
Undecidability of accordance for open systems with unbounded message queues

Richard Müllera,b,∗, Christian Stahlb, Walter Voglerc

aInstitut für Informatik, Humboldt-Universität zu Berlin, Germany
bDepartment of Mathematics and Computer Science, Technische Universiteit Eindhoven, The Netherlands

cInstitut für Informatik, Universität Augsburg, Germany

Abstract

We study asynchronously communicating open systems modeled as Petri nets with an interface. An accordance preorder
describes when one open system can be safely replaced by another open system without affecting some behavioral property
of the overall system. Although accordance is decidable for several behavioral properties if we assume a previously known
bound on the maximal number of pending messages, we show that it is not decidable without this assumption.

Keywords: Petri nets, open nets, accordance preorder, theory of computation

1. Introduction

Today’s software systems are complex distributed sys-
tems that are composed of less complex open systems. In
this paper, we focus on stateful open systems that have
a well-defined interface and communicate with each other
via asynchronous message passing. Service-oriented sys-
tems like Web-service applications [1] and systems based
on wireless network technologies like wireless sensor net-
works [2], medical systems, transportation systems, or on-
line gaming are examples of such distributed systems.

During system evolution, often an open system is re-
placed by another one—for example, when new features
have been implemented or bugs have been fixed. To de-
scribe what replacements are acceptable a refinement no-
tion is required, which can be formalized as an accordance
preorder. An accordance preorder indicates whether we
can safely replace an open system by another one without
affecting some relevant behavioral property of the overall
system.

Here, we consider open systems on an abstract level—
for example, abstracting from message contents—and model
them with open (Petri) nets. Decision procedures for accor-
dance exist for deadlock freedom [3] and responsiveness [4]
(i.e., the perpetual possibility to communicate), if we as-
sume a previously known bound on the maximal num-
ber of pending messages between the open systems. This
bound has to be determined beforehand by, for example,
static analysis of the system’s underlying middleware or
of the communication behavior of an open system. A nat-
ural question is whether this previously known bound is
necessary. In this paper, we give a negative answer: We

∗Corresponding author
Email addresses: richard.mueller@informatik.hu-berlin.de

(Richard Müller), c.stahl@tue.nl (Christian Stahl),
vogler@informatik.uni-augsburg.de (Walter Vogler)

prove that accordance is undecidable for deadlock freedom
and responsiveness—both with and without final states—
and weak termination [5] (i.e., the perpetual possibility to
reach a final state).

We continue with some background information on Petri
nets and accordance in Sect. 2. In Sect. 3, we prove the
undecidability of accordance for deadlock freedom. We lift
this result to accordance for responsiveness in Sect. 4. Sec-
tion 5 contains the undecidability result of accordance for
weak termination, and Section 6 finishes with a discussion
of related work.

2. Preliminaries

In this section, our presentation largely follows [6, 7].
For two sets A and B, let A]B denote the disjoint union;
writing A]B implies that A and B are implicitly assumed
to be disjoint. Let N (N+) denote the natural numbers
(excluding 0). In this paper, we use place/transition Petri
nets extended with a set of final markings and either tran-
sition labels or interface places.

Definition 1 (net). A net N = (P, T, F,mN ,Ω) consists
of a finite set P of places, a finite set T of transitions
such that P and T are disjoint, a flow relation F ⊆ (P ×
T)] (T × P), an initial marking mN , where a marking is
a multiset m : P → N, and a set Ω of final markings.

Where needed (Definitions 4,5), we implicitly extend a
marking m to additional places, for which m returns 0.

Introducing a net N also implicitly introduces its com-
ponents P, T, F,mN , and Ω—and similarly for nets N1,
N2.

Definition 2 (labeled net). A labeled net N = (P, T, F,
mN ,Ω,Σin ,Σout , l) is a net (P, T, F,mN ,Ω) together with
an alphabet Σ = Σin] Σout of input actions Σin and

Preprint submitted to Elsevier September 8, 2013

2 PRELIMINARIES 2

output actions Σout and a labeling function l : T → Σ]
{τ}, where τ represents an invisible, internal action. Two
labeled nets are action-equivalent if they have the same
sets of input and of output actions.

Graphically, a circle represents a place, a box repre-
sents a transition, and the directed arcs between places
and transitions represent the flow relation. A marking is a
distribution of tokens over the places. Graphically, a black
dot represents a token. Transition labels are written into
the respective boxes.

