractional objective
function. This objective function can be equivalently replaced by a piece-wise linear convex function,
which gives us a mixed integer linear programming (MILP) model for VCP. By this transformation,
we can feed our model to commercial MILP solvers such as Gurobi Optimizer. To verify the validity
of our formulation, we conducted numerical experiments on random graphs and several instances
form DIMACS Implementation Challenge, and confirmed that it has a significantly good performance
for dense graphs. It should be noted that high edge density does not necessarily make instances
easy. In fact, there is a dense but hard instance DSJC125.9 with only 125 vertices from DIMACS
Implementation Challenge. The optimal value of this instance was an open problem until very recently.
See Gualandi and Malucelli [6] for the details. We confirmed that our model solves this instance less
than only 1 minute.

∗e-mail: matsui.t.af@m.titech.ac.jp
†e-mail: sukegawa.n.aa@m.titech.ac.jp
‡e-mail: miyauchi.a.aa@m.titech.ac.jp

1

http://arxiv.org/abs/1402.5769v1

2 Our formulation

2.1 Expression as a fractional programming problem

In our formulation, for each distinct pair of vertices u and v, we introduce a decision variable xuv
which takes 1 if u and v share the same color and takes 0 otherwise. Clearly, we have xuv = 0 for each
{u, v} ∈ E. Here, we use the following inequality constraints

xuv + xvw − xuw ≤ 1 (∀u, v, w ∈ V with u 6= v, v 6= w, u 6= w)

to obtain an explicit description of the feasible region. These inequalities say that if u and v share
the same color (xuv = 1) and v and w also share the same color (xvw = 1), then u and v must recieve
the same color (xuw = 1). These inequalities are referred to as the triangle inequalities studied in
Grötschel and Wakabayashi [5] as facet-defining inequalities for a clique partitioning polytope. This
relationship is natural because if x is a feasible solution for VCP, then a set Ex = {{u, v} | xuv = 1}
of edges induces a clique partitioning of the complement graph G of G, and vice versa.

Next, let us consider how to calculate the number of colors used in x, namely the objective value.
To this aim, we focus on the number of connected components in (V,Ex). It is easy to see that this
number equals the desired value. For a feasible solution x, let us define

fv(x) =
1

1 +
∑

u∈V

xuv

for each v ∈ V . Suppose that a vertex v belongs to a connected component (V ′, E′) with |V ′| = k in
(V,Ex). Then we have fv(x) = 1/k since V ′ is a clique of (V,Ex). Thus, the sum of fv(x) over v ∈ V ′

equals 1 for each connected component (V ′, E′), which implies that the sum of fv(x) over v ∈ V gives
the number of connected components in (V,Ex). Therefore, we obtain the following proposition.

Proposition 1. For a given feasible solution x,

∑

v∈V

fv(x)

equals the number of connected components in (V,Ex), which is the number of colors used in x.

In sum, our formulation is described as follows:

minimize
∑

v∈V

fv(x)

subject to xuv = 0 (∀{u, v} ∈ E),
xuv + xvw − xuw ≤ 1 (∀u, v, w ∈ V with u 6= v, v 6= w, u 6= w),
xuv ∈ {0, 1} (∀u, v ∈ V with u 6= v).

It should be noted that there are redundant variables and constraints. Suppose that {u, v} ∈ E. Then,
of course, we do not need to prepare the decision variable xuv. In addition, the transitivity constraints
xuv + xvw − xuw ≤ 1 is redundant for every w ∈ V \ {u, v} because it is equivalent to xvw − xuw ≤ 1,
which is satisfied by any pair of xvw and xuw with 0 ≤ xvw, xuw ≤ 1. In our numerical experiments,
such redundant variables and constraints are removed.

