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Abstract

In 1992, Manoussakis conjectured that a strongly 2-connected digraph D on n

vertices is hamiltonian if for every two distinct pairs of independent vertices x, y and

w, z we have d(x) + d(y) + d(w) + d(z) ≥ 4n− 3. In this note we show that D has a

Hamilton path, which gives an affirmative evidence supporting this conjecture.
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1 Introduction

In this note, we consider simple digraphs only. For convenience of the reader, we provide

all necessary terminology and notation in one section, Section 2. For those not defined

here, we refer the reader to [1].

A basic topic in digraph theory is that of finding degree conditions for a digraph to be

hamiltonian. In particular, Ghouila-Houri [4] proved a fundamental theorem which states

that every strongly connected digraph on n vertices is hamiltonian if the degree of every

vertex is at least n.

Theorem 1 (Ghouila-Houri [4]). Let D be a strongly connected digraph on n vertices. If

d(x) ≥ n for any vertex x ∈ V , then D is hamiltonian.

Woodall [11] proved the following result, which improved Ghouila-Houri’s theorem.

Theorem 2 (Woodall [11]). Let D be a digraph on n vertices. If d+(x) + d−(y) ≥ n for

any pair of vertices x and y such that xy /∈ A(D), then D is hamiltonian.
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Meyniel [8] generalized both theorems of Ghoulia-Houri and Woodall. Bondy and

Thomassen [3] gave a new proof of Meyniel’s theorem by proving a slightly stronger result.

For another proof of Meyniel’s theorem, see [9].

Theorem 3 (Meyniel [8]). Let D be a strongly connected digraph on n vertices. If d(x)+

d(y) ≥ 2n − 1 for any pair of nonadjacent vertices in D, then D is hamiltonian.

Manoussakis [7] gave another generalization of Woodall’s theorem as follows.

Theorem 4 (Manoussakis [7]). Let D be a strongly connected digraph on n vertices. For

any triple of vertices x, y, z ∈ V , where x is nonadjacent to y, if there hold d(x) + d(y) +

d+(x)+ d−(z) ≥ 3n− 2 (if xz /∈ A) and d(x)+ d(y)+ d+(z)+ d−(x) ≥ 3n− 2 (if zx /∈ A),

then D is hamiltonian.

Manoussakis [7] proposed the following conjecture. If this conjecture is true, then it

can be seen as an extension of Theorem 4.

Conjecture 1 (Manoussakis [7]). LetD be a strongly 2-connected digraph such that for all

distinct pairs of nonadjacent vertices x, y and w, z we have d(x)+d(y)+d(w)+d(z) ≥ 4n−3.

Then D is hamiltonian.

Manoussakis [7] gave an example to show that Conjecture 1 is almost best. Here we

gave another example. Let D be an associated digraph of Kn−1

2
,n+1

2

, where n ≥ 9 is odd.

Let X,Y be two parts of D such that |X| = n−1
2 , |Y | = n+1

2 . Then the degree sum of any

four vertices in X is 4(n + 1) and the degree sum of any four vertices in Y is 4(n − 1).

Furthermore, we can see the degree sum of all distinct pairs of nonadjacent vertices in D

is at least 4n− 4 and D is not hamiltonian.

To our knowledge, there are no further references on this conjecture. In this note we

prove the following result, and it may be a first step towards confirming Conjecture 1.

Theorem 5. Let D be a strongly 2-connected digraph such that for all distinct pairs of

nonadjacent vertices x, y and w, z we have d(x) + d(y) + d(w) + d(z) ≥ 4n − 3. Then D

has a longest cycle of length at least n− 1.

The following result is a direct corollary.

Corollary 6. Let D be a strongly 2-connected digraph such that for all distinct pairs of

nonadjacent vertices x, y and w, z we have d(x) + d(y) + d(w) + d(z) ≥ 4n − 3. Then D

has a Hamilton path.
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2 Terminology and notation

In this section, we will give necessary notation and terminology. Throughout this note,

we use D to denote a digraph (directed graph), and V (D) and A(D) to denote the vertex

set and arc set of D, respectively. When there is no danger of ambiguity, we use V and A

instead of V (D) and A(D), respectively. For an arc xy ∈ A, x is always referred to as the

origin, and y, as the terminus. Throughout this note, simple digraphs are just considered,

that is, digraphs with no two arcs with the same origin and terminus, and no loops (an

arc with the same vertex as the origin and terminus meantime).

