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Abstract

In this work, we describe a simple and efficient construction of a large subset S of F,,, where
p is a prime, such that the set A(S) for any non-identity affine map A over F, has small
intersection with S'.

Such sets, called affine-evasive sets, were defined and constructed in [ADL14] as the central
step in the construction of non-malleable codes against affine tampering over IF,, for a prime
p. This was then used to obtain efficient non-malleable codes against split-state tampering.

Our result resolves one of the two main open questions in [ADL14]. It improves the rate
of non-malleable codes against affine tampering over F, from loglogp to a constant, and con-
sequently the rate for non-malleable codes against split-state tampering for n-bit messages is
improved from n%log’ n to n®.
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1 Introduction

Non-malleable Codes (NMCs). NMCs were introduced in [DPW10] as a beautiful relaxation of
error-correction and error-detection codes. Informally, given a tampering family F, an NMC
(Enc, Dec) against F encodes a given message m into a codeword ¢ <— Enc(m) in a way that, if
the adversary modifies m to ¢’ = f(c) for some f € F, then the message m’ = Dec(c’) is either
the original message m, or a completely “unrelated value”. As has been shown by the recent
progress [DPW10, LL12, DKO13, ADL14, FMVW13, FMNV14, CGl4a, CG14b] NMCs aim to
handle a much larger class of tampering functions F than traditional error-correcting or error-
detecting codes, at the expense of potentially allowing the attacker to replace a given message x
by an unrelated message z’. NMCs are useful in situations where changing x to an unrelated x’
is not useful for the attacker (for example, when x is the secret key for a signature scheme.)

Split-State Model. NMCs do not exist for the class of all functions F,. In particular, it does
not include functions of the form f(c) := Enc(h(Dec(c))), since Dec(f(Enc(m))) = h(m) is clearly
related to m. One of the largest and practically relevant tampering families for which we can
construct NMCs is the so-called split-state tampering family where the codeword is split into
two parts ci|lca, and the adversary is only allowed to tamper with c¢i,co independently to get
fi(e1)|| fa(e2). A lot of the aforementioned results [LL12, DKO13, ADL14, CG14b, FMNV14]
have studied NMCs against split-state tampering. [ADL14] gave the first (and the only one so
far) information-theoretically secure construction in the split-state model from n-bit messages to
n’ log7 n-bit codewords (i.e., code rate n® log7 n). The security proof of this scheme relied on an
amazing property of the inner-product function modulo a prime, that was proved using results from
additive combinatorics.

Affine-evasive Sets and Our Result. One of the crucial steps in the construction of [ADL14] was
the construction of NMC against affine tampering modulo p. This was achieved by construct-
ing an affine-evasive set of size pl/loglogp odulo a prime p. It was asked as an open question
whether there exists an affine-evasive set of size p() | which will imply constant rate NMC against

affine-tampering and rate n8 NMC against split-state tampering.! We resolve this question in the
pl/4 )

affirmative by giving an affine-evasive set of size 9(1ogp

2 Explicit Construction

For any set S C Z, let aS+b = {as+bls € S}. By S mod p C F,, we denote the set of values
of S modulo p.

We first define an affine-evasive set S C IF,,.

Definition 1 A non-empty set S C F, is said to be (v, v)-affine-evasive if |S| < vp, and for any
(a,b) € F2\ {(1,0)}, we have

ISN(aS+0b (modp))| <v|S|.

!Under a plausible conjecture, this will imply constant rate NMC against split-state tampering. See Theorem 5
for more details.



Now we give a construction of an affine-evasive set.
Let Q :={qi,...,q} be the set of all primes less than %pl/‘l. Define S C F,, as follows:

si={2 moapicn}. 1)

)

pl/4
logp

Thus, S has size O(%—-) by the prime number theorem.

Theorem 1 For any prime p, the set S defined in Equation (1) is (%17*3/47 O(p~*-log p)) -affine-
evasive.