Let x ∈ P]T be a node of a net N . As usual, •x = {y |
(y, x) ∈ F} denotes the preset of x and x• = {y | (x, y) ∈
F} the postset of x. A transition t ∈ T is enabled at a

marking m, denoted by m
t−→ , if for all p ∈ •t, m(p) >

0. If t is enabled at m, it can fire, thereby changing the
current marking m to the marking m′ = m− •t+ t• (here,
we interpret the pre- and the postset as multisets). The

firing of t is denoted by m
t−→ m′; that is, t is enabled at m

and firing it results in m′. For a transition sequence v =

t1 . . . tk−1, we write m1
v−→ mk when m1

t1−−→ . . .
tk−1−−−→ mk

and refer to it as a run of N . A marking m′ is reachable
from a marking m if there exists a (possibly empty) run v

with m
v−→ m′. A marking m′ is reachable if it is reachable

from the initial marking. In the case of labeled nets, we
lift runs to actions: If m1

v−→ mk and w is obtained from
v by replacing each transition with its label and removing
all τ labels, we write m1

w
==⇒ mk, and we refer to w as

a trace if m1 = mN . The language L(N) is the set of all
traces of N .

For two action-equivalent labeled nets N1 and N2, a
relation % ⊆ NP1 × NP2 is a bisimulation [8] if for all

(m1,m2) ∈ %: (1) if m1
t1−−→ m′1 in N1, there exist t2

and m′2 such that m2
t2−−→ m′2 in N2, l1(t1) = l2(t2), and

(m′1,m
′
2) ∈ %; and (2) if m2

t2−−→ m′2 in N2, there exist t1

and m′1 such that m1
t1−−→ m′1 in N1, l1(t1) = l2(t2), and

(m′1,m
′
2) ∈ %. The labeled nets N1 and N2 are bisimilar if

there exists a bisimulation relating their initial markings
mN1

and mN2
.

As system model, we consider open nets. An open net
extends a net by an asynchronous interface consisting of
two disjoint sets of input and output places, which corre-
spond to input and output channels. In the initial marking
and the final markings, interface places are not marked.
An input place has an empty preset, and an output place
has an empty postset.

Definition 3 (open net). An open net N is a tuple (P, T ,
F,mN , I, O,Ω) where (P] I] O, T, F,mN ,Ω) is a net,
mN (p) = 0 = m(p) for all p ∈ I] O and m ∈ Ω, •p = ∅
for all input places p ∈ I, p• = ∅ for all output places
p ∈ O, and set I = ∅ if and only if set O = ∅.

If I = O = ∅, then N is a closed net. Two open nets
are interface-equivalent if they have the same sets of input
and of output places.

Graphically, we represent an open net like a net with
a dashed frame around it. The interface places are posi-
tioned on the frame.

For the composition of open nets, we assume that the
sets of transitions are disjoint and that no internal place
of an open net is a place of any other open net. In con-
trast, the interfaces intentionally overlap. We require that
all communication is bilateral and directed ; that is, every
shared place p has only one open net that sends into p and
one open net that receives from p. In addition, we require
that either all interface places are shared or there is at
least one input and one output place which are not shared.
We refer to open nets that fulfill these conditions as com-
posable. We compose such open nets by merging shared
interface places and turning them into internal places. The
definition of composable thereby guarantees that an open
net composition is again an open net (which is possibly
closed).

Definition 4 (open net composition). Two open nets N1

and N2 are composable if (P1] T1] I1]O1)∩ (P2] T2]
I2]O2) = (I1∩O2)](I2∩O1), and (I1]I2)\(O1]O2) and
(O1]O2)\(I1]I2) are both either empty or nonempty. The
composition of such open nets is the open net N1 ⊕N2 =
(P, T, F,mN , I, O,Ω) where P = P1]P2] (I1∩O2)] (I2∩
O1), T = T1] T2, F = F1] F2, mN = mN1 + mN2 ,
I = (I1] I2) \ (O1] O2), O = (O1] O2) \ (I1] I2), and
Ω = {m1 +m2 | m1 ∈ Ω1,m2 ∈ Ω2}.

To give an open net N a trace-based semantics, we
consider its environment env(N), which we define similarly
to Vogler [9]. The net env(N) can be constructed from N
by adding to each interface place p ∈ I (p ∈ O) a p-labeled
transition p in env(N) and renaming the place p to pi

(po). Intuitively, one can understand the construction as
translating the asynchronous interface of N into a buffered
synchronous interface (with unbounded buffers) described
by the transition labels of env(N).

Definition 5 (open net environment). The environment
of an open net N is the labeled net env(N) = (P] P I]
PO, T] I]O,F ′,mN ,Ω, I, O, l

′), where

• P I = {pi | p ∈ I}, PO = {po | p ∈ O},

• F ′ = ((P] T)× (T] P)) ∩ F
] {(pi, t) | p ∈ I, t ∈ T, (p, t) ∈ F}
] {(t, po) | p ∈ O, t ∈ T, (t, p) ∈ F}
] {(po, p) | p ∈ O}
] {(p, pi) | p ∈ I}, and

• l′(t) =

{
τ, t ∈ T
t, t ∈ I]O.