2.2 Expression as a mixed integer linear programming problem

When implementing our formulation on MILP solvers, we substitute a piece-wise linear convex function
for the fractional objective function. For each v ∈ V , we introduce a continuous decision variable fv

2

Table 1: Results for the randomly generated graphs

Instance Our formulation
n p Time[s] Gap[%]

30 0.3 3.44 —
0.5 4.48 —
0.7 0.17 —
0.9 0.04 —

50 0.3 ***** 16.43
0.5 ** 10.06
0.7 11.71 —
0.9 0.14 —

70 0.3 ***** 33.00
0.5 ***** 17.00
0.7 517.87 —
0.9 0.40 —

Table 2: Results for the randomly generated graphs

Instance Our formulation
n p Time[s] Gap[%]

100 0.9 1.50 —
150 0.9 61.59 —
200 0.9 * 1.59

which equals fv(x) for a given feasible solution x. Namely, the objective function will be the sum of
fv over v ∈ V . For each v ∈ V and for each i ∈ {0, 1, . . . , n−1}, we add the following linear inequality
constraint

fv ≥ ui

(

∑

u∈V

xuv

)

,

where

ui(d) = −
1

(i+ 1)(i + 2)
(d− i) +

1

i+ 1
.

If d ∈ {0, 1, . . . , n − 1}, then ud(d) = 1/(1 + d) and ud(d) is the largest value among {uk(d) |
k ∈ {0, 1, . . . , n − 1}}. Hence, if x is a feasible solution, since d :=

∑

u∈V xuv is an integer and fv is
minimized in the objective function, we have

fv = ud(d) =
1

1 + d
=

1

1 +
∑

u∈V

xuv
= fv(x)

for every v ∈ V . This shows the validity of the above constraints.

3 Numerical experiments

In this section, we report the numerical experiments on our formulation. All results were mea-
sured on a Linux-based computer with 2.66 GHz quad-core processors and 24 GB RAM. We used

3

Table 3: Results for middle-sized dense instances from the Second DIMACS Implementation Challenge

Instance Best Bounds
Name n Density[%] Time[s] Lower Upper Opt.

r125.1c 125 96.8 0.75 46 46 46
DSJC125.9 125 89.8 57.48 44 44 44 [6]
DSJC250.9 250 89.6 7200 71 72 72 [7]
DSJR500.1c 500 97.2 7200 79 86 85 [6]

Gurobi Optimizer 5.6.0 to solve the MILP problems, and imposed a time limit of two hours (7200s)
on run time per instance. In addition, below, “gap” means the relative gap, i.e., (upper bound −
lower bound)/upper bound.

The results on random graphs are shown in Table 1. We generate five instances for each pair of the
edge density p ∈ {0.3, 0.5, 0.7, 0.9} and the number of vertices n ∈ {30, 50, 70} and exhibit the average
computation time for these five instances. When calculating the average, if there is an instance which
cannot be solved to optimality by the limit, (since the average does not make sense) we count the
number of such instances and denote this by the number of “∗”s. We see that, unfortunately, our
formulation fails to solve several instances with p ≤ 0.5 even when n = 50. However, for dense graphs,
especially when p = 0.9, the computation time is very short.

Motivated by the results in Table 1, we further solved three dense and a little bit larger instances.
These three instances are again randomly generated instances where the edge density p is fixed to 0.9
and the number of vertices n ranges in {100, 150, 200}. Again, for each n, we generate five instances.
We see that, even when n = 150, optimal solutions are obtained within only about 1 minute, on
average. Although, when n = 200, one instance could not be solved to optimality, the remained
relative gap is small.

Next, in Table 3, we show results for several dense and middle-sized instances from the Second
DIMACS Implementation Challenge. The three instances DSJC125.9, DSJC250.9, and DSJR500.1c

are not so large but very hard. Indeed, their optimal values were unknown until very recently. See
[6] for DSJC125.9 and DSJR500.1c, and [7] for DSJC250.9. Although we could not solve the last two
instances within two hours, the first two instances are solved to optimality. Moreover, its computation
time is short.

4 Conclusion

In this study, we devise a new formulation for VCP. Different from other existing formulations, we
associate decision variables with the pairs of vertices, which makes the colors distinguishable. In our
formulation, the number of colors used is expressed as a linear fractional function. To implement the
formulation on MILP solvers, we replace the fractional objective function by a piece-wise linear convex
function. The noteworthy property of our formulation is its considerably high performance for dense
graphs.

