Notes on a conjecture of Manoussakis concerning Hamilton cycles in digraphs

Bo Ning*
Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China

Abstract

In 1992, Manoussakis conjectured that a strongly 2-connected digraph D on n vertices is hamiltonian if for every two distinct pairs of independent vertices x, y and w, z we have $d(x)+d(y)+d(w)+d(z) \geq 4 n-3$. In this note we show that D has a Hamilton path, which gives an affirmative evidence supporting this conjecture.

Keywords: Combinatorial problem; Hamilton cycle; Hamilton path; Digraph
Mathematics Subject Classification (2010): 05C38; 05C45

1 Introduction

In this note, we consider simple digraphs only. For convenience of the reader, we provide all necessary terminology and notation in one section, Section 2. For those not defined here, we refer the reader to [1].

A basic topic in digraph theory is that of finding degree conditions for a digraph to be hamiltonian. In particular, Ghouila-Houri 4 proved a fundamental theorem which states that every strongly connected digraph on n vertices is hamiltonian if the degree of every vertex is at least n.

Theorem 1 (Ghouila-Houri 4). Let D be a strongly connected digraph on n vertices. If $d(x) \geq n$ for any vertex $x \in V$, then D is hamiltonian.

Woodall [11] proved the following result, which improved Ghouila-Houri's theorem.
Theorem 2 (Woodall [11). Let D be a digraph on n vertices. If $d^{+}(x)+d^{-}(y) \geq n$ for any pair of vertices x and y such that $x y \notin A(D)$, then D is hamiltonian.

[^0]Meyniel [8] generalized both theorems of Ghoulia-Houri and Woodall. Bondy and Thomassen [3] gave a new proof of Meyniel's theorem by proving a slightly stronger result. For another proof of Meyniel's theorem, see [9.

Theorem 3 (Meyniel [8). Let D be a strongly connected digraph on n vertices. If $d(x)+$ $d(y) \geq 2 n-1$ for any pair of nonadjacent vertices in D, then D is hamiltonian.

Manoussakis [7] gave another generalization of Woodall's theorem as follows.
Theorem 4 (Manoussakis [7). Let D be a strongly connected digraph on n vertices. For any triple of vertices $x, y, z \in V$, where x is nonadjacent to y, if there hold $d(x)+d(y)+$ $d^{+}(x)+d^{-}(z) \geq 3 n-2($ if $x z \notin A)$ and $d(x)+d(y)+d^{+}(z)+d^{-}(x) \geq 3 n-2$ (if $z x \notin A$), then D is hamiltonian.

Manoussakis [7 proposed the following conjecture. If this conjecture is true, then it can be seen as an extension of Theorem 4.

Conjecture 1 (Manoussakis [7]). Let D be a strongly 2-connected digraph such that for all distinct pairs of nonadjacent vertices x, y and w, z we have $d(x)+d(y)+d(w)+d(z) \geq 4 n-3$. Then D is hamiltonian.

Manoussakis [7] gave an example to show that Conjecture 1 is almost best. Here we gave another example. Let D be an associated digraph of $K_{\frac{n-1}{2}, \frac{n+1}{2}}$, where $n \geq 9$ is odd. Let X, Y be two parts of D such that $|X|=\frac{n-1}{2},|Y|=\frac{n+1}{2}$. Then the degree sum of any four vertices in X is $4(n+1)$ and the degree sum of any four vertices in Y is $4(n-1)$. Furthermore, we can see the degree sum of all distinct pairs of nonadjacent vertices in D is at least $4 n-4$ and D is not hamiltonian.

To our knowledge, there are no further references on this conjecture. In this note we prove the following result, and it may be a first step towards confirming Conjecture 1.

Theorem 5. Let D be a strongly 2-connected digraph such that for all distinct pairs of nonadjacent vertices x, y and w, z we have $d(x)+d(y)+d(w)+d(z) \geq 4 n-3$. Then D has a longest cycle of length at least $n-1$.