Convention: Throughout the paper, each trace set and
semantics for labeled nets is implicitly extended to any
open net N via env(N)—for example, the language of N
is defined as L(N) = L(env(N)).

3 UNDECIDABILITY OF DF - AND FDF -ACCORDANCE 3

In this paper, we consider five behavioral properties on
the closed composition of two open nets: deadlock freedom
with and without final markings, responsiveness with and
without final markings, and weak termination.

Definition 6 (behavioral properties). Let N1 and N2 be
composable open nets. A marking m of N1⊕N2 is dead if
no transition is enabled at m, and f -dead if additionally
m 6∈ ΩN1⊕N2 . Marking m is responsive if we can reach
from m a marking that enables a transition t with t• ∩
(O1]O2) 6= ∅; it is weakly terminating if we can reach a
final marking of N1 ⊕N2 from m; and m is f -responsive
if m is responsive or weakly terminating.

The open nets N1 and N2 together are deadlock free
(f -deadlock free) if their composition N1 ⊕N2 is a closed
net and no reachable marking of N1⊕N2 is dead (f -dead).
N1 and N2 are responsive (f -responsive, weakly terminat-
ing) if their composition N1⊕N2 is a closed net and every
reachable marking of N1 ⊕N2 is responsive (f -responsive,
weakly terminating).

Based on a behavioral property, we define a controller
C of an open net N such that N and C have that property.

Definition 7 (controller). An open net C is a df -controller
(fdf -, r-, fr-, wt-controller) of an open net N if N and C
are deadlock free (f -deadlock free, responsive, f -responsive,
weakly terminating).

If the controllers of an open net are a superset of the
controllers of another open net, then the first open net is a
refinement of the second; intuitively, we can safely replace
the second open system by the first one without affecting
the behavioral property of the overall system. We refer
to the resulting refinement relation as accordance, which
gives a necessary requirement for a refinement. As the
accordance preorder for (f -)responsiveness is not compo-
sitional [6], we also define the coarsest precongruence con-
tained in the respective preorder.

Definition 8 (accordance). Let x ∈ {df , fdf , r , fr ,wt}.
For interface-equivalent open nets Impl and Spec, Impl
x-accords with Spec if for all open nets C the following
holds: If C is an x-controller of Spec, then C is an x-
controller of Impl. Let vcr ,acc (vcfr ,acc) denote the coarsest
precongruence contained in r-accordance (fr-accordance).

3. Undecidability of df - and fdf -accordance

We prove df - and fdf -accordance to be undecidable by
reducing both to the halting problem of Minsky’s counter
machines [10]. For the reduction, we use our trace-based
characterization of df - and fdf -accordance [7], which de-
mands specific language inclusions.

Definition 9 (stopdead -semantics for deadlock freedom).
Let N be a labeled net. A marking m of N is a stop ex-

cept for inputs if for all t ∈ T with m
t−→ holds: l(t) ∈

Σin ; it is dead except for inputs if additionally m /∈ Ω.

The stopdead -semantics of N is defined by the sets of
traces stop(N) = {w | mN

w
==⇒ m∧m is a stop except for

inputs} and dead(N) = {w | mN
w

==⇒ m ∧ m is dead
except for inputs}.

Theorem 10 (df - and fdf -accordance characterization [7]).
For two interface-equivalent open nets Impl and Spec, the
following holds: (1) Impl df -accords with Spec iff stop(Impl)
⊆ stop(Spec). (2) Impl fdf -accords with Spec iff stop(Impl)
⊆ stop(Spec) and dead(Impl)) ⊆ dead(Spec).

We define a counter machine as in [10].

Definition 11 (counter machine). Let n,m ∈ N+. An m-
counter machine C with nonnegative counters c1, . . . , cm is
a program consisting of n commands

1 : CMD1; 2 : CMD2; . . . ;n : CMDn

where CMDn is a HALT -command and the commands
CMD1, . . . ,CMDn−1 are of the following two types (where
1 ≤ k, k1, k2 ≤ n, 1 ≤ j ≤ m):

Type 1: cj := cj + 1; goto k

Type 2: if cj = 0 then goto k1 else (cj := cj−1; goto k2)

Define the set BS(C) of branching states of C as BS(C) =
{i ∈ N+ | CMD i is of type 2}.

As a running example, consider the counter machine
ADD in Alg. 1. ADD has two counters c1 and c2, and
consists of three commands: one of each type, and the
HALT -command. It expects two given integers x1 and
x2 as inputs, and returns their sum x1 + x2 stored in the
counter c2. The branching states of ADD are BS(ADD) =
{1}, and obviously ADD halts on any inputs.

input : An integer x1 stored in c1, an integer
x2 stored in c2

output: The integer x1 + x2 stored in c2

1 if c1 = 0 then goto 3 else (c1 := c1 − 1; goto 2) ;
2 c2 := c2 + 1; goto 1 ;
3 HALT

Algorithm 1: The 2-counter machine ADD for
adding two integers x1 and x2.

