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Abstract. A temporal network is a finite directed graph in which each
arc has a time label specifying the time at which its end-vertices com-
municate. An arborescence in a temporal network is said to be time-
respecting, if the time labels on every directed path from the root in
this arborescence are monotonically non-decreasing. In this paper, we
consider the problem of packing time-respecting arborescences in a tem-
poral network. Precisely speaking, we study an extension of Edmonds’
arc-disjoint arborescences theorem in a temporal network. Unfortunately,
it is known that a natural extension of Edmonds’ arc-disjoint arbores-
cences theorem in a temporal network does not hold. In this paper, we
first show that this extension does not hold, even if an input temporal
network is acyclic. Next, we prove that if an input temporal network is
acyclic and pre-flow, this extension holds and we can find arc-disjoint
time-respecting arborescences in polynomial time. Furthermore, we ex-
tend our main result to the problem of packing time-respecting partial
arborescences.

1 Introduction

Throughout this paper, we denote by N the set of positive integers. For each
directed graph D, we denote by V (D) and A(D) the sets of vertices and arcs
of D, respectively. Furthermore, for each directed graph D and each vertex v of
V (D), let δD(v) and ϱD(v) be the sets of arcs of A(D) leaving and entering v,
respectively. We denote by a = (u, v) an arc a from u to v.

A temporal network N is a pair (D, τ) of a finite directed graph D and a time
label function τ : A(D) → N. For each arc a of A(D), the time label τ(a) specifies
the time at which its end-vertices communicate. This model is used for modeling
communication in distributed networks and scheduled transportation networks
(for applications of temporal networks, see [1]). If we want to communicate along
a directed path P in a temporal network, then the time labels of the arcs on P
must be monotonically non-decreasing. Formally speaking, a directed path P in
a temporal network N = (D, τ) is said to be time-respecting, if

τ(a1) ≤ τ(a2) ≤ · · · ≤ τ(ak),

⋆ This work is partly supported by KAKENHI(25240004).

1



where we assume that P passes through arcs a1, a2, . . . , ak of A(D) in this order.
Time-respecting directed paths are natural and crucial structures in understand-
ing the way in which information has disseminated through the network.

Besides directed paths, arborescences are another important structures in
a directed graph from not only a theoretical point of view but also a practical
point of view. Formally speaking, a subgraph T of a finite directed graph D with
a specified vertex r is called an r-arborescence or an arborescence rooted at r, if

1. V (T ) = V (D),

2. there exists a directed path from r to every vertex v of V (D) in T , and

3. ϱT (r) = ∅ and

∀v ∈ V (D) \ {r} : |ϱT (v)| = 1.

It is not difficult to see that an r-arborescence is a spanning tree in D (when
viewed as an undirected graph) whose arcs are directed away from r. For exam-
ple, in [2], arborescences are used in the context of broadcasting.

Assume that we are given a temporal network N = (D, τ) with a specified
vertex r. For each vertex v of V (D) \ {r}, an r-arborescence T in N is said to
be time-respecting on v, if

∀a ∈ δT (v) : τ(in(v)) ≤ τ(a), (1)

where in(v) is the unique arc of ϱT (v). Furthermore, an r-arborescence T in N is
said to be time-respecting, if T is time-respecting on every vertex of V (D) \ {r}.
It is not difficult to see that an r-arborescence T in N is time-respecting if and
only if for every vertex v of V (T ), the unique directed path from r to v in T is
time-respecting.

In this paper, we consider the problem of packing time-respecting arbores-
cences rooted at a specified vertex in a temporal network (see Figure 1). Packing
problems are one of central topics in Graph Theory and Combinatorial Optimiza-
tion. Furthermore, from a practical point of view, it is natural to think that a
network in which we can pack many arborescences has high robustness against
troubles.

2 Problem Formulation

For defining our problem, we first consider the case where the time label of every
arc is the same, i.e., we consider the problem of packing arborescences rooted at
a specified vertex in a finite directed graph. In this case, the following important
theorem was proved by Edmonds [3].