We say that D is strongly k-connected if for any ordered pair of vertices {u, v}, there

are k internally disjoint directed paths from u to v. For two vertices u, v ∈ V , we say that

u dominates (is dominated by) v if there is an arc uv ∈ A (vu ∈ A), and u, v are called a

pair of nonadjacent vertices if uv /∈ A and vu /∈ A. For a vertex v and a subdigraph H of

D, the out-neighbor set (in-neighbor set) of v in H, denoted by N+
H (v) (N−

H (v)), is the set

of those vertices in H dominated by (dominating) v. The out-degree (in-degree, degree)

of v in H, denoted by d+H(v) (d−H(v), dH(v)), equals |N+
H (v)|(|N−

H (v)|, |N+
H (v)|+ |N−

H (v)|).

If there is no danger of ambiguity, then we use d+(v), d−(v) and d(v) instead of d+D(v),

d−D(v) and dD(v), respectively. We use D −H to denote the subdigraph of D induced by

the vertex set V (D)\V (H).

A digraph D on n vertices is called hamiltonian if there is a directed cycle of length

n, and called pancyclic if there are directed cycles with lengths from 2 to n. Let C be

a directed cycle in D with a given orientation. Let u ∈ V (C). We use u− and u+ to

denote the predecessor and successor of u along the orientation of C, respectively. For

two vertices u, v ∈ V (C), we use C[u, v] to denote the segment from u to v along the

orientation of C, and let C(u, v) = C[u+, v−].

We also use some terminology and notation from [2, 7]. Let P = v1v2 · · · vp be a path

and u be a vertex not on P . If there are two vertices vm and vm+1 (where m,m + 1 ∈

{1, 2, . . . , p}) such that vmu ∈ A and uvm+1 ∈ A, then P can be extended to include

u by replacing the arc vmvm+1 by the path vmuvm+1. In this case, following [2], we

say that u can be inserted into P . Let D be a non-hamiltonian digraph on n vertices

and C = x1x2 . . . xkx1 be a longest cycle in D. Following [7], we define a C-path of D

(with respect to a component H of D − C) to be a path P = xpy1y2 . . . ytxp+λ, where

t ≥ 1, xp, xp+λ are two distinct vertices of C, {y1, . . . , yt} ⊂ V (H), and λ is chosen as

the minimal one, that is, there is no path P ′ = xp′y
′
1y

′
2 . . . y

′
t′xp′+λ′ such that λ′ ≥ 1,

0 < λ′ < λ, {xp′ , xp′+λ′} ⊂ {xp, xp+1, . . . , xp+λ} (the subscripts of all the xi’s are taken

modulo k), where {y′1, y
′
2, . . . , y

′
t′} ⊂ V (H).
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3 Proof of Theorem 5

The following three lemmas are useful for our proof. The second lemma is a refinement of

Lemma 2.3 in [7].

Lemma 1 (Bondy and Thomassen [3]). Let D be a digraph, P be a directed path of D

and v ∈ V (D)\V (P ). If v can not be inserted into P , then dP (v) ≤ |P |+ 1.

Lemma 2. Let D be a non-hamiltonian digraph on n vertices, C = x1x2 . . . xk be a longest

cycle of D, P = xpy1y2 . . . ytxp+λ be a C-path of D (with respect to a component H of D−

C), R = {xp+1, xp+2, . . . , xp+λ−1}, and S = {v : v ∈ R, v can not be inserted into C[xp+λ, xp]}.

Then for any yi, i ∈ {1, 2, . . . , t}, s ∈ S, d(yi) + d(s) ≤ 2n− 2.

Proof. Since C is longest in D, yi can not be inserted into C[xp+λ, xp]. By Lemma 1,

dC[xp+λ,xp](yi) ≤ |C[xp+λ, xp]|+ 1. (1)

Since s can not be inserted into C[xp+λ, xp], by Lemma 1,

dC[xp+λ,xp](s) ≤ |C[xp+λ, xp]|+ 1. (2)

Since P is a C-path of D, yi is nonadjacent to any vertex of C[xp+1, xp+λ−1]. It follows

that

dC[xp+1,xp+λ−1](yi) = 0. (3)

Furthermore, we have

dC[xp+1,xp+λ−1](s) ≤ 2(|C[xp+1, xp+λ−1]| − 1). (4)

Let H = D −C. Moreover, D has neither a directed path yiws nor a directed path swyi,

where w ∈ V (H)\{yi}, since otherwise there is a C-path either from xp to s or from s to

xp+λ, and it contradicts the minimality of λ. This implies that

dH(yi) + dH(s) ≤ 2(|H| − 1). (5)

By adding the inequalities (1)-(5), we have that d(yi)+d(s) = dC[xp+λ,xp](yi)+dC[xp+λ,xp](s)+

dC[xp+1,xp+λ−1](yi)+dC[xp+1,xp+λ−1](s)+dH(yi)+dH(s) ≤ |C[xp+λ, xp]|+1+ |C[xp+λ, xp]|+

1 + 2(|C[xp+1, xp+λ−1]| − 1) + 2(|H| − 1) = 2n− 2.

The proof is complete.

