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Abstract

In this paper, we study the advice complexity of the online bipartite matching problem
and the online stable marriage problem. We show that for both problems, ⌈log2(n!)⌉ bits
of advice are necessary and sufficient for a deterministic online algorithm to be optimal,
where n denotes the number of vertices in one bipartition in the former problem, and the
number of men in the latter.
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1. Introduction

1.1. Online Computation and Advice Complexity

Online computation has received considerable attention because of its relevance to real
world problems. In an online problem, an online algorithm receives a sequence of requests
one at a time, and must decide how to deal with the current request before receiving
future ones. This decision cannot be revoked later.

The most popular and successful method of evaluating the efficiency of online algo-
rithms is the competitive analysis [27], in which the performance of an online algorithm
is compared with that of an optimal offline algorithm. However, it is sometimes pointed
out that online and offline algorithms differ by nature and hence it is unfair to compare
them directly. Accordingly, alternative ways of analyzing online algorithms have been
proposed, such as the relative worst order ratio [8].

Another line of research is to give additional power to online algorithms for measur-
ing the complexity of online problems. A typical example of this is resource augmen-
tation [27, 20], where online algorithms are allowed to use more resources than optimal
offline algorithms. Recently, a new framework, called the advice complexity [11, 15, 6],
was proposed, in which an online algorithm performs its computation with the help of
advice bits. There are several different models of online computation with advice. In the
first model [11], an online algorithm is allowed to make a query at any time to an oracle
that knows the whole input and has unlimited computation power, and use its answer
(advice) for computation. In the second model [11, 15], an online algorithm receives a
fixed number of advice bits attached with each request. In this paper, we adopt the most
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general and widely used model [6], which is defined using advice tapes. In this model,
an online algorithm is given an advice tape at the beginning, whose contents is a binary
sequence ϕ. During the computation, an online algorithm may read the advice tape and
use its contents for the decision. We say that an online algorithm A is c-competitive
with advice complexity s(n) if A’s solution is at most c times worse than optimal and A
accesses at most the first s(n) bits of ϕ for any input of length n (see e.g., [19] for formal
definitions).

Up to the present, several online problems have been analyzed using the advice com-
plexity, such as the paging problem [6], the k-server problem [5, 18], the knapsack prob-
lem [7], the buffer management problem [14], the graph coloring problem [2, 3], the string
guessing problem [4], the graph exploration problem [13], and the independent set prob-
lem [12].

One of the fundamental questions on the advice complexity is whether or not an
optimal strategy is to completely specify the behavior of an optimal offline algorithm.
For example, in the knapsack problem, the best known strategy is to specify whether
the current item should be packed or not using 1 bit per request, resulting in the advice
complexity of n where n is the total number of items, although it is not known whether
this is optimal; the current lower bound on the advice complexity is n− 1, leaving a gap
of one bit [7]. In contrast, if we do the same thing for paging, we need ⌈log2K⌉ bits of
advice to specify which page to evict at a page fault, where K is the size of the buffer.
This results in the advice complexity of n⌈log2K⌉ for instances with n requests, whereas
it is shown that n+K bits of advice suffice [11, 6].

1.2. Online Bipartite Matching and Online Stable Marriage

The online bipartite matching problem, introduced by Karp et al. [22], is defined as
follows: An instance is a bipartite graph G = (U, V,E) with |U | = |V | = n. Vertices
in U are initially present and vertices in V arrive one by one. When a vertex v ∈ V
arrives, all the edges incident to v are also revealed. An online algorithm chooses one of
the unmatched neighbors (if any) of v to be matched with v, or leaves v unmatched. This
decision must be made before the next vertex arrives and may not be revoked later. The
goal of the problem is to construct a matching as large as possible. It is easy to see that
a greedy algorithm always returns a maximal matching and is 1/2-competitive. Karp
et al. [22] proposed a randomized algorithm Ranking, and proved that it is (1 − 1/e)-
competitive. They also proved that no randomized online algorithm can do better than
this. This problem has recently received considerable attention due to its applicability to
advertisement space matching (see [26, 17, 1, 25, 21, 24, 9, 10] for example).