Theorem 1 (Edmonds [3]). For each finite directed graph D with a specified
vertex r and each positive integer k, there exist k arc-disjoint r-arborescences if
and only if for every vertex v of V (D), there exist k arc-disjoint directed paths
from r to v.
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Fig. 1. (a) An example of a temporal network. A time label of each arc illustrated by
a real line is equal to 1. A time label of each arc illustrated by a broken line is equal
to 2. (b, c) Two arc-disjoint time-respecting r-arborescences in the temporal network
illustrated in (a).

Theorem 1 is one of the most important min-max theorems in Graph Theory and
Combinatorial Optimization. Furthermore, it gives us the following algorithmic
implication. For checking the existence of k arc-disjoint r-arborescences, it is
suffice to check whether there exist k arc-disjoint directed paths from r to every
vertex. Since we can check in polynomial time whether there exist k arc-disjoint
directed paths from r to every vertex (see, e.g., [4]), Theorem 1 implies that we
can check in polynomial time whether there exist k arc-disjoint r-arborescences.
It should be noted that Theorem 1 was extended to various settings (see, e.g.,
[5–7]).

In this paper, we consider the following extension of Theorem 1.

Statement A. For each temporal network N = (D, τ) with a specified
vertex r and each positive integer k, there exist k arc-disjoint time-
respecting r-arborescences if and only if for every vertex v of V (D),
there exist k arc-disjoint time-respecting directed paths from r to v.

Unfortunately, it is known [1] that Statement A does not hold. Although the
counterexample proposed in [1] has a directed cycle, we can construct an acyclic
temporal network in which Statement A does not hold by slightly modifying
their counterexample (see Figure 2). Precisely speaking, a temporal network
N = (D, τ) is said to be acyclic, if D is acyclic.

In the temporal network illustrated in Figure 2, there exist two arc-disjoint
time-respecting directed paths from r to every vertex. Thus, from Theorem 1,
we can see that there exist two arc-disjoint r-arborescences T1 and T2. However,
at least one of these two r-arborescences contains at most one arc leaving r that
has a time label 1. Assume that T1 contains the arc from r to u with time label
1, and the arcs from r to v and w with time label 1 are not contained in T1. In
T1, the unique directed path from r to z must use an arc with time label 2, i.e.,
this directed path is not time-respecting. This implies that there can not be two
arc-disjoint time-respecting r-arborescences in this temporal network.
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Fig. 2. A counterexample for Statement A. A time label of each arc illustrated by a
real line is equal to 1. A time label of each arc illustrated by a broken line is equal to
2.

In this paper, we consider Statement A in some special case. Precisely speak-
ing, we prove that if an input temporal network is acyclic and “pre-flow”, then
Statement A holds. As shown later, a temporal network illustrated in Figure 2
is not pre-flow. Thus, our result is in a sense tight for acyclic temporal networks.

Remark. Here we give a remark about the counterexample proposed in [1]. In
their example, instead of arcs with time label 2 between r and u, v, w, there exist
arcs

(u, v), (v, w), (w, u), (v, u), (w, v), (u,w),

and the time labels of these arcs are 2. Our proof for the non-existence of two
arc-disjoint time-respecting r-arborescences in a temporal network illustrated in
Figure 2 is the same as the proof in [1] for their counterexample.

3 Main Result

For each temporal network N = (D, τ), each vertex v of V (D) and each positive
integer i, define σN (v, i) and γN (v, i) by

σN (v, i) := |{a ∈ ϱD(v) | τ(a) ≤ i}|,
γN (v, i) := |{a ∈ δD(v) | τ(a) ≤ i}|,

respectively. A temporal network N = (D, τ) with a specified vertex r is said to
be pre-flow, if

∀v ∈ V (D) \ {r}, ∀i ∈ N : σN (v, i) ≥ γN (v, i). (2)

It should be noted that the temporal network N = (D, τ) illustrated in Figure 2
is not pre-flow since

σN (v, 1) = 1 < 2 = γN (v, 1).