Proof. Clearly,

1 1

Fix a,b € Fp, such that (a,b) # (1,0). Now, we show that |[SN(aS+0b (mod p))| < 3. Assume, on
the contrary, that there exist distinct o;; € @ for 7 € {0,1,2,3} such that 1/a; (mod p) € SN(aS+b
(mod p)). We have
gi+b:; (mod p) for i =0,1,2,3, (2)
where §;,a; € Q for i € {0,1,2,3}, and «a; # a; for any i # j.
For any 1, if 8; = «;, then b-5; = 1 — a mod p, which has at most one solution (since we
assume (a,b) # (1,0)). Thus, without loss of generality, we assume that §; # «;, for i € {1,2,3},
and 81 < B2 < fB3.

From Equation (2), we have that

1 1
Lb-g-p Lo
a

which on simplification implies

(a3 —a1)(B2 — P1)B3az = (a2 — a1)(B3 — B1)f2as  (mod p) .

Note that both the left-hand and right-hand side of the above equation takes values between I—é’
and {%, and hence the equality holds in Z (and not just in Z,).
(a3 — 1) (B2 — B1)Bsaz = (a2 — a1)(Bs — B1)Bacs - (3)

By equation 3, we have that 3 divides (a2 — a1)(B83 — B1)B2as. Clearly, 53 is relatively prime
to ag, P2, and B3 — B1. Therefore, B3 divides (g — cvy). This implies

B3 < |ag —aq] . (4)

Also, from equation 3, we have that ag divides (g — aq)(f3 — B1)B2a3, which by similar reasoning
implies a9 divides B3 — 1. Thus, using that 53 > 51,

0<ap<fB3—pP1<pB3. (5)
Similarly, we can obtain «y divides 83 — B2, which implies

0<ay <fB3—P2<P3. (6)
Equation (5) and (6) together imply that |as — | < B3, which contradicts Equation (4). 0



3 Affine-evasive function and Efficient NMCs

Affine-evasive function. We recall here the definition of affine-evasive functions from [ADLI14].
Affine-evasive functions immediately give efficient construction of NMCs against affine-tampering.

Definition 2 A surjective function h : F, — M U {L} is called (v,0)-affine-evasive if for any
a,b € F, such that a # 0, and (a,b) # (1,0), and for any m € M,

1. PrU%Fp(h(aU + b) #* J_) <7
2. Pryes,(h(aU +b) # L | h(U) = m) < 6

3. A uniformly random X such that h(X) = m is efficiently samplable.

We now mention a result that shows that we can construct an affine-evasive function from an
affine-evasive set S.

Lemma 1 ([ADL14, Claim 5]) Let S C F, be a (v,v)-affine-evasive set with v- K < 1, and K
divides |S|.2 Furthermore, let S be ordered such that for any i, the i-th element is efficiently
computable in O(logp). Then there exists a (v,v - K)-affine-evasive function h :F,— MU{L}.

Note that the above result requires that for any 7, the i-th element of S is efficiently computable
for some ordering of the set S. This is not possible for our construction since for our construction
this would mean efficiently sampling the i-th largest prime. However, this requirement was made
just to make sure that h~! is efficiently samplable. We circumvent this problem by giving a slightly
modified definition of the affine-evasive function A in the proof of Lemma 2. Before proving this,
we state the following result that we will need.

Theorem 2 ([HB88]) For any n € N, and any n’ < n such that n'*?/7 > n,

ﬂmwmnq=@<’“>,

logn

where m(n) denote the number of primes less than n.

Lemma 2 Let M be a finite set such that |[M| > 2, and let p > |M|® be a prime. There exists
an efficiently computable (p~3/*, O(|M|logp - p~1/*)) -affine-evasive function h:Fp, s MU{L}.

Proof. Without loss of generality, let M = {1,..., K}, for some integer K. Let S C F, be as
defined in Section 2. Define Si,..., Sk to be a partition of S as follows.
o 1 i—1 4, 1/4)
Sz._{seS‘SE[QKp ' 5P . (7)

Now let n; = % and n' = %. By the construction of S, |S;| = w(n;) — w(n; —n’). We will

bound |S;] for all i € [K] using Theorem 2. To do this, we need to verify that for all i, n/*2/7 > n;.