References

[1] E. K. Burke, J. Mareček, A. J. Parkes, and H. Rudová. A supernodal formulation of vertex
colouring with applications in course timetabling. Ann. Oper. Res., 179(1):105–130, 2010.

4

[2] M. Campêlo, V. A. Campos, and R. C. Corrêa. On the asymmetric representatives formulation
for the vertex coloring problem. Discrete Appl. Math., 156(7):1097–1111, 2008.

[3] M. Campêlo, R. Corrêa, and Y. Frota. Cliques, holes and the vertex coloring polytope. Inf.

Process. Lett., 89(4):159–164, 2004.

[4] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of NP-
completeness. WH Freeman & Co., New York, 1979.

[5] M. Grötschel and Y. Wakabayashi. Facets of the clique partitioning polytope. Math. Program.,
47(1-3):367–387, 1990.

[6] S. Gualandi and F. Malucelli. Exact solution of graph coloring problems via constraint program-
ming and column generation. INFORMS J. Comput., 24(1):81–100, 2012.

[7] S. Held, W. Cook, and E. C. Sewell. Maximum-weight stable sets and safe lower bounds for graph
coloring. Math. Program. Comput., 4(4):363–381, 2012.

[8] G. A. Kochenberger, F. Glover, B. Alidaee, and C. Rego. An unconstrained quadratic binary
programming approach to the vertex coloring problem. Ann. Oper. Res., 139(1):229–241, 2005.

[9] E. Malaguti and P. Toth. A survey on vertex coloring problems. Int. Trans. Oper. Res., 17(1):1–
34, 2010.

[10] A. Mehrotra and M. A. Trick. A column generation approach for graph coloring. INFORMS J.

Comput., 8(4):344–354, 1996.

[11] I. Méndez-Dı́az and P. Zabala. A branch-and-cut algorithm for graph coloring. Discrete Appl.

Math., 154(5):826–847, 2006.

[12] I. Méndez-Dı́az and P. Zabala. A cutting plane algorithm for graph coloring. Discrete Appl.

Math., 156(2):159–179, 2008.

Adding simple cuts

In this appendix, we introduce simple valid inequalities to strengthen the formulation. Let |Iv| be the
size of a maximum independent set Iv which includes v ∈ V in G. Then, it is easy to see that the
number of vertices which can receive the same color as that of v is bounded above by (|Iv | − 1) in any
feasible solution. In other words, for each v ∈ V , the following inequality

∑

u∈V

xuv ≤ |Iv| − 1

can be added to our formulation. Table 4 and Table 5 show the results of our formulation with
these simple cuts for the instances shown in Table 2 and Table 3, respectively. The computation time
includes the preprocessing time, namely the computation time for calculating |Iv| for each v ∈ V . This
preprocessing time is exhibited in the brackets. Although we also conducted numerical experiments
on the instances shown in Table 1, the improvement on solving time is not significant, hence, we omit
the corresponding results. From Table 4 and Table 5, we see that simple cuts provide an advantage
on solving time for all instances other than DSJC250.9. For DSJC250.9, the upper bound becomes
slightly worse.

5

Table 4: Results for the randomly generated graphs with simple cuts

Instance With simple cuts
n p Time[s] Gap[%]

100 0.9 1.26 (0.22) —
150 0.9 59.97 (0.67) —
200 0.9 1587.26 (1.54) —

Table 5: Results for middle-sized dense instances from the Second DIMACS Implementation Challenge
with simple cuts

Instance Best Bounds
Name n Density[%] Time[s] Lower Upper

r125.1c 125 96.8 0.27 (0.09) 46 46
DSJC125.9 125 89.8 33.63 (0.40) 44 44
DSJC250.9 250 89.6 7200 (3.50) 71 73
DSJR500.1c 500 97.2 7200 (1.86) 79 85

6

	1 Introduction
	2 Our formulation
	2.1 Expression as a fractional programming problem
	2.2 Expression as a mixed integer linear programming problem

	3 Numerical experiments
	4 Conclusion

