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Abstract Recent advances in Distributed Computing highlight modeld al-
gorithms for autonomous swarms of mobile robots that sej&oise and cooper-
ate to solve global objectives. The overwhelming majorityvorks so far con-
siders handmade algorithms and proofs of correctness.

This paper builds upon a previously proposed formal frantkvio certify the
correctness of impossibility results regarding distr#alalgorithms that are ded-
icated to autonomous mobile robots evolving in a continuspece. As a case
study, we consider the problem of gathering all robots atriquéar location, not
known beforehand. A fundamental (but not yet formally diexti) result, due to
Suzuki and Yamashita, states that this simple task is iniglestor two robots
executing deterministic code and initially located atidist positions. Not only
do we obtain a certified proof of the original impossibiligsult, we also get the
more general impossibility of gathering with an even nundfeobots, when any
two robots are possibly initially at the same exact location

1 Introduction

The Distributed Computing community, motivated by the eriof tasks that
can be performed by autonomous robots and their complekitsted recently to
propose formal models for these systems, and to design and protocols in
these models. The seminal paper by Suzuki & Yamashita [Ifjqees a robot
model, two execution models, and several algorithms (wsdoeiated correct-
ness proofs) for gathering and scattering a set of robothein model, robots
are identical and anonymous (they execute the same algoétid they can-
not be distinguished using their appearance), robots drdais (they have no
memory of their past actions) and they have neither a comransesof direc-
tion, nor a common handedness (chirality). Furthermofgotdo not commu-
nicate in an explicit way. They have however the ability tossethe environment
and see the position of the other robots. Also, robots ergbute-phase cycles:
Look ComputeandMove During theLook phase, robots take a snapshot of the
other robots’ positions. The collected information is usethe Computephase
in which robots decide to move or to stay idle. In eve phase, robots may
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move to a new location computed in the previous phase. Thexecution mod-
els are denoted (using recent taxonomy [8]) FSYNC, for fsjlgchronous, and
SSYNC, for semi-synchronous. In the SSYNC model, an aryitnen-empty
subset of robots execute the three phases synchronousht@mdtally. In the
FSYNC model, all robots execute the three phases synchstynou

One of the benchmarking [8] problems for mobile robots ig tifaGath-
ering. Regardless of their initial positions, robots have to mioveuch a way
that they eventually stand on the same location, not knovioréleand, and re-
main there thereafter. A key impossibility result for gatheg is due to Suzuki
& Yamashita [15]: two robots initially located at distincogitions may never
gather if they execute a deterministic algorithm. This leisufundamental be-
cause any weakening of the initial system hypothesas #énonymity, oblivi-
ousness, common sense of direction) makes the problembtoiz.

Related WorksMost related to our concern are recent approaches to mechan-
ising the algorithm design or the proof of correctness inctr@ext of autonom-
ous mobile robots [4,7,2,1]. Model-checking proved us&fuind bugs in ex-
isting literature [2] and assess formally published altponis [7,2], in a simpler
setting where robots evolve indiscrete spacevhere the number of possible
positions is finite. However, no method exists to derive iggiaility results us-
ing model checking. Automatic program synthesis (for thabfem of perpetual
exclusive exploration in a ring-shaped discrete spaca)ésd Bonnett al.[4],
and could be used to prove impossibility in a particularisgttby a side effect,
if no algorithm can be generated), yet it exhibits importanitations for study-
ing the gathering problem we focus on here. First, the aatbonsider only the
discrete space setting (with a ring shape). Second, thpioaph is brute force
(it generates every possible algorithm in a particulanrsgtregardless of the
problem to solve). Third, the generator is limited to confadions whergi) a
location can only host one robot (so, gathering cannot beesgpd), andi) no
symmetry appears (which eludes all interesting casesudystg gathering).
Developed for the 6Q proof assistarit the Pactole framework enabled the
use of high-order logic to certify impossibility results] [fbr the problem of
convergence: for any positive robots are required to reach locations that are
at moste apart. Of course, an algorithm that solves gathering alb@s@on-
vergence, but the converse is not true. As convergencevatselin the usual
setting, the impossibility results that can be obtainedlve Byzantine robots
(that is, robots that may exhibit arbitrary, and possibllionaus, behaviours).
The impossibility results obtained in previous work usingqdl] show that
convergence is impossible if more than half of the robotsByzantine in the

Ynttp://coq.inria. fr



FSYNC model (or more that one third of the robots are Byzaritithe SSYNC

model). These results cannot be directly extended to tHaatiering Impossib-
ility for several reasons. First, they involve the activetipipation of Byzantine

robots to destabilise the correct ones, while the gathgniaglem involves only

correct robots. Second, the possible positions robots roeypy are encoded
using rational numbers, while positions in the original mlcgictually use real
numbers.