We describe three labeled net patterns—one pattern
for each CMD-type and an auxiliary notion of a “definitely
cheating” pattern—which we use to simulate a counter
machine. These patterns are an extension of the “Jančar-
Pattern” [11]. For each transition t of the original pattern,
we add two transitions and two places controlling t’s fir-
ing. In addition, we shift the label from t to the newly
introduced transitions, and label t with τ . The patterns
are illustrated in Fig. 1.

Definition 12 (basic net). Let C be a counter machine
with m counters and n commands. The basic net net(C)
of C is a labeled net constructed as follows (assuming 1 ≤
k, k1, k2 ≤ n, 1 ≤ j ≤ m):

3 UNDECIDABILITY OF DF - AND FDF -ACCORDANCE 4

si

ti

sk cj

!
uivi

vi
ui'vi'

vi'

(a) Type 1

si

tZi

sk1

cj

!
yizi

zi

tNi !
mi ni

ni

sk2

yi'

mi'

zi'

ni'
zi'

ni'
(b) Type 2

si

tCi
sk1

cj

!
yi

yi'

(c) dc-pattern

Figure 1: Constructions of net(C) and dc-pattern.

1. Let c1, . . . , cm (the counter part) and s1, . . . , sn (the
state part) be places of net(C).

2. For i = 1, . . . , n − 1 add new transitions and arcs
depending on the type of CMD i:

type 1: Add places ui,u
′
i, transitions ti,vi,v

′
i, and

arcs (vi, ui), (ui, ti), (ti, u
′
i), (u′i, v

′
i), (si, ti),

(ti, sk), and (ti, cj). For the labeling, we set
l(vi) = vi, l(v

′
i) = v′i, and l(ti) = τ .

type 2: Add places yi, y
′
i,mi,m

′
i, transitions tZi , zi, z

′
i

(to simulate the case in which counter cj is
zero) and tNi , ni, n

′
i (to simulate the case in which

counter cj is not empty), and arcs (zi, yi), (yi, t
Z
i),

(tZi , y
′
i), (y′i, z

′
i), (ni,mi), (mi, t

N
i),

(tNi ,m
′
i), (m′i, n

′
i), (si, t

Z
i), (tZi , sk1), (si, t

N
i),

(cj , t
N
i), and (tNi , sk2). For the labeling, we set

l(zi) = zi, l(z
′
i) = z′i, l(ni) = ni, l(n

′
i) = n′i,

and l(tZi) = l(tNi) = τ .

3. Let the initial marking put just one token on s1, and
let ∅ be the set of final markings of net(C).

4. Let every unprimed transition label of net(C) (other
than τ) be an input action, and let every primed tran-
sition label of net(C) be an output action.

Adding a dc-pattern (dc for “definitely cheating”) to net(C)
for i ∈ BS(C) means adding a τ -labeled transition tCi (a
dc-transition) and arcs (yi, t

C
i), (tCi , y

′
i), (si, t

C
i), (tCi , sk1),

(cj , t
C
i), (tCi , cj). (Note that tCi is a copy of tZi with addi-

tional arcs to/from cj.)

For the counter machine ADD from Alg. 1, Fig. 2 de-
picts the basic net net(ADD). It consists of one pattern
of type 1 (transitions t2, v2, v′2) and one pattern of type 2
(transitions tN1 , tZ1 , n1, n′1, z1, z′1). The counters c1 and c2
are modeled by the places c1 and c2, and the current state
of ADD is modeled by marking one of the places s1, s2, s3.
The input actions of net(ADD) are {n1, z1, v2}, and the
output actions are {n′1, z′1, v′2}.

For any counter machine with counters c1, . . . , cm and
for any input values x1, . . . , xm, we can “simulate” C with

s1

tZ1

y1

z1

c1

s3

s2tN1

m1

m1'

y1'

n1n1

n1'

z1'

n1'

z1

z1'

c2

!

!
t2

u2

u2'

v2

v2'

v2

v2'

!

Figure 2: The basic net net(ADD) of ADD from Alg. 1.

net(C) by adding xj tokens to the initial marking of place
cj (1 ≤ j ≤ m). However, it is possible to “cheat” in
the pattern of type 2 (see Fig. 1b), i.e., transition tZi fires
although the respective place cj is not empty. Also notice
that firing a dc-transition has the same effect as firing the
respective transition tZi .