Lemma 3 (Berman and Liu [2]). Let P and Q be two (vertex) disjoint paths and K be a

subset of V (P ). If every vertex z in K can be inserted into Q, then there exists a path Q′

with the same endpoints as Q such that V (Q) ⊂ V (Q′) ⊂ V (Q) ∪ V (P ) and Q′ contains

all vertices of K.
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Proof of Theorem 5. Suppose that D is not hamiltonian. Let C = x1x2 . . . xk be a

longest cycle in D with a given orientation. Since D is not hamiltonian, k ≤ n − 1 and

V (D)\V (C) 6= ∅. Let H be a component of D−C and R = D−C−H. Since D is strongly

2-connected, there are at least two in-neighbors and two out-neighbors of H in C. Thus

there is a C-path (with respect to H), denote by P = xpy1y2 . . . ytxp+λ, where t ≥ 1 and

xp, xp+λ ∈ V (C). Let S = {v : v ∈ C[xp+1, xp+λ−1], v can not be inserted into C[xp+λ, xp]}.

Since C is longest, S 6= ∅. Let s be an arbitrary vertex of S. By Lemma 2, we have

Claim 1. d(yi) + d(s) ≤ 2n − 2 for i ∈ {1, 2, . . . , t}.

The next claim can be easily deduced from the assumption of Theorem 5.

Claim 2. For any triple of distinct vertices x, y, z such that x, y and x, z are two pairs of

nonadjacent vertices, 2d(x) + d(y) + d(z) ≥ 4n− 3.

Claim 3. S = {s} and t = 1.

Proof. Assume that |S| ≥ 2. Let s, s′ ∈ S. Then by Claim 1, d(y1) + d(s) ≤ 2n − 2 and

d(y1) + d(s′) ≤ 2n − 2. By the choice of P , y1, s and y1, s
′ are two pairs of nonadjacent

vertices, and we get 2d(y1) + d(s) + d(s′) ≤ 4n − 4. By Claim 2, we get a contradiction.

Hence |S| = 1.

Assume that t ≥ 2. By Claim 1, d(s) + d(y1) ≤ 2n − 2 and d(s) + d(y2) ≤ 2n − 2.

By the choice of P , s, y1 and s, y2 are two pairs of nonadjacent vertices. Thus we obtain

2d(s) + d(y1) + d(y2) ≤ 4n− 4, a contradiction by Claim 2. Hence t = 1.

Claim 4. R = ∅.

Proof. Assume that R 6= ∅. Let H ′ be a component of R. Since D is strongly 2-connected,

there is a C-path (with respect to H ′), denoted P ′ = xqz1 . . . zt′xq+r, where xq, xq+r ∈

V (C), {z1, z2, . . . , zt′} ⊆ V (H ′) and the subscripts are taken modulo k. If every vertex of

C[xq+1, xq+r−1] can be inserted into C[xq+r, xq], then by Lemma 3, there is a cycle longer

than C, a contradiction. Thus there exists at least one vertex in C[xq+1, xq+r−1], say s′,

such that it can not be inserted into C[xq+r, xq]. By Lemma 2, we have d(z1) + d(s′) ≤

2n − 2. Note that z1 ∈ V (H ′) is a vertex different from y1, and s, y1 and s′, z1 are two

distinct pairs of nonadjacent vertices. Thus we obtain d(y1)+d(s)+d(z1)+d(s′) ≤ 4n−4,

a contradiction by the assumption of Theorem 5.

Claim 5. H = {y1}.

Proof. Assume not. Then H\{y1} 6= ∅. Consider the digraph D′ = D − y1. Since D is

strongly 2-connected, D′ is strongly connected, and thus there is a directed path P0 from
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C to a component of H − y1, say H ′. W.l.o.g., let xi ∈ V (C) and y ∈ H ′ be two vertices

such that xiy ∈ A(D′). Since D′ is strongly connected, there is also a directed path from

y to xi, say P ′.

Assume that there is no C-path in D′. We will show that dD′(xi
−) + dD′(y) ≤

2|V (D′)| − 2. First, we have observations that N+
H′−P ′(xi

−)∩N−
H′−P ′(y) = ∅ (since other-

wise there is a cycle longer than C in D′), N−
H′−P ′(xi

−) ∩N+
H′−P ′(y) = ∅ (since otherwise

there exists a C-path). It follows that

dH′−P ′(xi
−) + dH′−P ′(y) = d+

H′−P ′(xi
−) + d−

H′−P ′(y) + d−
H′−P ′(xi

−) + d+
H′−P ′(y)

≤ 2|V (H ′)\V (P ′)|

It is obvious that no vertex in P ′\{xi} is a neighbor of xi
−, that is, dP ′\{xi}(xi

−) = 0,

and dP ′\{xi}(y) ≤ 2|V (P ′\{xi})| − 2. Furthermore, dD′−C−H′(xi
−) ≤ 2|V (D′)\(V (C) ∪