The stable marriage problem is a classical combinatorial problem proposed by Gale and
Shapley in their celebrated seminal paper [16]. Its instances consist of the same number
n of men and women. Each man submits a preference list which ranks all the women
according to his preference. Similarly, each woman submits a preference list of men. A
matching is a one-to-one correspondence between men and women. For a matching M ,
let M(p) denote the partner of a person p. If man m prefers woman w to M(m) and w
prefers m to M(w), then we say that (m,w) is a blocking pair for M . A matching with
no blocking pair is stable. Gale and Shapley proved that any instance admits at least one
stable matching and proposed a simple algorithm to find one [16].
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An online variant of the stable marriage problem was considered by Khuller et al. [23].
In their model, the women’s preference lists are open to an online algorithm in advance,
while the men arrive one by one, revealing his preference list. Upon arrival of a man, the
algorithm must match him to one of the currently unassigned women. The purpose of the
algorithm is to construct a matching so that the number of blocking pairs is minimized.
Since, as mentioned above, there always exists a stable matching, the optimal cost is
always zero. Therefore, the competitive analysis does not fit this problem and they
evaluated online algorithms merely by the number of blocking pairs. They showed that
any online algorithm produces a matching with Ω(n2) blocking pairs in the worst case,
but a greedy algorithm called First-Come-First-Served obtains a matching with O(n log n)
blocking pairs on average.

1.3. Our Contribution

In this paper, we study the advice complexity of the online bipartite matching problem
and the online stable marriage problem. We show that, for both problems, ⌈log2(n!)⌉ bits
of advice are necessary and sufficient for a deterministic online algorithm to be optimal.
This shows that in these problems, the best strategy is to guide the online algorithm
by completely specifying the optimal offline algorithm’s behavior. To the best of our
knowledge, the exact advice complexity is known only for the ski rental problem [11],
Winner-takes-all [5], and the string guessing problem [4], for which one bit of advice,
n bits of advice, and ⌈n log2 q⌉ bits of advice, respectively, are necessary and sufficient,
where q denotes the size of the alphabet for the string.

2. Main Results

2.1. Online Bipartite Matching

Theorem 2.1. There is a deterministic optimal online algorithm for the online bipartite
matching problem that uses ⌈log2(n!)⌉ bits of advice.

Proof. Let G = (U, V,E) be the bipartite graph revealed at the end of the input, and M∗

be a maximum matching of G. Let M̃∗ be a perfect matching obtained by extending M∗,
that is, if M∗ is already a perfect matching, then M̃∗ = M∗, otherwise, M̃∗ is a result
of arbitrarily adding edges between unmatched vertices u(∈ U) and v(∈ V ). Note that
edges in M̃∗ \M∗ do not exist in E since M∗ is maximum.

The oracle presents M̃∗ as advice. Since |U | = |V | = n, there are n! perfect matchings
and hence ⌈log2(n!)⌉ bits suffices for this purpose. An online algorithm acts as follows:
Suppose that a vertex v ∈ V arrives and v is matched with u in M̃∗. If (u, v) ∈ E, then
the algorithm matches v to u. Otherwise, it leaves v unmatched. It is not hard to see
that the matching obtained by this algorithm is exactly M∗. □

Theorem 2.2. No deterministic online algorithm for the online bipartite matching prob-
lem that uses less than ⌈log2(n!)⌉ bits of advice can be optimal.