The construction of net(C) applies to any counter ma-
chine, but we will consider a 2-counter machine C in the
following, because already for two counters the halting
problem is undecidable [10].

Theorem 13 (halting problem [10]). It is undecidable
whether a given 2-counter machine halts on given inputs.

The following lemma relates the halting problem for 2-
counter machines to the inclusion of the stop-languages of
two constructed labeled nets. We follow the proof strategy
from [11]: For a 2-counter machine C and given input
values x1 and x2, we construct two labeled nets N1 and
N2 which are modifications of net(C) simulating C. The
construction of N1 and N2 ensures that the only way to
exhibit the non-inclusion is to simulate C without cheating
and to terminate—which is possible if and only if C halts
for x1 and x2.

Lemma 14. Let C be a 2-counter machine and x1, x2 ∈
N. We can construct two action-equivalent labeled nets N1

and N2 (as modifications of net(C)) such that the following
conditions are equivalent:

1. C does not halt for the given inputs x1 and x2.

2. N1 and N2 are bisimilar.

3. stop(N1) ⊆ stop(N2).

Proof. We construct N1 and N2 from net(C) and the input
values x1 and x2 in four steps:

1. Take net(C) and extend its initial marking by x1
tokens in c1 and x2 tokens in c2.

2. Add places p, p′, e, transitions tp, tp′ , te, f , and
arcs (p, tp), (tp, p), (p′, tp′), (tp′ , p

′), (p, te), (sn, te),
(te, e), and (e, f). Label the transitions tp, tp′ , and
te with τ , and f with f . Figure 3a sketches steps one
and two for ADD with inputs x1 := 1 and x2 := 1.

4 UNDECIDABILITY OF R- AND FR-ACCORDANCE 5

3. For each branching state i ∈ BS(C) that checks
counter cj , add two dc-patterns: the τ -labeled transi-

tions tCi , tCi
′
, and the arcs (si, t

C
i), (si, t

C
i
′
), (tCi , sk1),

(tCi
′
, sk1), (yi, t

C
i), (yi, t

C
i
′
), (tCi , y

′
i), (t

C
i
′
, y′i) (i.e, de-

tecting cheating on the zero-branch), (cj , t
C
i), (tCi , cj),

(cj , t
C
i
′
), (tCi

′
, cj) (i.e., cheating means cj is not empty),

and (p, tCi), (tCi , p
′), (p′, tCi

′
), (tCi

′
, p) (i.e., detecting

cheating means switching the token between p and
p′). Figure 3b (ignoring the token on place p) sketches
this step for ADD and BS(ADD) = {1}.

4. Take two copies of the arising net. In one copy, put
one token in p yielding the labeled net N1. In the
other, put one token in p′ yielding the labeled net
N2. Figures 3b and 3c indicate this for ADD , if we
ignore the dashed frame.

In every reachable marking, the places p and p′ to-
gether hold at most one token. As long as place p or p′

remains marked, the corresponding marking is not a stop
except for inputs due to tp and tp′ . The only way to reach
a stop except for inputs is to have one token on p and fire
te and f .

(1) implies (2): Assume C does not halt for inputs x1
and x2. Let D be the set of all pairs (m,m) of equal mark-
ingsm ofN1 andN2. LetM be the set of all pairs (m1,m2)
such that m1 and m2 are reachable by the same correct
run in N1 and N2, respectively. A run is correct if it sim-
ulates C without cheating, i.e., no dc-transition fires, and
transition tZi (for i ∈ BS(C)) fires only if the respective
place cj is empty. We show that D]M is a bisimulation;
thus, N1 and N2 are bisimilar as (mN1 ,mN2) ∈M by the
construction of N1 and N2.

So consider a pair (m1,m2) ∈ M . As m1 and m2

is reached by the same correct run σ in N1 and N2, re-
spectively, m1 and m2 differ only in the places p and p′,
i.e., we have m1(p) = 1, m1(p′) = 0, and m2(p) = 0,
m2(p′) = 1 w.l.o.g. Thus, every transition, except te and
the dc-transitions, is enabled at m1 in N1 if and only if
is enabled at m2 in N2. Transition te is never enabled,
because σ is a correct run, and C does not halt by as-
sumption (i.e., place sn is never marked). We distinguish
two cases:

1. The firing of any transition besides tZi , tCi , and tCi
′

(for i ∈ BS(C)) at m1 in N1 can be simulated by the
firing of the same transition at m2 in N2, and vice
versa. The respective firings lead again to a marking
pair in M .