In this paper, we will prove that Statement A holds if an input temporal network
is acyclic and pre-flow. Our main result can be described as follow.
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Theorem 2. For each acyclic and pre-flow temporal network N = (D, τ) with
a specified vertex r and each positive integer k, there exist k arc-disjoint time-
respecting r-arborescences if and only if for each vertex v of V (D), there exist k
arc-disjoint time-respecting directed paths from r to v.

We will give the proof of Theorem 2 in the next section. Our proof of Theorem 2
is constructive. Thus, this proof gives a polynomial-time algorithm for finding
arc-disjoint time-respecting arborescences.

Remark. Here we give a remark about the concept of “pre-flow”. The concept
of pre-flow directed graphs was introduced in [8]. A finite directed graph D is
said to be pre-flow, if

∀v ∈ V (D) \ {r} : |ϱD(v)| ≥ |δD(v)|. (3)

If the time label of every arc is the same, the definition in this paper is equivalent
to (3). In [8], the authors studied the problem of packing “partial” arborescences
rooted at a specified vertex in a pre-flow directed graph (see Section 6).

4 Proof

In this section, we prove Theorem 2. Since the if-part is trivial, we prove the other
direction. Throughout this section, we assume that we are given an acyclic and
pre-flow temporal network N = (D, τ) with a specified vertex r and a positive
integer k. Let n be the number of vertices of D. Furthermore, we assume that for
each vertex v of V (D), there exist k arc-disjoint time-respecting directed paths
from r to v.

It is well-known (see, e.g., [4]) that since D is acyclic, there exists a function
π : V (D) → {1, 2, . . . , n} such that π(u) > π(v) if there exists an arc of A(D)
from u to v. Since there exists a time-respecting directed path from r to every
vertex of V (D), if ϱD(r) ̸= ∅, then there exists a directed cycle in D. So, no arc
of A(D) enters r, and thus we have π(r) = n.

Before proving Theorem 2, we explain about the difficulty of proving Theo-
rem 2. Roughly speaking, we show that Theorem 2 does not seem to be able to
be “straightforwardly” proved by induction on the number of vertices. Assume
that we are given a temporal network N = (D, τ) with a specified vertex r il-
lustrated in Figure 1(a). For every vertex v of V (D), there exist two arc-disjoint
time-respecting directed paths from r to v. It is not difficult to see that there
exist two arc-disjoint time-respecting directed paths from r to every vertex, even
if we remove x and arcs of ϱD(x). Let N ′ be the temporal network obtained from
N by removing x and arcs of ϱD(x). By induction hypothesis, there exist two
arc-disjoint time-respecting r-arborescences in N ′. Assume that we have two r-
arborescences in N ′ illustrated in Figure 3. However, we can not construct two
arc-disjoint time-respecting r-arborescences in N from arborescences illustrated
in Figure 3 for the following reason. For constructing an r-arborescence in N
from an r-arborescence in N ′ illustrated in Figure 3(b), we have to add one
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arc of ϱD(x). However, we can not construct a time-respecting r-arborescence
in N by adding either (u, x) or (w, x) to an r-arborescence in N ′ illustrated
in Figure 3(b). This implies that Theorem 2 does not seem to be able to be
straightforwardly proved by induction on the number of vertices.

r
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Fig. 3. Two partial time-respecting r-arborescences that can not be extended to two
arc-disjoint time-respecting r-arborescences.

In the rest of this section, for proving Theorem 1, we first propose an algo-
rithm for finding k arc-disjoint time-respecting r-arborescences. After that, we
prove its correctness.

4.1 Algorithm

For proposing our algorithm, we first introduce an auxiliary bipartite graph. For
each vertex v of V (D) \ {r}, we construct a bipartite graph Gv = (Pv, Qv;Ev)
as follows. The vertex set Pv (resp., Qv) contains a vertex p(a) (resp., q(a)) for
each arc a of ϱD(v) (resp., δD(v)). Furthermore, the edge set Ev contains an
edge between a vertex p(a) of Pv and a vertex q(b) of Qv, if τ(a) ≤ τ(b). These
are all the arcs of Ev.

The following lemma plays an important role in our algorithm.