Proof. We construct n! instances in such a way that (1) each instance admits a unique
perfect matching and (2) no two instances share the same perfect matching. For a better
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exposition, we denote the vertices in U as 1, 2, . . . , n − 1, n and do the same for V .
The vertices in V arrive in the order n, n − 1, . . . , 2, 1. To determine the edge set, we
associate a permutation of 1, 2, . . . , n to each instance. There are n! permutations and
each one of them is associated with one of n! instances. In an instance GΠ associated with
permutation Π, each vertex i ∈ V is adjacent to Π(1),Π(2), . . . ,Π(i) (∈ U). It is easy to
show by induction that GΠ has the unique perfect matching in which the vertex i ∈ V is
matched to the vertex Π(i) ∈ U for each i, and hence the above conditions (1) and (2)
are satisfied.

Let A be an online algorithm that uses less than ⌈log2(n!)⌉ bits of advice. Then A
must use the same advice string for two different instances constructed as above, say GΠ1

and GΠ2 . Let i
∗ be the largest integer i such that Π1(i) ̸= Π2(i). Then Π1(i) = Π2(i) for

i∗ + 1 ≤ i ≤ n and hence by construction, each vertex i∗ through n (of V ) has the same
neighbors in GΠ1 and GΠ2 . Therefore, when A decides the vertex of U to be matched
with i∗, the information it has received so far is the edges incident to i∗ through n (of
V ) and the contents of the advice string, that are the same for GΠ1 and GΠ2 . Therefore,
A matches i∗ to the same vertex in GΠ1 and GΠ2 , but i∗ must be matched to different
vertices in the unique perfect matchings of GΠ1 and GΠ2 because Π1(i

∗) ̸= Π2(i
∗). This

completes the proof. □

2.2. Online Stable Marriage

Theorem 2.3. There is a deterministic optimal online algorithm for the online stable
marriage problem that uses ⌈log2(n!)⌉ bits of advice.

Proof. Since there are n men and n women, there are n! perfect matchings, and as
mentioned before, at least one of them is stable. The oracle specifies one of the stable
matchings using ⌈log2(n!)⌉ bits and the online algorithm follows this advice. □

Theorem 2.4. No deterministic online algorithm for the online stable marriage problem
that uses less than ⌈log2(n!)⌉ bits of advice can be optimal.

Proof. The proof goes like that of Theorem 2.2. We will construct n! instances in such
a way that (1) each instance admits a unique stable matching and (2) no two instances
share the same stable matching. We denote the men as 1, 2, . . . , n− 1, n and do the same
for the women. The women’s preference lists are identical; each woman prefers men in
an increasing order of the indices, i.e., the man 1 is the most preferred and the man n
is the least preferred. This guarantees the condition (1) above; it is not hard to see that
the unique stable matching can be obtained by assigning the man 1 to his most preferred
woman, assigning the man 2 to his most preferred woman among those who are currently
unassigned, and so on.

The men arrive in the reverse order of the indices, that is, the man n arrives first, the
man n− 1 arrives next, and so on. To determine the men’s preference lists, we associate
a permutation of 1, 2, . . . , n to each instance. There are n! permutations and each one of
them is associated with one of n! instances. We construct an instance IΠ associated with
permutation Π in such a way that in the unique stable matching for IΠ, each man i is
matched with the woman Π(i). Then, clearly the condition (2) is satisfied.
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Now we show how to construct the men’s preference lists of IΠ. Let X be the set of
women and for 1 ≤ i ≤ n, let XΠ(i) = {Π(1),Π(2), . . . ,Π(i)}. Also, for a set J of integers,
let [J ] denote the ordered list of the elements of J in an increasing order. Now the man
i’s preference list is

i : [XΠ(i)] [X \XΠ(i)].

That is, in the man i’s preference list, the women in XΠ(i) first appear in an increasing
order of indices, and then any remaining women appear in an increasing order of indices.
For a better exposition, we give an example of n = 6 for a permutation Π that maps 1, 2,
3, 4, 5, and 6 to 3, 1, 6, 4, 2, and 5, respectively. The men’s preference lists are as follows,
where a vertical bar is used to show the boundary between [XΠ(i)] and [X \XΠ(i)].