2. If cheating is possible in N1 at m1 and N1 fires tZi ,

tCi , or tCi
′

with i ∈ BS(C) when the respective place
cj is not empty, then one transition out of the set

{tZi , tCi , tCi
′} can fire in N2 such that both nets have

the same marking m (and thus (m,m) ∈ D) after-

ward. In detail: If m1
tZi−−→ m in N1, then m2

tCi
′

−−→ m

in N2; if m1
tCi−−→ m in N1, then m2

tZi−−→ m in N2.
The same argument applies if cheating is possible in

N2: If m2
tZi−−→ m in N2, then m1

tCi−−→ m in N1; if

m2
tCi
′

−−→ m in N2, then m1
tZi−−→ m in N1.

If N1 and N2 have the same marking (i.e., we have a pair
in D), then each can simulate the other by firing the same
transition, remaining in D. Thus, D]M is a bisimulation.

(2) implies (3): trivial
(3) implies (1): By contraposition, assume C halts for

inputs x1 and x2. Then, we construct a run mN1

σ−→ m in
N1 such that σ simulates C correctly (i.e., without cheat-
ing) and m(sn) = 1 (i.e., C reaches the HALT command):
For each command CMD i that C performs, we add three
transitions to σ. If i /∈ BS(C), we add vitiv

′
i to σ. If

i ∈ BS(C), we add zit
Z
i z
′
i (if the respective counter is zero)

or nit
N
i n
′
i (otherwise) to σ. Now the trace w corresponding

to the run σtef is a stop-trace of N1, i.e., w ∈ stop(N1).
To perform the same trace in N2, there is no choice

but to perform the same run σ (except for possibly firing
tp or t′p in-between): For instance, to perform action vi one
has to fire transition vi, and to perform action v′i then one
has to fire transitions tiv

′
i. Observe that one cannot fire

tCi z
′
i or t′Ci z

′
i to perform action z′i because the firing of tZi is

correct at this stage and, thus, the respective counter (and
the corresponding place) is empty. However, after σ the
transition te is not enabled in N2, because p is not marked.
Thus, w 6∈ L(N2), which implies w 6∈ stop(N2).

With Lemma 14, we reduce df - and fdf -accordance to
the halting problem of a 2-counter machine.

Theorem 15 (undecidability of df - and fdf -accordance).
For two interface-equivalent open nets Impl and Spec, df -
accordance and fdf -accordance are undecidable.

Proof. Let C be a 2-counter machine with input values x1
and x2. We construct two interface-equivalent open nets
open(N1) and open(N2) from the labeled nets N1 and N2

from Lemma 14 by removing all transitions t that are not
τ -labeled, and interpreting t’s preset (postset) as output
(input) place. Figures 3b and 3c illustrate open(N1) and
open(N2) for ADD , if we ignore all transitions outside
the dashed frame. Clearly, stop(open(N1)) = stop(N1)
and stop(open(N2)) = stop(N2). Now assume that df -
accordance is decidable. Then open(N1) df -accords with
open(N2) iff stop(open(N1)) ⊆ stop(open(N2)) by Theo-
rem 10 iff C does not halt for the given inputs x1 and x2 by
Lemma 14. Thus, we can decide the halting problem for 2-
counter machines, which is a contradiction to Theorem 13.
Therefore, df -accordance is undecidable.

As fdf - and df -accordance coincide for open nets with
an empty set of final markings, we conclude the undecid-
ability of fdf -accordance from the undecidability of df -
accordance.

4. Undecidability of r- and fr-accordance

We prove that r - and fr -accordance and their coarsest
precongruencesvcr ,acc andvcfr ,acc are undecidable, thereby

4 UNDECIDABILITY OF R- AND FR-ACCORDANCE 6

s1

p'

tZ1

y1

z1

p

c1

s3

tp' ! tp!
e

ff
te

!

s2tN1

m1

m1'

y1'

n1n1

n1'

z1'

n1'

z1

z1'

c2

!

!
t2

u2

u2'

v2

v2'

v2

v2'

!

(a) Step one and step two

s1

p'

tZ1

y1

z1

p

c1 tC1

tC1'

s3

tp' ! tp!
e

ff
te

!

s2tN1

m1

m1'

y1'

n1n1

n1'

z1'

n1'

z1

z1'

c2

!

!

!

!
t2

u2

u2'

v2

v2'

v2

v2'

!

(b) N1

s1

p'

tZ1

y1

z1

p

c1 tC1

tC1'

s3

tp' ! tp!
e

ff
te

!

s2tN1

m1

m1'

y1'

n1n1

n1'

z1'

n1'

z1

z1'

c2

!

!

!

!
t2

u2

u2'

v2

v2'

v2

v2'

!

(c) N2

Figure 3: Auxiliary constructions and the labeled nets N1 and N2 (ignoring the dashed frame) for Lemma 14 and the
counter machine ADD .

following the proof strategy from Sect. 3. As we use the
trace-based characterization of r - and fr -accordance from [6],
we redefine the stopdead -semantics from Sect. 3 for respon-
siveness.