Our Contribution In this paper, we consider the construction of a formal proof
for the fundamental impossibility result of Suzuki and Yasmiga [15], for two
robots executing deterministic code and initially locatgdlistinct positions.
Our proof builds upon the previously initiated Pactole feavork [1] to use ac-
tual real numbers as locations instead of rational numbearefines the defin-
itions of executions (including scheduling assumptionsgrable the study of
executions that involve only correct processes. Not onlwdmbtain a certified
proof of the original impossibility result of Suzuki and Yashita, we also get
the more general impossibility result with an even numbewobbts, when any
two robots are possibly initially at the same exact location

2 Preliminaries

2.1 Certification and the CoQ proof assistant

To certify results and to guarantee the soundness of theomemuse the 6Q
proof assistant, a Curry-Howard based interactive prongyeng a trustworthy
kernel. The Pactole formal model is thus developed @Q& formal language,

a very expressiva-calculus: theCalculus of Inductive Constructiof€I1C) [6].

In this (functional) language, datatypes, objects, atgors, theorems and proofs
can be expressed in a unified way, as terkagbstraction is denoteghn x:T = ¢,
and application is denoted u. Curry-Howard isomorphism associates proofs
and programs, types and logical propositions. Writing aopod a theorem in
this setting amounts to building (interactively in mostasabut with the help
of tactics) a term the type of which corresponds to the the@®tement. As a
term is indeed @roof of its type, ensuring the soundness of a proof thus simply
consists in type-checking &term.

CoQ has already been successfully employed for various tasks a&sithe
formalisation of programming language semantics [11,X2hathematical de-
velopments as involved as the 4-colours [9] or Feit-Thomd40] theorems.

The reader will find in [3] a very comprehensive overview andd) prac-
tices with reference to €Q. Developing a proof in a proof assistant may non-
etheless be tedious, or require expertise from the user.ake mhis task easier,
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Pactole proposes a formal model, as well as lemmas and thetoespecify
and certify results about networks of autonomous mobiletoHt is designed
to be robust and flexible enough to express most of the vanfedgsumptions
in robots network, for example with reference to the considespace: discrete
or continuous, bounded or unbounded. ..

We do not expect the reader to be an expert aQ®ut of course the spe-
cification of a model for mobile robots in@? requires some knowledge of the
proof assistant. We want to emphasise that the framewodsdhe developer’s
task. The notations and definitions given hereafter shoeldelhd as the typed
functional expressions they are.

The formal model we rely on, as introduced in [1], exceedsragds with
reference to Byzantine robots, which are irrelevant in ttes@nt work. Thus, for
the sake of readability, a few notations have been sliglttpbfied: the pruned
code essentially deals with taking into account the emptgfdyzantine robots
in demonic actions. The reader is invited to check that tiheehcode is almost
identical.

2.2 The Formal Model

The Pactole modélhas been sketched in [1] to which we refer for further de-
tails; we recall here its main characteristics.

Two important features of @g are used: a formalism diigher-order which
allows us to quantify over programs, demons, etc., and tksibpitity to define
inductiveand coinductivetypes [14], so as to express inductive and coinduct-
ive datatypes and properties. Coinductive types are inco#at of invaluable
help to express in a rather direct way infinite behaviourfsite datatypes and
properties on them, as we shall see with demons.

Robots are anonymous, however we need to identify some of thahe
proofs. Thus, we consider given a finite setidgntifiers isomorphic to a seg-
ment of N. We omit this set (usually inferred by ©Q) unless it is necessary
to characterise the number of robots. If needed in the madetan make sure
that names are not used by the embedded algorithm.

Robots are distributed in space, at places cdbiedtions We define gos-
ition as afunctionfrom a set of identifiers to the space of locations. The set of
locations we consider here is the real liRe

Robots compute their target position from the observed gordiion of
their siblings in the considered space. We also define peatioos of robots,
that is bijective applications fror to itself, usually denoted hereafter by Greek
letters. Moreover, any correct robot is supposed to actyastier correct robot
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in the same context, that is, with the same perception of tegament. For
two real numberg = 0 andt, asimilarity is a function mapping a locationto

k x (z —t), denotedk, t]. Real numbek is called the homothetic factor, and
—k x tis called the translation factor. Similarities can be estzhto positions,
by applying the similarity transform to the extracted lémat This operation
will be (abusively) written[k, t](p). Similarities are used as transformations of
frames of reference.

For a robotr-id;, a computation takes as an input an entire posiias seen
by r-id;, in its own frame of reference (scale, origin, etc.), andinret a real
numberi; corresponding to a location (thiestination pointin the same frame.
As the robots arebliviousin the present context, the scale factor is taken anew
at each cycle. Moreover to avoid any symmetry breaking nr@shabased on
identifiers, the result of must be invariant by permutation of robots. We call
robogramsthe embedded computation algorithms that fulfil this fundatal
property.