Lemma 1. For each vertex v of V (D), there exists a matching Mv in Gv such
that it covers all the vertices of Qv, i.e., for every vertex q of Qv, there exists
an edge of Mv that is incident to q.

Proof. It is known [9] that there exists a matching Mv in Gv covering all the
vertices of Qv if and only if

∀X ⊆ Qv : |Γ (X)| ≥ |X|, (4)

where Γ (X) is the set of vertices of Pv that is adjacent to a vertex of X. Let us
fix a subset X of Qv. Define

t := max{τ(a) | q(a) ∈ X}.

Furthermore, let a∗ be an arc of δD(v) such that τ(a∗) = t. Since τ(a) ≤ t for
every vertex q(a) of X, we have

γN (v, t) ≥ |X|. (5)
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From the definition of the edge set Ev, we can see that there exists an edge
between p(a) and q(a∗) for every arc a of ϱD(a) such that τ(a) ≤ t. So, we have

|Γ (X)| ≥ σN (v, t). (6)

From (2), (5) and (6), we can see that (4) holds. ⊓⊔

For each vertex v of V (D) \ {r}, we fix a matching Mv in Gv covering all the
vertices of Qv. For each arc a = (v, w) of A(D) \ δD(r), we denote by µ(a) the
arc b of ϱD(v) such that there exists an edge between p(b) and q(a) in Mv.

We are now ready to propose our algorithm.

Algorithm 1

Step 1: For each i = 1, 2, . . . , k, set A0
i := ∅. Furthermore, set t := 1.

Step 2: If t = n, then halt and output An−1
1 , An−1

2 , . . . , An−1
k .

Step 3: Set v be the vertex of V (D) such that π(v) = t, and do the following.
(3-a) Partition {1, 2, . . . , k} into I+ and I− so that

I+ := {i = 1, 2, . . . , k | δD(v) ∩At−1
i ̸= ∅},

I− := {i = 1, 2, . . . , k | δD(v) ∩At−1
i = ∅}.

(3-b) For each positive integer i of I+, find an arc a∗ of δD(v) ∩ At−1
i such

that
τ(a∗) = min{τ(a) | a ∈ δD(v) ∩At−1

i }, (7)

and then set ati := µ(a∗).
(3-c) For each positive integer i of I−, choose an arbitrary arc ati of ϱD(v)

so that

∀i, j ∈ I− s.t. i ̸= j : ati ̸= atj , ∀i ∈ I−, ∀j ∈ I+ : ati ̸= atj . (8)

(3-d) For each i = 1, 2, . . . , k, set At
i := At−1

i ∪ {ati}.
(3-e) Update t := t+ 1, and then go to Step 2.

End of Algorithm 1

4.2 Correctness

Here we prove the correctness of Algorithm 1. We first prove that Algorithm 1 is
well-defined. For this, it suffices to prove that in Step (3-c), we can find an arc
ati satisfying (8) for each positive integer i of I−. This can be proved as follows.
Since for each vertex v of V (D), there exist k arc-disjoint time-respecting directed
paths from r to v, we have

∀v ∈ V (D) \ {r} : |ϱD(v)| ≥ k. (9)

This implies that we can find an arc ati satisfying (8) for each positive integer i
of I−.
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Assume that Algorithm 1 outputs subsets An−1
1 , An−1

2 , . . . , An−1
k of A. For

each i = 1, 2, . . . , k, let Ti be a subgraph of D such that V (Ti) = V (D) and
A(Ti) = An−1

i . Since µ(a) ̸= µ(b) for every distinct arcs a, b of A(D) \ δD(r),
subgraphs T1, T2, . . . , Tk are clearly arc-disjoint. Thus, Theorem 2 immediately
follows from the following lemma.

Lemma 2. For i = 1, 2, . . . , k, Ti is a time-respecting r-arborescence.