Definition 16 (stopdead -semantics for responsiveness).
Let N be a labeled net. A marking m of N is an r-
stop except for inputs if there is no o ∈ Σout such that
m

o
==⇒; marking m is r-dead except for inputs if addi-

tionally there exists no final marking m′ of N with m
ε

=⇒
m′. The responsive stopdead -semantics of a N is defined
by the sets of traces rstop(N) = {w | mN

w
==⇒ m ∧

m is an r-stop except for inputs} and rdead(N) = {w |
mN

w
==⇒ m ∧m is r-dead except for inputs}.

Theorem 17 (r - and fr -accordance characterization [6]).
For interface-equivalent open nets Impl and Spec, the fol-
lowing holds: (1) Impl r-accords with Spec iff rstop(Impl)
⊆ rstop(Spec). (2) Impl fr-accords with Spec iff rstop(Impl)
⊆ rstop(Spec) and rdead(Impl) ⊆ rdead(Spec).

Similarly to Sect. 3, we reduce r - and fr -accordance to
the halting problem of a 2-counter machine.

Lemma 18. Let C be a 2-counter machine and x1, x2 ∈
N. We can construct two action-equivalent labeled nets N1

and N2 (as modifications of net(C)) such that the following
conditions are equivalent:

1. C does not halt for the given inputs x1 and x2.

2. N1 and N2 are bisimilar.

3. rstop(N1) ⊆ rstop(N2).

Proof. We construct the two action-equivalent labeled nets
N1 and N2 from C and the input values x1 and x2 in the
same four steps as in the proof of Lemma 14, with only one
modification of step two: We additionally add a place o, a

transition to, and arcs (tp, o),(t
′
p, o), and (o, to). Transition

to is labeled with the output action to.
As long as any of the places p, p′, and o is marked, the

corresponding marking is not an r-stop except for inputs:
The transition to is labeled with an output action and
may fire. Thus, the only way to reach an r-stop except for
inputs is to empty the place o by firing to, and to empty
the places p, p′ by firing the transitions te and f . The rest
of the proof is analogous to the proof of Lemma 14.

We immediately conclude undecidability of r - and fr -
accordance from Lemma 18 and Theorems 17 and 13 with
an argument as in the proof of Theorem 15.

Theorem 19 (undecidability of r and fr -accordance).
For two interface-equivalent open nets Impl and Spec, r-
accordance and fr-accordance are undecidable.

In the following, we show that also the coarsest pre-
congruence contained in (f)-responsive accordance is un-
decidable. Here, it is essential that vcr ,acc and vcfr ,acc can
be characterized using the impossible futures semantics
F+(N) [9, 12] and a modification F+

fin(N) of it, as shown
in [6]. With this, it is not difficult to prove the following
lemma.1

Lemma 20. For two action-equivalent labeled nets N1 and
N2, the following holds: (1) If N1 and N2 are bisimilar,
then N1 vcr ,acc N2. (2) N1 vcr ,acc N2 implies L(N1) ⊆
L(N2).

With the construction from Lemma 18, we show the
undecidability of the coarsest precongruence contained in
each preorder.

1For bisimilar nets, even the F+-semantics coincide. If N1 vc
r,acc

N2 and w ∈ L(N1) then (w, ∅) ∈ F+(N1), implying (w, ∅) ∈ F+(N2)
and thus w ∈ L(N2).

6 RELATED WORK AND CONCLUSION 7

Lemma 21. Let C be a 2-counter machine and x1, x2 ∈
N. We can construct two action-equivalent labeled nets N1

and N2 (without final markings) such that the following
conditions are equivalent:

1. C does not halt for the given inputs x1 and x2.

2. N1 vcr ,acc N2.

Proof. We construct the labeled nets N1 and N2 as in the
proof of Lemma 18. (1) implies (2) because N1 and N2

are bisimilar by Lemma 18, which implies N1 vcr ,acc N2

by Lemma 20(1). (2) implies (1) because if C halts for
the inputs x1 and x2, then L(N1) 6⊆ L(N2) as shown in
the proof of Lemma 18 and 14). Thus, N1 6vcr ,acc N2 by
Lemma 20(2).

One can observe that, for open nets without final mark-
ings, vcr ,acc and vcfr ,acc coincide.2 With this, we immedi-
ately conclude undecidability of vcr ,acc and vcfr ,acc from
Lemma 21 and Theorem 13 with an argument as in the
proof of Theorem 15.

Theorem 22 (undecidability of vcr ,acc and vcfr ,acc). For
two interface-equivalent open nets Impl and Spec, the pre-
congruences vcr ,acc and vcfr ,acc are undecidable.