The following result is a direct corollary.
Corollary 6. Let D be a strongly 2 -connected digraph such that for all distinct pairs of nonadjacent vertices x, y and w, z we have $d(x)+d(y)+d(w)+d(z) \geq 4 n-3$. Then D has a Hamilton path.

2 Terminology and notation

In this section, we will give necessary notation and terminology. Throughout this note, we use D to denote a digraph (directed graph), and $V(D)$ and $A(D)$ to denote the vertex set and arc set of D, respectively. When there is no danger of ambiguity, we use V and A instead of $V(D)$ and $A(D)$, respectively. For an arc $x y \in A, x$ is always referred to as the origin, and y, as the terminus. Throughout this note, simple digraphs are just considered, that is, digraphs with no two arcs with the same origin and terminus, and no loops (an arc with the same vertex as the origin and terminus meantime).

We say that D is strongly k-connected if for any ordered pair of vertices $\{u, v\}$, there are k internally disjoint directed paths from u to v. For two vertices $u, v \in V$, we say that u dominates (is dominated by) v if there is an arc $u v \in A(v u \in A)$, and u, v are called a pair of nonadjacent vertices if $u v \notin A$ and $v u \notin A$. For a vertex v and a subdigraph H of D, the out-neighbor set (in-neighbor set) of v in H, denoted by $N_{H}^{+}(v)\left(N_{H}^{-}(v)\right)$, is the set of those vertices in H dominated by (dominating) v. The out-degree (in-degree, degree) of v in H, denoted by $d_{H}^{+}(v)\left(d_{H}^{-}(v), d_{H}(v)\right)$, equals $\left|N_{H}^{+}(v)\right|\left(\left|N_{H}^{-}(v)\right|,\left|N_{H}^{+}(v)\right|+\left|N_{H}^{-}(v)\right|\right)$. If there is no danger of ambiguity, then we use $d^{+}(v), d^{-}(v)$ and $d(v)$ instead of $d_{D}^{+}(v)$, $d_{D}^{-}(v)$ and $d_{D}(v)$, respectively. We use $D-H$ to denote the subdigraph of D induced by the vertex set $V(D) \backslash V(H)$.

A digraph D on n vertices is called hamiltonian if there is a directed cycle of length n, and called pancyclic if there are directed cycles with lengths from 2 to n. Let C be a directed cycle in D with a given orientation. Let $u \in V(C)$. We use u^{-}and u^{+}to denote the predecessor and successor of u along the orientation of C, respectively. For two vertices $u, v \in V(C)$, we use $C[u, v]$ to denote the segment from u to v along the orientation of C, and let $C(u, v)=C\left[u^{+}, v^{-}\right]$.

We also use some terminology and notation from [2, 7. Let $P=v_{1} v_{2} \cdots v_{p}$ be a path and u be a vertex not on P. If there are two vertices v_{m} and v_{m+1} (where $m, m+1 \in$ $\{1,2, \ldots, p\}$) such that $v_{m} u \in A$ and $u v_{m+1} \in A$, then P can be extended to include u by replacing the arc $v_{m} v_{m+1}$ by the path $v_{m} u v_{m+1}$. In this case, following [2], we say that u can be inserted into P. Let D be a non-hamiltonian digraph on n vertices and $C=x_{1} x_{2} \ldots x_{k} x_{1}$ be a longest cycle in D. Following [7], we define a C-path of D (with respect to a component H of $D-C$) to be a path $P=x_{p} y_{1} y_{2} \ldots y_{t} x_{p+\lambda}$, where $t \geq 1, x_{p}, x_{p+\lambda}$ are two distinct vertices of $C,\left\{y_{1}, \ldots, y_{t}\right\} \subset V(H)$, and λ is chosen as the minimal one, that is, there is no path $P^{\prime}=x_{p^{\prime}} y_{1}^{\prime} y_{2}^{\prime} \ldots y_{t^{\prime}}^{\prime} x_{p^{\prime}+\lambda^{\prime}}$ such that $\lambda^{\prime} \geq 1$, $0<\lambda^{\prime}<\lambda,\left\{x_{p^{\prime}}, x_{p^{\prime}+\lambda^{\prime}}\right\} \subset\left\{x_{p}, x_{p+1}, \ldots, x_{p+\lambda}\right\}$ (the subscripts of all the x_{i} 's are taken modulo k), where $\left\{y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{t^{\prime}}^{\prime}\right\} \subset V(H)$.