Robograms may be naturally defined ioa@npletely abstract mannewxithout
any concrete code, in ourd® model as follows.

Record robogram := {

algo : position — location ;

AlgoMorph : YV p go, (Q=p o ol)

— algo p = algo g }.

Demonic actions consist of a function associating to eactecbrobot a
real numberk such thatt = 0 and the robot is not activated, ér# 0 and
the robot is activated with a scale factor. An actdamonis simply an infinite
sequence (stream) of demonic actions, that is a coinduchijext.

Record demonic_action := {frame : G — R}.
CoInductive demon := NextDemon : demonic_action — demon — demon.

Characteristic properties of demons includegnessand synchronous as-
pects. We described in [1] how fair, FSYNC, and SSYNC demanddcbe
defined using coinductive types. We show in Section 3 kefair demons can
be expressed similarly.

Finally, anexecution(p; );en from an initial position for (correct) robots,
and a demorilocate_byz;, frame;)icN, iS an infinite sequence such that

D; ( ) _ Tframe;(x),gpi(x)] (pz) if framei(m) 7& 0
i+l p; () otherwise

It is thus an object of type:

CoInductive execution :=
NextExecution : (G — location) — execution — execution.

Its computation is reflected by a corecursive funct@acute.
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3 Certification of Impossibility

The impossibility result we aim to prove formally is the falling:

Theorem 1 Itis impossible to achieve the gathering of an even numbebibf
vious robots moving on the real lifewith SSYNG:-fair demons for allk > 1.

In this section, we specialise and enrich the Pactole madgkrdvide a
formal proof of this theorem. Note that for the sake of reddgtsome nota-
tions may be slightly simplified compared to the actual cailable from
http://pactole.lri.fr.

The main idea of the proof is taken from [15] while our preraisee differ-
ent: we allow for an unbounded number of robots, providetlitha even, and
for an arbitrary initial position. On the contrary, [15] races the initial position
to have robots at distinct locatiofs.

To this goal:(i) we consider robots as points, that is two or more robots can
occupy the same location, thus no constraint is added todfigitibn of a pos-
ition, (ii) we assume robots enjoy strong global multiplicity detes;ttte same
global position is thus used for the computations of all tsp@i) we consider
that the travelling time is negligible, destination pointurned by robograms
are used directly to determine new locatiofig) we consider oblivious robots,
that is a new frame is chosen by the demon for each activatianyorobot,(v)
we takelocation to ber, the (axiomatic) definition oR in the CoqQ standard
library Reals. Note that we are considering an unbounded continuous space

3.1 k-Fairness

A demon is said to bé-fair if it is fair and k-bounded, that is such that between
two successive activations of any robot, all other robotstEaactivated at most
k times. Roughly speaking;-fairness expresses the ratio between the most act-
ive robot and the less active one, as well as avoids the degjedecase of robots
not being activated.

Firstly we express the property that, for any two robptmndn, the demon
activatesy within the £ next activations of.. It consists in three cases of activa-
tion for an inital round. Eitheg is activated (its new frame is non-null) and we
are done; this is casereset, a base case. Eithens not activated but is, and
the property will holds fok + 1 if it holds for & for the remainder of the demon
(casexreduce). Finally if none of the two considered robots is activateding
this round, the property holds for a certdirif it holds in the remainder of the

% This is why our results are not in contradiction with [15],€Emem 3.4, that exhibits a solution
for a number of robots, > 3.



demon (casesta11) for the samek. Notice that if the latter case happens in-
definitely, then one cannot progetween g h d SiNnCeBetween IS aninductive
relatiorf.
Inductive Between {G} g h (d : demon G) : nat — Prop :=
| kReset : V k, frame (demon_head d) g 75 0 — Between g h d k
| kReduce : V k, frame (demon_head d) g = 0
— frame (demon_head d) h # 0 — Between g h (demon_tail d) k
— Between g h d (k + 1)
| kStall : V k, frame (demon_head d) g = 0
— frame (demon_head d) h = 0 — Between g h (demon_tail d) k
— Between g h d k.

An infinite demon is thug-fair, for a certaink, if setween holds for any couple
of robotsat any timethat is if the demon ig-fair (for the very samé) from the

start and also for the remainder of the demon. We can exgnassdinductive
property as follows.

CoInductive kFair {G} k (d : demon G) :=

AlwayskFair : (V g h, Between g h d k) — kFair k (demon_tail d)
— kFair k d.