Proof. Let us fix a positive integer i such that i ≤ k. It is not difficult to see
that

∀v ∈ V (D) \ {r} : |ϱTi(v)| = 1. (10)

Although it is well-known that (10) and the fact that D is acyclic imply that Ti

is r-arborescence, we give its proof for completeness. It sufficient to prove that
there exists a directed path from r to every vertex of V (D) in Ti. Let us fix a
vertex v of V (D) \ {r}. Let u be the tail of the unique arc of ϱTi(v). From the
definition of the function π, we can see that π(u) > π(v). Furthermore, for the
tail of the unique arc of ϱTi(u), we have π(w) > π(u). So, by repeating this, we
can find a directed path from r to v in Ti.

Now we prove that Ti is time-respecting. Let us fix a vertex v of V (D) \ {r}.
Assume that π(v) = t. Let in(v) be the unique arc of ϱTi(v). Moreover, let a∗ be
the unique arc of δTi(v) such that in(v) = µ(a∗). Since D is acyclic,

∀j = t, t+ 1, . . . , n− 1: δD(v) ∩Aj
i = δD(v) ∩At−1

i .

From this and (7), we can see that

τ(a∗) = min{τ(a) | a ∈ δD(v) ∩At−1
i }

= min{τ(a) | a ∈ δD(v) ∩An−1
i (= δTi(v))}.

This and the definition of µ(·) imply

τ(in(v)) = τ(µ(a∗)) ≤ τ(a∗) = min{τ(a) | a ∈ δTi
(v)} ≤ τ(b)

for every arc b of δTi(v). This completes the proof. ⊓⊔

5 Time complexity

In this section, we analyze the time required to check whether there exist k
arc-disjoint time-respecting r-arborescences in an acyclic and pre-flow temporal
network N = (D, τ) with a specified vertex r and a positive integer k, and find
them if they exist. Define m := |A(D)|. We assume that D is weakly connected,
which implies |V (D)| = O(m). By Theorem 2, for checking whether there exist
k arc-disjoint time-respecting r-arborescences in N , it suffice to check where
there exist k arc-disjoint time-respecting directed paths from r to every vertex
of V (D). From the proof of Theorem 2, we can see that there exist k arc-disjoint
time-respecting directed paths from r to every vertex of V (D) if and only if (9)
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holds. Thus, we can check this in O(m) time. Next, we analyze the time required
to find k arc-disjoint time-respecting r-arborescences, i.e., the time complexity
of Algorithm 1. It is not difficult to see that if we know µ(a) for every arc a of
A(D)\δD(r), the rest of Algorithm 1 can be done in O(m) time. What remains is
to analyze the time required to computeMv for all the vertices v ofMv. Although
we can compute Mv for each vertex v of V (D)\{r} in polynomial time by using
any polynomial-time algorithm for the maximum matching problem (see, e.g.,
[10]), we can compute it faster as follows. Let us fix a vertex v of V (D) \ {r}.
Assume that ϱD(v) = {a1, a2, . . . , al} and

τ(a1) ≤ τ(a2) ≤ · · · ≤ τ(al).

Moreover, assume that δD(v) = {b1, b2, . . . , bh} and

τ(b1) ≤ τ(b2) ≤ · · · ≤ τ(bh).

It follows from (2) that l ≥ h and τ(ai) ≤ τ(bi) for every i = 1, 2, . . . , h. So, we
can set ai = µ(bi) for every i = 1, 2, . . . , h, and thus we can compute Mv for all
the vertices of v of V (D) \ {r} in O(m logm) time. This implies that the time
complexity of Algorithm 1 is O(m logm).

6 Generalization

In this section, we consider an extension of Theorem 2. Let D be a finite directed
graph with a specified vertex r. For each vertex v of V (D), we denote by λD(v)
the maximum number of arc-disjoint directed paths from r to v inD. A subgraph
T of D is called a partial r-arborescence, if r ∈ V (T ) and T is an r-arborescence
in the subgraph of D induced by V (T ). Notice that V (T ) is not necessarily equal
to V (D).

The following extension of Theorem 1 in a pre-flow directed graph is known.
It should be noted that if we set

k := min{λD(v) | v ∈ V (D)},

then Theorem 3 corresponds to Theorem 1 in a pre-flow directed graph.