3 Proof of Theorem 5

The following three lemmas are useful for our proof. The second lemma is a refinement of Lemma 2.3 in [7.

Lemma 1 (Bondy and Thomassen [3). Let D be a digraph, P be a directed path of D and $v \in V(D) \backslash V(P)$. If v can not be inserted into P, then $d_{P}(v) \leq|P|+1$.

Lemma 2. Let D be a non-hamiltonian digraph on n vertices, $C=x_{1} x_{2} \ldots x_{k}$ be a longest cycle of $D, P=x_{p} y_{1} y_{2} \ldots y_{t} x_{p+\lambda}$ be a C-path of D (with respect to a component H of $D-$ C), $R=\left\{x_{p+1}, x_{p+2}, \ldots, x_{p+\lambda-1}\right\}$, and $S=\left\{v: v \in R, v\right.$ can not be inserted into $\left.C\left[x_{p+\lambda}, x_{p}\right]\right\}$.

Then for any $y_{i}, i \in\{1,2, \ldots, t\}, s \in S, d\left(y_{i}\right)+d(s) \leq 2 n-2$.
Proof. Since C is longest in D, y_{i} can not be inserted into $C\left[x_{p+\lambda}, x_{p}\right]$. By Lemma 1,

$$
\begin{equation*}
d_{C\left[x_{p+\lambda}, x_{p}\right]}\left(y_{i}\right) \leq\left|C\left[x_{p+\lambda}, x_{p}\right]\right|+1 . \tag{1}
\end{equation*}
$$

Since s can not be inserted into $C\left[x_{p+\lambda}, x_{p}\right]$, by Lemma 1,

$$
\begin{equation*}
d_{C\left[x_{p+\lambda}, x_{p}\right]}(s) \leq\left|C\left[x_{p+\lambda}, x_{p}\right]\right|+1 . \tag{2}
\end{equation*}
$$

Since P is a C-path of D, y_{i} is nonadjacent to any vertex of $C\left[x_{p+1}, x_{p+\lambda-1}\right]$. It follows that

$$
\begin{equation*}
d_{C\left[x_{p+1}, x_{p+\lambda-1}\right]}\left(y_{i}\right)=0 . \tag{3}
\end{equation*}
$$

Furthermore, we have

$$
\begin{equation*}
d_{C\left[x_{p+1}, x_{p+\lambda-1}\right]}(s) \leq 2\left(\left|C\left[x_{p+1}, x_{p+\lambda-1}\right]\right|-1\right) . \tag{4}
\end{equation*}
$$

Let $H=D-C$. Moreover, D has neither a directed path $y_{i} w s$ nor a directed path $s w y_{i}$, where $w \in V(H) \backslash\left\{y_{i}\right\}$, since otherwise there is a C-path either from x_{p} to s or from s to $x_{p+\lambda}$, and it contradicts the minimality of λ. This implies that

$$
\begin{equation*}
d_{H}\left(y_{i}\right)+d_{H}(s) \leq 2(|H|-1) . \tag{5}
\end{equation*}
$$

By adding the inequalities (1)-(5), we have that $d\left(y_{i}\right)+d(s)=d_{C\left[x_{p+\lambda}, x_{p}\right]}\left(y_{i}\right)+d_{C\left[x_{p+\lambda}, x_{p}\right]}(s)+$ $d_{C\left[x_{p+1}, x_{p+\lambda-1}\right]}\left(y_{i}\right)+d_{C\left[x_{p+1}, x_{p+\lambda-1}\right]}(s)+d_{H}\left(y_{i}\right)+d_{H}(s) \leq\left|C\left[x_{p+\lambda}, x_{p}\right]\right|+1+\left|C\left[x_{p+\lambda}, x_{p}\right]\right|+$ $1+2\left(\left|C\left[x_{p+1}, x_{p+\lambda-1}\right]\right|-1\right)+2(|H|-1)=2 n-2$.