Since n; < n; for all ¢ < j, it is sufficient to show this for i = K, i.e., n; = #.
n/12/7 B 9p3/7 B po/28 N F5:16/28 B K87 -
ng (2K)12/Tpl/4 957, K12/T = 95/7 . 12/7 T 95/7 ’

?The assumption K divides |S| is just for simplicity.



where we used the fact that p > K16, and K > 2. Also note that n; is upper bounded by #, and
hence logn; = O(logp). Thus, using Theorem 2, we get that each S; has size at least @(ﬁ).

Klogp
Let h:Fp,— MU{L} be defined as follows:

h(x):{l ifxeS;

1 otherwise .

The statement Pr(h(aU 4 b) # 1) < p~3/* is obvious by the definition of S, and the observation
that aU + b is uniform in [F),.

Also, for any m € M, and for any (a,b) # (1,0), and a # 0,

Pr(aU+be SAU € S,,)

Pr(h(alU +b) # LIW(U) =m) =

Pr(U € Sp)
<‘HmU+beSAUeS)
B |Sml/p
- 2 Pr(U e SNn(a'S—ba!) (mod p))

| Sl
= O(Klogp-p~'/").

Also, sampling a uniformly random X such that h(X) = m is equivalent to sampling a uniformly
random prime ¢ in the interval

m—1 m
I = /4 M 1/4)
ok U 2K?
and computing 1/¢ mod p. Sampling ¢ can be done in time polynomial in logp by repeatedly
sampling a random element in [ until we get a prime. Computing 1/¢ mod p can be done efficiently
using Extended Euclidean Algorithm. O

Note that the proof of Lemma 2 is identical to the proof of Lemma 1, except the proof that a
uniformly random X such that h(X) = m is efficiently samplable for any given m.

Efficient NMCs. We recall here the definition of non-malleable codes for completeness.

Definition 3 Let F be some family of tampering functions. For each f € F, and m € M, define
the tampering-experiment

;. J < Enc(m), ¢ < f(c), m = Dec(c)
Tampery, : { Output: m.

which is a random wvariable over the randomness of the encoding function Enc. We say that a
coding scheme (Enc, Dec) is e-non-malleable w.r.t. F if for each f € F, there exists a distribution
(corresponding to the simulator) Dy over MU {L,same*}, such that, for all m € M, we have
that the statistical distance between Tamper!, and

Simfn = { m = Dy }

Output: m if m = same®, and m, otherwise.

is at most €. Additionally, Dy should be efficiently samplable given oracle access to f(-).



Using Lemma 2 and the construction of [ADL14], we get the following results.

Theorem 3 There exists an efficient coding scheme (Enc, Dec) encoding k-bit messages to ©(k +
log(é)) bit codewords that is €-non malleable w.r.t. the family of affine tampering functions Faf.

Theorem 4 There exists an efficient coding scheme (Enc, Dec) encoding k-bit messages to O((k +
log(%))7) bit codewords that is €-non malleable w.r.t. the family of split-state tampering functions
-Fsplit .

Also, assuming the following conjecture from [ADL14], our result gives the first NMC with
constant rate in the split-state model.

Conjecture 1 ([ADL14, Conjecture 2]) There exists absolute constants ¢, > 0 such that the fol-
lowing holds. For any finite field F,, of prime order, and any n > ¢, let L,R € [y be uniform,
and fix f,g : ¥y — Ty . Let D be the family of convexr combinations of {(U,aU +b) : a,b € Fp}
where U € F), is uniform. Then there exists D € D such that

AL, R), (f(L),g(R)) ; D) <p~".

Theorem 5 Assuming Conjecture 1, there exists an efficient coding scheme (Enc, Dec) encoding
k-bit messages to O(k + log(%)) that is €-non malleable w.r.t. the family of split-state tampering
functions Fepit -
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