Theorem 3 (Bang-Jensen, Frank and Jackson [8]). For each pre-flow fi-
nite directed graph D with a specified vertex r and each positive integer k such
that

k ≤ max{λD(v) | v ∈ V (D) \ {r}},

there exist k arc-disjoint partial r-arborescences such that each vertex v of V (D)
is contained in exactly min{k, λD(v)} arborescences.

In the rest of this paper, we prove that Theorem 3 can be extended in a
pre-flow and acyclic temporal network. Let N = (D, τ) be a temporal network
with a specified vertex r. For each vertex v of V (D), we denote by λN (v) the
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maximum number of arc-disjoint time-respecting directed paths from r to v in
N . We call a partial r-arborescence in N time-respecting, if (1) holds for every
vertex v of V (D) \ {r} such that ϱT (v) ̸= ∅.

An extension of Theorem 3 in an acyclic and pre-flow network can be de-
scribed as follows.

Theorem 4. For each acyclic and pre-flow temporal network N = (D, τ) with
a specified vertex r and each positive integer k such that

k ≤ max{λN (v) | v ∈ V (D) \ {r}},

there exist k arc-disjoint time-respecting partial r-arborescences T1, T2, . . . , Tk

such that each vertex v of V (D) is contained in exactly min{k, λN (v)} arbores-
cences of T1, T2, . . . , Tk.

We will give the proof of Theorem 4 in the next subsection. The following
lemma plays an important role in the proof of Theorem 4.

Lemma 3. For each acyclic and pre-flow temporal network N = (D, τ) with a
specified vertex r and each vertex v of V (D), we have |ϱD(v)| = λN (v).

Proof. Let us fix a vertex v of V (D). Define d := λN (v). From the definition
of λN (v), we can see that |ϱD(v)| ≥ d. Assuming that |ϱD(v)| > d, we prove
this lemma by contradiction. For each arc a of A(D) \ δD(r), define µ(a) in the
same way as in Section 4.1. Since D is acyclic, for each arc a of ϱD(v) we have
a directed path Pa from r to v that passes arcs

a, µ(a), µ(µ(a)), µ(µ(µ(a))), . . . ,

in the reverse order. For the definition of µ(·), the directed paths Pa and Pb are
clearly arc-disjoint for every distinct arcs a, b of ϱD(v). This implies that there
exist more than d arc-disjoint time-respecting directed paths from r to v in N ,
which contradicts λN (v) = d. ⊓⊔

6.1 Proof

Here we prove Theorem 4. Assume that we are given an acyclic and pre-flow
temporal network N = (D, τ) with a specified vertex r and a positive integer k
such that

k ≤ max{λN (v) | v ∈ V (D) \ {r}}.

Assume that |V (D)| = n, and define a function π in the same way as in Section 4.
We propose an algorithm arc-disjoint time-respecting partial r-arborescences
by modifying Algorithm 1. Notice that the difference between Algorithm 1 and
Algorithm 2 is only Step (3-a).

Algorithm 2

Step 1: For each i = 1, 2, . . . , k, set A0
i := ∅. Furthermore, set t := 1.

Step 2: If t = n, then halt and output An−1
1 , An−1

2 , . . . , An−1
k .

10



Step 3: Set v be the vertex of V (D) such that π(v) = t, and do the following.
(3-a) Define

I+ := {i = 1, 2, . . . , k | δD(v) ∩At−1
i ̸= ∅},

and let I− be an arbitrary subset of positive integer of {1, 2, . . . , k} \ I+
such that

|I−| = min{k, λN (v)} − |I+|.
(3-b) For each positive integer i of I+, find an arc a∗ of δD(v) ∩ At−1

i such
that

τ(a∗) = min{τ(a) | a ∈ δD(v) ∩At−1
i },

and then set ati := µ(a∗).
(3-c) For each positive integer i of I−, choose an arbitrary arc ati of ϱD(v)

so that

∀i, j ∈ I− s.t. i ̸= j : ati ̸= atj , ∀i ∈ I−, ∀j ∈ I+ : ati ̸= atj .

(3-d) For each i = 1, 2, . . . , k, set At
i := At−1

i ∪ {ati}.
(3-e) Update t := t+ 1, and then go to Step 2.