5. Undecidability of wt-accordance

Finally, we reduce to the decision of wt-accordance
the question whether an open net has at least one wt-
controller—that is, wt-controllability. As the latter is un-
decidable [13], wt-accordance is undecidable, too.

Theorem 23. For two interface-equivalent open nets Impl
and Spec, wt-accordance is undecidable.

Proof. We reduce wt-controllability to wt-accordance. Given
an open net N , we can construct an interface-equivalent
open net C that is not wt-controllable (by putting ΩC =
∅). First, if C wt-accords with N , then every wt-controller
of N is a wt-controller of C and, thus, N is not wt-control-
lable. Second, if C does not wt-accord with N , then N
has at least one wt-controller (that is not a wt-controller
of C) and, thus, N is wt-controllable. Hence, N is wt-
controllable iff C does not wt-accord with it.

Bravetti and Zavattaro [14] define the subcontract pre-
order which preserves weak termination. The model in [14]
is a modified version of Milner’s CCS [8] with one un-
bounded but ordered message queue. In contrast, in our
Petri net model, each interface place models an unbounded
unordered message queue. Therefore, Theorem 23 does
not imply that the subcontract preorder in [14] is unde-
cidable, but we suspect that it is.

2Essentially, for such an open net N , one can “embed” F+(N)
in F+

fin (N) by adding ∅ as a third component to each element

of F+(N). Furthermore, for any set Y , (w,X, Y) ∈ F+
fin (N) iff

(w,X, ∅) ∈ F+
fin (N).

6. Related Work and Conclusion

We showed undecidability of accordance for five be-
havioral properties: deadlock freedom [3] and responsive-
ness [4]—both with and without final markings—and weak
termination [5].

Our proofs mostly work by reduction from the halting
problem of 2-counter machines using a variation of the
“Jančar-Pattern” [11]. Counter machines and their halting
problem were introduced in [10]. The halting problem for
counter machines can be used very naturally to show the
undecidability of other problems related to Petri nets, such
as bisimilarity and language inclusion [11, 15].

The controllability problem is decidable for deadlock
freedom and responsiveness: There always exists a triv-
ial controller with an internal loop (deadlock freedom) or
a loop in which messages are sent without waiting for an
answer (responsiveness). As the corresponding accordance
preorders are undecidable, the accordance is a more diffi-
cult problem than controllability.

Future work is to investigate accordance for weak ter-
mination and bounded communication.

References

[1] M. P. Papazoglou, Web Services: Principles and Technology,
Pearson, 2007.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wire-
less sensor networks: a survey, Computer Networks 38 (2002)
393 – 422.

[3] C. Stahl, P. Massuthe, J. Bretschneider, Deciding substitutabil-
ity of services with operating guidelines, in: ToPNoC II, LNCS
5460, Springer, 2009, pp. 172–191.

[4] K. Wolf, Does my service have partners?, in: ToPNoC II, LNCS
5460, Springer, 2009, pp. 152–171.

[5] A. J. Mooij, C. Stahl, M. Voorhoeve, Relating fair testing and
accordance for service replaceability, J. Log. Algebr. Program.
79 (2010) 233–244.

[6] W. Vogler, C. Stahl, R. Müller, A trace-based semantics for
responsiveness, in: ACSD 2012, IEEE, 2012, pp. 42–51.

[7] C. Stahl, W. Vogler, A trace-based service semantics guaran-
teeing deadlock freedom, Acta Inf. 49 (2012) 69–103.

[8] R. Milner, Communication and Concurrency, Prentice-Hall,
Inc., 1989.

[9] W. Vogler, Modular Construction and Partial Order Semantics
of Petri Nets, volume 625 of LNCS, Springer, 1992.

[10] M. Minsky, Computation: Finite and infinite machines (1967).
[11] P. Jančar, Undecidability of bisimilarity for Petri nets and some

related problems, Theoretical Computer Science 148 (1995) 281
– 301.

[12] A. Rensink, W. Vogler, Fair testing, Inf. Comput. 205 (2007)
125–198.

[13] P. Massuthe, A. Serebrenik, N. Sidorova, K. Wolf, Can I find a
partner? Undecidablity of partner existence for open nets, Inf.
Process. Lett. 108 (2008) 374–378.

[14] M. Bravetti, G. Zavattaro, Contract compliance and choreogra-
phy conformance in the presence of message queues, in: WS-FM
2008, volume 5387 of LNCS, Springer, 2009, pp. 37–54.

[15] J. Esparza, Decidability and complexity of Petri net problems–
an introduction, in: Lectures on Petri Nets I: Basic Models,
Springer, 1998, pp. 374–428.

	Introduction
	Preliminaries
	Undecidability of df- and fdf-accordance
	Undecidability of r- and fr-accordance
	Undecidability of wt-accordance
	Related Work and Conclusion