The proof is complete.
Lemma 3 (Berman and Liu [2]). Let P and Q be two (vertex) disjoint paths and K be a subset of $V(P)$. If every vertex z in K can be inserted into Q, then there exists a path Q^{\prime} with the same endpoints as Q such that $V(Q) \subset V\left(Q^{\prime}\right) \subset V(Q) \cup V(P)$ and Q^{\prime} contains all vertices of K.

Proof of Theorem 5. Suppose that D is not hamiltonian. Let $C=x_{1} x_{2} \ldots x_{k}$ be a longest cycle in D with a given orientation. Since D is not hamiltonian, $k \leq n-1$ and $V(D) \backslash V(C) \neq \emptyset$. Let H be a component of $D-C$ and $R=D-C-H$. Since D is strongly 2-connected, there are at least two in-neighbors and two out-neighbors of H in C. Thus there is a C-path (with respect to H), denote by $P=x_{p} y_{1} y_{2} \ldots y_{t} x_{p+\lambda}$, where $t \geq 1$ and $x_{p}, x_{p+\lambda} \in V(C)$. Let $S=\left\{v: v \in C\left[x_{p+1}, x_{p+\lambda-1}\right]\right.$, v can not be inserted into $\left.C\left[x_{p+\lambda}, x_{p}\right]\right\}$. Since C is longest, $S \neq \emptyset$. Let s be an arbitrary vertex of S. By Lemma 2, we have

Claim 1. $d\left(y_{i}\right)+d(s) \leq 2 n-2$ for $i \in\{1,2, \ldots, t\}$.

The next claim can be easily deduced from the assumption of Theorem 5 .

Claim 2. For any triple of distinct vertices x, y, z such that x, y and x, z are two pairs of nonadjacent vertices, $2 d(x)+d(y)+d(z) \geq 4 n-3$.

Claim 3. $S=\{s\}$ and $t=1$.

Proof. Assume that $|S| \geq 2$. Let $s, s^{\prime} \in S$. Then by Claim 1, $d\left(y_{1}\right)+d(s) \leq 2 n-2$ and $d\left(y_{1}\right)+d\left(s^{\prime}\right) \leq 2 n-2$. By the choice of P, y_{1}, s and y_{1}, s^{\prime} are two pairs of nonadjacent vertices, and we get $2 d\left(y_{1}\right)+d(s)+d\left(s^{\prime}\right) \leq 4 n-4$. By Claim 2, we get a contradiction. Hence $|S|=1$.

Assume that $t \geq 2$. By Claim 1, $d(s)+d\left(y_{1}\right) \leq 2 n-2$ and $d(s)+d\left(y_{2}\right) \leq 2 n-2$. By the choice of P, s, y_{1} and s, y_{2} are two pairs of nonadjacent vertices. Thus we obtain $2 d(s)+d\left(y_{1}\right)+d\left(y_{2}\right) \leq 4 n-4$, a contradiction by Claim 2 . Hence $t=1$.

Claim 4. $R=\emptyset$.

Proof. Assume that $R \neq \emptyset$. Let H^{\prime} be a component of R. Since D is strongly 2-connected, there is a C-path (with respect to H^{\prime}), denoted $P^{\prime}=x_{q} z_{1} \ldots z_{t^{\prime}} x_{q+r}$, where $x_{q}, x_{q+r} \in$ $V(C),\left\{z_{1}, z_{2}, \ldots, z_{t^{\prime}}\right\} \subseteq V\left(H^{\prime}\right)$ and the subscripts are taken modulo k. If every vertex of $C\left[x_{q+1}, x_{q+r-1}\right]$ can be inserted into $C\left[x_{q+r}, x_{q}\right]$, then by Lemma 3 , there is a cycle longer than C, a contradiction. Thus there exists at least one vertex in $C\left[x_{q+1}, x_{q+r-1}\right]$, say s^{\prime}, such that it can not be inserted into $C\left[x_{q+r}, x_{q}\right]$. By Lemma 2, we have $d\left(z_{1}\right)+d\left(s^{\prime}\right) \leq$ $2 n-2$. Note that $z_{1} \in V\left(H^{\prime}\right)$ is a vertex different from y_{1}, and s, y_{1} and s^{\prime}, z_{1} are two distinct pairs of nonadjacent vertices. Thus we obtain $d\left(y_{1}\right)+d(s)+d\left(z_{1}\right)+d\left(s^{\prime}\right) \leq 4 n-4$, a contradiction by the assumption of Theorem 5 .