Intended as a framework and a library, our formal developgnpeovides
several theorems aboktfairness that may prove useful, namely that-&ir
demon is fair, that if a demon is-fair, then it isk’-fair for all ¥ > k, etc.

3.2 Definition of Success

A robogram is a solution to the Gathering problem if robotactethe same,
unknown beforehand, location within finite time regardlessheir initial pos-
itions. First we define the property for a positipas of having all robots at a
same locatiopt.

Definition stacked_at {G} (pos : G — location) (pt : location) :=
YV r : G, pos r = pt.

Hence there is a gathering point for an execution at someifstepall future
execution steps, the location is the same for all robotsh &nénfinite behaviour
is a coinductive property.
CoInductive Gather {G} (pt : location) (e : execution G) :=
Gathering : stacked_at (execution_head e) pt
— Gather pt (execution_tail e) — Gather pt e.
This situation has to occusventually which we thus define as an inductive
property.

4 The curly brackets around the first argument {) set it asimplicit, which allows us to omit
it later on.



Inductive WillGather {G} (pt : location) (e : execution G) :=
| Now : Gather pt e — WillGather pt e
| Later : WillGather pt (execution_tail e) — WillGather pt e.

If this holds for a given robogram and a given demoa from any initial posi-
tion thenr is a solution to the Gathering problem far
Definition solGathering {G} (r : robogram G) (d : demon G) :=

V (p : G— location),
d pt : location, WillGather pt (execute r d p).

We will prove that with a well chosen demon, even as constrhias -
fair demon, there exists an execution where robots are alapgrt (we prove
that this notion is in contradiction with being a solutioW)ore precisely, there
is an execution that keep half the robots away from the othHr that is: the
position is split. In the followingc w c) denotes the union of two disjoint sets
isomorphic to the same segmentNf hence guaranteeing an even number of
robots. By construction, an elemenof the left (respectively right} is denoted
inl g (respectivelyinr g). Moreover, recall that the location is obtained by
application of the position (which is a function) to an idéat.

Definition Split {G} (p : (G W G) — R) :=
Vxy:G p (inl x) # p (inr y).

The following coinductive property characterises suchxatation:

CoInductive Always_Split {G} (e : execution (G W G)) :=
CAS : Split (execution_head e)
— Always_Split (execution_tail e)
— Always_Split e.

In fact, the faulty execution we exhibit with this propertythe proof leaves a
particular position indefinitelpivalent with the robots evenly distributed over
two distinct locations only.

Of course, any execution for which this property holds cameccompatible
with a solution for a non-empty set of robots (of even caritiyla
Theorem Always_Split_no_gathering :

V (G : finite) (e : execution (G W G)),
inhabited G — Always_Split e — V pt, — WillGather pt e.

3.3 The Theorem in GQ

We may now state a formal version of Theorem 1 as follows:

Theorem noGathering : V (G : finite) (r : robogram (G W G)),
inhabited G
—V k : nat, (1 <= k)
— - (V d, kFair k d — solGathering r d)
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the proof of which amounts to showing that for a non-null emember of ro-
bots, anyx and any robogram there exists &-fair demon that prevents to
gather all robots.

The proof we formalise is inspired from [15]; it makes usew® tdemons,
one that is fully synchronous, and one that4fair. Depending on the expected
result of the first move, we use one or the other.

We consider an initial position consisting of two separdtespof the same
number of robots. If the expected first move brings the robbidse pile onto the
other pile, we choose the fully-synchronous demon, whishlts in switching
the locations of the two piles, thus in obtaining an equivajgosition. Other-
wise, we choose thé-fair demon that will activate only one pile at a time; the
piles moving alternatively, a change of frame suffices thegdt back to an
equivalent position.

Both cases allow us to show thatways_sp1it holds, thus proving The-
OreMnoGathering.

4 Remarks and Perspectives

Thanks to the abstraction level of the Pactole frameworktingethe space to
beR, thus both unbounded and continuous, is not as complicatede could
imagine; it emphasises the relevance of a formal proof amir@and how it is
complementary to other formal verification techniques. dditon to the syn-
tactical invocation ok and associated functions, the main change from previous
formalisations (that in particular were dealing wift) addresses proofs more
than specifications, and lies in the fact that we use axianratils. With such

a description ofR, there is no computation. Hence relations between two ele-
ments of typer must be actually proved as they usually cannot be obtained by
computation primitives.

The size of the specialised development for the relevaribmetand the
aforementioned theorems (thus excluding for example thaptete library for
reals) is quite small, as it is approximately 480 lines ofc#psations and 430
lines of proofs. The fileorbvevenr. v itself is about 200 lines of specifications
for 250 lines of proof scripts. This is a good indication orwhadequate our
framework is, as proofs are not too intricate and remain huraadable.
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