1 : 3 | 1 2 4 5 6
2 : 1 3 | 2 4 5 6
3 : 1 3 6 | 2 4 5
4 : 1 3 4 6 | 2 5
5 : 1 2 3 4 6 | 5
6 : 1 2 3 4 5 6 |

We show by induction that IΠ satisfies the aforementioned condition, that is, each man
i is matched with the woman Π(i) in the unique stable matching for IΠ. As mentioned
previously, the man 1 is matched with the top woman in his list, and hence 1 is matched
with Π(1) as required. Assuming that the statement is true for men 1 through i− 1, we
consider the man i’s partner. The first i women in man i’s preference list are exactly
XΠ(i). Among them, the women in XΠ(i − 1) are already matched with men 1 through
i − 1 by the induction hypothesis. Since the man i is matched with the most preferred
unmatched woman, he must be matched with the woman Π(i), who is the unique woman
in XΠ(i) \XΠ(i− 1).

Let A be an online algorithm that uses less than ⌈log2(n!)⌉ bits of advice. Then A
must use the same advice string for two different instances constructed as above, say IΠ1

and IΠ2 . Let i∗ be the largest integer i such that Π1(i) ̸= Π2(i). Then XΠ1(i) = XΠ2(i)
for i∗ + 1 ≤ i ≤ n and hence by construction, the preference lists of men i∗ through
n are the same in IΠ1 and IΠ2 . Therefore, when A decides the partner of the man i∗,
the information it has received so far is the preference lists of men i∗ through n and the
contents of the advice string, that are the same for IΠ1 and IΠ2 . Therefore, A assigns the
same woman to the man i∗ in IΠ1 and IΠ2 , but i∗ must be assigned different women in
their respective stable matchings because Π1(i

∗) ̸= Π2(i
∗). This completes the proof. □

3. Conclusion

In this paper, we studied the advice complexity of the online bipartite matching prob-
lem and the online stable marriage problem. We considered the number of advice bits
needed for deterministic online algorithms to be optimal, and gave the exact bounds for
both problems.
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There are several possible extensions of this research, which include considering the
relationship between the number of available advice bits and the competitive ratio, and
parameterizing the advice complexity by, e.g., the number of edges in an input graph.
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advice complexity of the online L(2,1)-coloring problem on paths and cycles,” Proc.
COCOON 2013, pp. 53–64, 2013.
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[19] J. Hromkovič, R. Královič, and R. Královič, “Information complexity of online prob-
lems,” Proc. MFCS 2010, LNCS 6281, pp. 24–36, 2010.

[20] B. Kalyanasundaram and K. Pruhs, “Speed is more powerful than clairvoyance,”
Proc. FOCS’95, pp. 214–221, 1995.

[21] C. Karande, A. Mehta, and P. Tripathi, “Online bipartite matching with unknown
distributions,” Proc. STOC 2011, pp. 587-596, 2011.

[22] R. M. Karp, U. V. Vazirani, and V. V. Vazirani, “An optimal algorithm for on-line
bipartite matching,” Proc. STOC’90, pp. 352-358, 1990.

[23] S. Khuller, S.G. Mitchell, and V. V. Vazirani, “On-line algorithms for weighted bi-
partite matching and stable marriages,” Theoretical Computer Science, 127(2), pp.
255–267, 1994.

[24] M. Mahdian and Q. Yan, “Online bipartite matching with random arrivals: an ap-
proach based on strongly factor-revealing LPs,” Proc. STOC 2011, pp. 597-606, 2011.

[25] V. H. Manshadi, S. O. Gharan, and A. Saberi, “Online stochastic matching: online
actions based on offline statistics,” Proc. SODA 2011, pp. 1285-1294, 2011.

[26] A. Mehta, A. Saberi, U. V. Vazirani, and V. V. Vazirani, “AdWords and generalized
online matching,” J. ACM 54(5), Article No. 22, 2007.

[27] D.D. Sleator and R.E. Tarjan, “Amortized efficiency of list update and paging rules,”
Communications of the ACM 28(2), pp. 202–208, 1985.

7