Claim 5. $H=\left\{y_{1}\right\}$.

Proof. Assume not. Then $H \backslash\left\{y_{1}\right\} \neq \emptyset$. Consider the digraph $D^{\prime}=D-y_{1}$. Since D is strongly 2-connected, D^{\prime} is strongly connected, and thus there is a directed path P_{0} from
C to a component of $H-y_{1}$, say H^{\prime}. W.l.o.g., let $x_{i} \in V(C)$ and $y \in H^{\prime}$ be two vertices such that $x_{i} y \in A\left(D^{\prime}\right)$. Since D^{\prime} is strongly connected, there is also a directed path from y to x_{i}, say P^{\prime}.

Assume that there is no C-path in D^{\prime}. We will show that $d_{D^{\prime}}\left(x_{i}{ }^{-}\right)+d_{D^{\prime}}(y) \leq$ $2\left|V\left(D^{\prime}\right)\right|-2$. First, we have observations that $N_{H^{\prime}-P^{\prime}}^{+}\left(x_{i}^{-}\right) \cap N_{H^{\prime}-P^{\prime}}^{-}(y)=\emptyset$ (since otherwise there is a cycle longer than C in $\left.D^{\prime}\right), N_{H^{\prime}-P^{\prime}}^{-}\left(x_{i}^{-}\right) \cap N_{H^{\prime}-P^{\prime}}^{+}(y)=\emptyset$ (since otherwise there exists a C-path). It follows that

$$
\begin{aligned}
d_{H^{\prime}-P^{\prime}}\left(x_{i}^{-}\right)+d_{H^{\prime}-P^{\prime}}(y) & =d_{H^{\prime}-P^{\prime}}^{+}\left(x_{i}^{-}\right)+d_{H^{\prime}-P^{\prime}}^{-}(y)+d_{H^{\prime}-P^{\prime}}^{-}\left(x_{i}^{-}\right)+d_{H^{\prime}-P^{\prime}}^{+}(y) \\
& \leq 2\left|V\left(H^{\prime}\right) \backslash V\left(P^{\prime}\right)\right|
\end{aligned}
$$

It is obvious that no vertex in $P^{\prime} \backslash\left\{x_{i}\right\}$ is a neighbor of $x_{i}{ }^{-}$, that is, $d_{P^{\prime} \backslash\left\{x_{i}\right\}}\left(x_{i}{ }^{-}\right)=0$, and $d_{P^{\prime} \backslash\left\{x_{i}\right\}}(y) \leq 2\left|V\left(P^{\prime} \backslash\left\{x_{i}\right\}\right)\right|-2$. Furthermore, $d_{D^{\prime}-C-H^{\prime}}\left(x_{i}^{-}\right) \leq 2 \mid V\left(D^{\prime}\right) \backslash(V(C) \cup$ $\left.V\left(H^{\prime}\right)\right) \mid$ and $d_{D^{\prime}-C-H^{\prime}}(y)=0$. From the above facts, we obtain $d_{D^{\prime}-C}\left(x_{i}^{-}\right)+d_{D^{\prime}-C}(y) \leq$ $2\left|V\left(D^{\prime}\right) \backslash V(C)\right|-2$. Note that y is nonadjacent to any vertex of C except for x_{i}. It follows that $d_{C}(y) \leq 2$. On the other hand, $d_{C}\left(x_{i}^{-}\right) \leq 2(|C|-1)$. Together with these inequalities, we have $d_{D^{\prime}}\left(x_{i}{ }^{-}\right)+d_{D^{\prime}}(y) \leq 2\left|V\left(D^{\prime}\right)\right|-2$. Furthermore, we have $\left|\left\{x_{i}{ }^{-} y_{1}, y_{1} y\right\} \cap A(D)\right| \leq 1$ and $\left|\left\{y_{1} x_{i}{ }^{-}, y y_{1}\right\} \cap A(D)\right| \leq 1$, since otherwise there is a longer directed cycle in D or a C-path in D^{\prime} with respect to H^{\prime}, a contradiction. Hence we obtain $d_{D}(y)+d_{D}\left(x_{i}{ }^{-}\right) \leq$ $2|V(D)|-2=2 n-2$. Note that $d_{D}\left(y_{1}\right)+d_{D}(s) \leq 2 n-2$ by Claim 1 and y_{1}, y are two distinct vertices. Thus we have $d_{D}(y)+d_{D}\left(x_{i}{ }^{-}\right)+d_{D}\left(y_{1}\right)+d_{D}(s) \leq 4 n-4$, and it contradicts the assumption of Theorem 5.