End of Algorithm 2

We first prove that Algorithm 2 is well-defined. For this, it suffices to prove
that |I+| ≤ λN (v) in Step (3-a). Since At−1

1 , At−1
2 , . . . , At−1

k are arc-disjoint, it
follows from (2) and Lemma 3 that

|I+| ≤ |δD(v)| ≤ |ϱD(v)| = λN (v).

Assume that Algorithm 2 outputs subsets An−1
1 , An−1

2 , . . . , An−1
k of A. For

each i = 1, 2, . . . , k, let Ti be a subgraph of D satisfying

V (Ti) := {r} ∪ {v ∈ V (D) | ϱD(v) ∩An−1
i ̸= ∅}

A(Ti) := An−1
i .

Notice that we can prove that for each i = 1, 2, . . . , k, every end-vertices of an
arc of A(Ti) is contained in V (Ti) as follows. From the definition of Step (3-a),
we can see that for every vertex v of V (D) \ {r}, if δTi(v) ̸= ∅, then ϱTi(v) ̸= ∅.
This implies that the head of the unique arc of ϱTi(v) is contained in V (Ti)
for each vertex v of V (D) such that ϱTi(v) ̸= ∅. Moreover, from the definition
of I+ and I−, we can see that each vertex v of V (D) is contained in exactly
min{k, λN (v)} subgraphs of T1, T2, . . . , Tk. So, Theorem 4 immediately follows
from the following lemma.

Lemma 4. For i = 1, 2, . . . , k, Ti is a time-respecting partial r-arborescence.

Proof. Let us fix a positive integer i such that i ≤ k. Since ϱTi(v) ̸= ∅ for every
vertex v of V (D) \ {r} such that δTi(v) ̸= ∅, there exists a directed path from r
to every vertex of v of V (D) such that ϱTi(v) ̸= ∅ in Ti. This implies that Ti is
a partial r-arborescence. Furthermore, we can prove that Ti is time-respecting
in the same way as in the proof of Lemma 2. ⊓⊔
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7 Conclusion

In this paper, we proved that Edmonds’ arc-disjoint arborescences theorem can
be naturally extended in an acyclic and pre-flow temporal network. Furthermore,
we generalized our main theorem to the packing problem of partial arborescences.
An apparent next step is to reveal whether Edmonds’ arc-disjoint arborescences
theorem can be extended in a general pre-flow temporal network.

References

1. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for
temporal networks. Journal of Computer and System Sciences 64(4) (2002) 820–
842

2. Li, Y., Thai, M.T., Wang, F., Du, D.Z.: On the construction of a strongly connected
broadcast arborescence with bounded transmission delay. IEEE Transactions on
mobile computing 5(10) (2006) 1460–1470

3. Edmonds, J.: Edge-disjoint branchings. In Rustin, R., ed.: Combinatorial Algo-
rithms. Academic Press (1973) 91–96

4. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer
(2003)

5. Huck, A.: Independent branchings in acyclic digraphs. Discrete Mathematics 199
(1999) 245–249

6. Kamiyama, N., Katoh, N., Takizawa, A.: Arc-disjoint in-trees in directed graphs.
Combinatorica 29(2) (2009) 197–214

7. Fujishige, S.: A note on disjoint arborescences. Combinatorica 30(2) (2010) 247–
252

8. Bang-Jensen, J., Frank, A., Jackson, B.: Preserving and increasing local edge-
connectivity in mixed graphs. SIAM Journal on Discrete Mathematics 8(2) (1995)
155–178

9. Hall, P.: On representatives of subsets. The Journal of the London Mathematical
Society 10 (1935) 26–30

10. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximummatchings in bipartite
graphs. SIAM Journal on Computing 2(4) (1973) 225–231

12



List of MI Preprint Series, Kyushu University

The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost Her-
mitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-
curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in nfinite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic
decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed
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with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles
System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
A Hardy’s Uncertainty Principle Lemma inWeak Commutation Relations of Heisenberg-
Lie Algebra



MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy pro-
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