V (H ′))| and dD′−C−H′(y) = 0. From the above facts, we obtain dD′−C(xi
−)+dD′−C(y) ≤

2|V (D′)\V (C)|−2. Note that y is nonadjacent to any vertex of C except for xi. It follows

that dC(y) ≤ 2. On the other hand, dC(xi
−) ≤ 2(|C|−1). Together with these inequalities,

we have dD′(xi
−)+dD′(y) ≤ 2|V (D′)|−2. Furthermore, we have |{xi

−y1, y1y}∩A(D)| ≤ 1

and |{y1xi
−, yy1} ∩ A(D)| ≤ 1, since otherwise there is a longer directed cycle in D or a

C-path in D′ with respect to H ′, a contradiction. Hence we obtain dD(y) + dD(xi
−) ≤

2|V (D)| − 2 = 2n − 2. Note that dD(y1) + dD(s) ≤ 2n − 2 by Claim 1 and y1, y are

two distinct vertices. Thus we have dD(y) + dD(xi
−) + dD(y1) + dD(s) ≤ 4n − 4, and it

contradicts the assumption of Theorem 5.

Assume that there is a C-path in D′, say P ′ = xqz1 . . . zrxq+r, where xq, xq+r ∈

V (C). If every vertex in C[xq+1, xq+r−1] can be inserted into C[xq+r, xq], then by Lemma

3, there is a directed (xq+r, xq)-path, say P2, such that V (P2) = V (C). Then C ′ =

P2[xq+r, xq]P
′ is a cycle longer than C, contradicting the choice of C. Hence there is

(are) some vertex (vertices) in C[xq+1, xq+r−1] which can not be inserted into C[xq+r, xq].

W.l.o.g., let xi1 , xi2 , . . . , xir′ be such vertex (vertices). By Lemma 1, dD′(xij ) + dD′(z1) ≤

2|V (D′)| − 2 for any j ∈ {1, 2, . . . , r′}. For the vertex xi1 , if |{xi1y1, y1z1} ∩ A(D)| ≤ 1

and |{z1y1, y1xi1} ∩ A(D)| ≤ 1, then we obtain dD(xi1) + dD(z1) ≤ 2|V (D)| − 2. Note

that z1 is a vertex different from y1. We have d(xi1) + d(z1) + d(s) + d(y1) ≤ 4n − 4,

a contradiction. If z1y1, y1xi1 ∈ A(D), then note that every vertex of C(xq, xi1) can be

inserted into C[xq+r, xq]. Let C ′[xq+r, xq] be the resulting path by inserting all vertices

of C(xq, xi1) into C[xq+r, xq]. Then C ′ = P ′[xq, z1]z1y1xi1C[xil , xq+r]C
′[xq+r, xq] is a

longer cycle in D, a contradiction. Thus xi1y1, y1z1 ∈ A(D). By a similar argument as

above, we continue this procedure and deduce that xir′y1, y1z1 ∈ A(D). Now consider the

path P ′′ = xir′y1z1P
′[z1, xq+r]. Since every vertex in C(xir′ , xq+r) can be inserted into
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C[xq+r, xq], we can find a longer cycle inD by a similar argument as above, a contradiction.

This proves this claim.

By Claim 5, the length of C is n− 1. The proof is complete. �

4 Concluding remarks

Manousskis [7] gave a new type of degree condition for a digraph to be hamiltonian, and it

opened up a new area of Hamiltonicity of digraphs for further study. Up to now, there are

some results concerning pancyclicity of digraphs with respect to the theorems of Ghouila-

Houri, Woodall and Meyniel, respectively. See [5, 10]. It is natural to ask whether we can

find a similar result for pancyclicity of digraphs under Manoussakis-type degree condition

or not. In [7], Manoussakis proposed the following conjecture.

Conjecture 2 (Manoussakis [7]). Any strongly connected digraph such that for any triple

of vertices x, y, z ∈ V , where x is nonadjacent to y, there hold d(x)+d(y)+d+(x)+d−(z) ≥

3n + 1 (if xz /∈ A) and d(x) + d(y) + d+(z) + d−(x) ≥ 3n+ 1 (if zx /∈ A) is pancyclic.

Following [6], for a subset S of the vertex set of D, we say that S is cyclable if there is

a directed cycle in D passing through all vertices of S. Berman & Liu [2] and Li, Flandrin

and Shu [6] gave a cyclable version of Meyniel’s theorem, independently. Li, Flandrin and

Shu [6] also proposed the following problem.

Problem 1 (Li, Flandrin and Shu [6]). Is there a cyclable version of Theorem 4?

All these problems may stimulate our further study for hamiltonian property of di-

graphs under Manoussakis-type degree condition.
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