Assume that there is a C-path in D^{\prime}, say $P^{\prime}=x_{q} z_{1} \ldots z_{r} x_{q+r}$, where $x_{q}, x_{q+r} \in$ $V(C)$. If every vertex in $C\left[x_{q+1}, x_{q+r-1}\right]$ can be inserted into $C\left[x_{q+r}, x_{q}\right]$, then by Lemma 3, there is a directed $\left(x_{q+r}, x_{q}\right)$-path, say P_{2}, such that $V\left(P_{2}\right)=V(C)$. Then $C^{\prime}=$ $P_{2}\left[x_{q+r}, x_{q}\right] P^{\prime}$ is a cycle longer than C, contradicting the choice of C. Hence there is (are) some vertex (vertices) in $C\left[x_{q+1}, x_{q+r-1}\right]$ which can not be inserted into $C\left[x_{q+r}, x_{q}\right]$. W.l.o.g., let $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{r^{\prime}}}$ be such vertex (vertices). By Lemma 1, $d_{D^{\prime}}\left(x_{i_{j}}\right)+d_{D^{\prime}}\left(z_{1}\right) \leq$ $2\left|V\left(D^{\prime}\right)\right|-2$ for any $j \in\left\{1,2, \ldots, r^{\prime}\right\}$. For the vertex $x_{i_{1}}$, if $\left|\left\{x_{i_{1}} y_{1}, y_{1} z_{1}\right\} \cap A(D)\right| \leq 1$ and $\left|\left\{z_{1} y_{1}, y_{1} x_{i_{1}}\right\} \cap A(D)\right| \leq 1$, then we obtain $d_{D}\left(x_{i_{1}}\right)+d_{D}\left(z_{1}\right) \leq 2|V(D)|-2$. Note that z_{1} is a vertex different from y_{1}. We have $d\left(x_{i_{1}}\right)+d\left(z_{1}\right)+d(s)+d\left(y_{1}\right) \leq 4 n-4$, a contradiction. If $z_{1} y_{1}, y_{1} x_{i_{1}} \in A(D)$, then note that every vertex of $C\left(x_{q}, x_{i_{1}}\right)$ can be inserted into $C\left[x_{q+r}, x_{q}\right]$. Let $C^{\prime}\left[x_{q+r}, x_{q}\right]$ be the resulting path by inserting all vertices of $C\left(x_{q}, x_{i_{1}}\right)$ into $C\left[x_{q+r}, x_{q}\right]$. Then $C^{\prime}=P^{\prime}\left[x_{q}, z_{1}\right] z_{1} y_{1} x_{i_{1}} C\left[x_{i_{l}}, x_{q+r}\right] C^{\prime}\left[x_{q+r}, x_{q}\right]$ is a longer cycle in D, a contradiction. Thus $x_{i_{1}} y_{1}, y_{1} z_{1} \in A(D)$. By a similar argument as above, we continue this procedure and deduce that $x_{i_{r}} y_{1}, y_{1} z_{1} \in A(D)$. Now consider the path $P^{\prime \prime}=x_{i_{r^{\prime}}} y_{1} z_{1} P^{\prime}\left[z_{1}, x_{q+r}\right]$. Since every vertex in $C\left(x_{i_{r^{\prime}}}, x_{q+r}\right)$ can be inserted into
$C\left[x_{q+r}, x_{q}\right]$, we can find a longer cycle in D by a similar argument as above, a contradiction. This proves this claim.

By Claim 5, the length of C is $n-1$. The proof is complete.

4 Concluding remarks

Manousskis [7] gave a new type of degree condition for a digraph to be hamiltonian, and it opened up a new area of Hamiltonicity of digraphs for further study. Up to now, there are some results concerning pancyclicity of digraphs with respect to the theorems of GhouilaHouri, Woodall and Meyniel, respectively. See [5, 10. It is natural to ask whether we can find a similar result for pancyclicity of digraphs under Manoussakis-type degree condition or not. In [7, Manoussakis proposed the following conjecture.

Conjecture 2 (Manoussakis [7). Any strongly connected digraph such that for any triple of vertices $x, y, z \in V$, where x is nonadjacent to y, there hold $d(x)+d(y)+d^{+}(x)+d^{-}(z) \geq$ $3 n+1$ (if $x z \notin A$) and $d(x)+d(y)+d^{+}(z)+d^{-}(x) \geq 3 n+1$ (if $z x \notin A$) is pancyclic.

Following [6], for a subset S of the vertex set of D, we say that S is cyclable if there is a directed cycle in D passing through all vertices of S. Berman \& Liu [2] and Li, Flandrin and Shu [6] gave a cyclable version of Meyniel's theorem, independently. Li, Flandrin and Shu [6] also proposed the following problem.

Problem 1 (Li, Flandrin and Shu [6]). Is there a cyclable version of Theorem 4?
All these problems may stimulate our further study for hamiltonian property of digraphs under Manoussakis-type degree condition.

Acknowledgements

The author is supported by NSFC (No. 11271300) and the Doctorate Foundation of Northwestern Polytechnical University (cx201326). He is indebted to Dr. Jun Ge and Dr. Binlong Li for helpful discussions.

References

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2000.
[2] K.A. Berman and X. Liu, Cycles through large degree vertices in digraphs: a generalization of Meyniel's theorem, J. Combin. Theory Ser. B 74 (1998), 20-27.
[3] J.A. Bondy and C. Thomassen, A short proof of Meyniel's theorem, Discrete Math. 19 (1977), 195-197.
[4] A. Ghouila-Houri, Une condition suffisante d'existence d'un circuit hamiltonien, $C R$ Acad. Sci. Paris 25 (1960), 495-497.
[5] R. Haggkvist and C. Thomassen, On pancyclic digraphs, J. Combin. Theory Ser. B 20 (1976), 20-40.
[6] H. Li, E. Flandrin and J. Shu, A sufficient condition for cyclability in directed graphs, Discrete Math. 307 (2007), 1291-1297.
[7] Y. Manoussakis, Directed hamiltonian graphs, J. Graph Theory 16 (1992), 51-59.
[8] H. Meyniel, Une condition suffisante d'existence d'un circuit hamiltonien dans un graphe oriente, J. Combin. Theory Ser. B 14 (1973), 137-147.
[9] M. Overbeck-La-isch, Hamiltonian paths in oriented graphs, J. Combin. Theory Ser. B 21 (1976), 76-80.
[10] C. Thomassen, An Ore-type condition implying a digraph to be pancyclic, Discrete Math. 19 (1977), 85-92.
[11] D.R.Woodall, Sufficient conditions for cycles in digraphs, Proc. London Math. Soc. 24 (1972), 739-755.

[^0]: *Corresponding author. Email address: ningbo_math84@mail.nwpu.edu.cn

