On the index of Simon's congruence for piecewise testability

P. Karandikar ${ }^{\text {a,b,1,2 }}$, M. Kufleitner ${ }^{\text {c, }, 3}$, Ph. Schnoebelen ${ }^{\text {a,2 }}$
${ }^{a}$ Lab. Specification \mathfrak{G} Verification, CNRS UMR 8643 EJ ENS Cachan, France
${ }^{b}$ Chennai Mathematical Institute, Chennai, India
${ }^{c}$ Institut für Formale Methoden der Informatik, University of Stuttgart, Germany

Abstract

Simon's congruence, denoted \sim_{n}, relates words having the same subwords of length up to n. We show that, over a , k-letter alphabet, the number of words modulo \sim_{n} is in $2^{\Theta\left(n^{k-1} \log n\right)}$.

Keywords: Combinatorics of words; Piecewise testable languages; Subwords and subsequences.

1. Introduction

Piecewise testable languages, introduced by Imre Simon 'in the 1970s, are a family of star-free regular languages 'that are definable by the presence and absence of given '(scattered) subwords 1, 2, 3]. Formally, a language $L \subseteq$, A^{*} is n-piecewise testable if $x \in L$ and $x \sim_{n} y$ imply $y \in L$, 'where $x \sim_{n} y \stackrel{\text { def }}{\Rightarrow} x$ and y have the same subwords of length 'at most n (see next section for all definitions missing in this 'introduction). Piecewise testable languages are important because they are the languages defined by $\mathcal{B} \Sigma_{1}$ formulae, 'a simple fragment of first-order logic that is prominent in database queries [4]. They also occur in learning theory [5], 'computational linguistics [6], etc.

It is easy to see that \sim_{n} is a congruence with finite index 'and Sakarovitch and Simon raised the question of how to better characterize or evaluate this number [2, p. 110]. Let 'us write $C_{k}(n)$ for the number of \sim_{n} classes over k letters, i.e., when $|A|=k$. It is clear that $C_{k}(n) \geq k^{n}$ since two 'words $x, y \in A^{\leq n}$ (i.e., of length at most n) are related by \sim_{n} only if they are equal. In fact, this reasoning gives

$$
\begin{equation*}
C_{k}(n) \geq k^{n}+k^{n-1}+\cdots+k+1=\frac{k^{n+1}-1}{k-1} \tag{1}
\end{equation*}
$$

(assuming $k \neq 1$). On the other hand, any congruence class in \sim_{n} is completely characterized by a set of subwords in $A^{\leq n}$, hence

$$
\begin{equation*}
C_{k}(n) \leq 2^{\frac{k^{n+1}-1}{k-1}} . \tag{2}
\end{equation*}
$$

Estimating the size of $C_{k}(n)$ has applications in descriptive complexity, for example for estimating the number of n piecewise testable languages (over a given alphabet), or for bounding the size of canonical automata for n-piecewise testable languages [7, 8, 9].

[^0]Unfortunately the above bounds, summarized as $k^{n} \leq$ $C_{k}(n) \leq 2^{k^{n+1}}$, leave a large ("exponential") gap and it is not clear towards which side is the actual value leaning. 4 Eq. (11) gives a lower bound that is obviously very naive since it only counts the simplest classes. On the other hand, Eq. (2) too makes wide simplifications since not every subset of $A^{\leq n}$ corresponds to a congruence class. For example, if aa and bb are subwords of some x then necessarily x also has ab or ba among its length 2 subwords.

Since the question of estimating $C_{k}(n)$ was raised in [2] (and to the best of our knowledge) no progress has been made on the question, until Kátai-Urbán et al. proved the following bounds:

Theorem 1.1 (Kátai-Urbán et al. [10]). For all $k>$ 1 ,

$$
\begin{array}{rlrl}
\frac{k^{n}}{3^{n^{2}}} \log k & \leq \log C_{k}(n)<3^{n} k^{n} \log k & & \text { if } n \text { is even } \\
\frac{k^{n}}{3^{n^{2}}}<\log C_{k}(n)<3^{n} k^{n} & & \text { if } n \text { is odd }
\end{array}
$$

The proof is based on two reductions, one showing $C_{k+\ell}(n+2) \geq C_{k}^{\ell+2}(n)$ for proving lower bounds, and one showing $C_{k}(n+2) \leq(k+1)^{2 k} C_{k}^{2 k-1}(n)$ for proving upper bounds. For fixed n, Theorem 1.1 allows to estimate the asymptotic value of $\log C_{k}(n)$ as a function of k : it is in $\Theta\left(k^{n}\right)$ or $\Theta\left(k^{n} \log k\right)$ depending on the parity of n. However, these bounds do not say how, for fixed $k, C_{k}(n)$ grows as a function of n, which is a more natural question in settings where the alphabet is fixed, and where n comes from, e.g., the number of variables in a $\mathcal{B} \Sigma_{1}$ formula. In particular, the lower bound is useless for $n \geq k$ since in this case $k^{n} / 3^{n^{2}}<1$.

[^1]Our contribution. In this article, we provide the following bounds:

Theorem 1.2. For all $k, n>1$,

$$
\begin{aligned}
\left(\frac{n}{k}\right)^{k-1} \log _{2}\left(\frac{n}{k}\right) & <\log _{2} C_{k}(n) \\
& <k\left(\frac{n+2 k-3}{k-1}\right)^{k-1} \log _{2} n \log _{2} k
\end{aligned}
$$

Thus, for fixed $k, \log C_{k}(n)$ is in $\Theta\left(n^{k-1} \log n\right)$. Compared with Theorem 1.1] our bounds are much tighter for fixed k (and much wider for fixed n).

The proof of Theorem 1.2 relies on two new reductions that allows us to relate $C_{k}(n)$ with C_{k-1} instead of relating it with $C_{k}(n-2)$ as in 10 . The article is organized as follows. Section 2 recalls the necessary notations and definitions; the lower bound is proved in Section 3 while the upper bound is proved in Section 4 . An appendix lists the exact values of $C_{k}(n)$ for small n and k that we managed to compute.

2. Basics

We consider words x, y, w, \ldots over a finite k-letter alphabet $A_{k}=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{k}\right\}$ sometimes written more simply $A=\{\mathrm{a}, \mathrm{b}, \ldots\}$. The empty word is denoted ϵ, concatenation is denoted multiplicatively. Given a word $x \in A^{*}$ and a letter a $\in A$, we write $|x|$ and $|x|_{\mathrm{a}}$ for, respectively, the length of x, and the number of occurrences of a in x.

We write $x \preccurlyeq y$ to denote that a word x is a subsequence of y, also called a (scattered) subword. Formally, $x \preccurlyeq y$ iff $x=x_{1} \cdots x_{\ell}$ and there are words $y_{0}, y_{1}, \ldots, y_{\ell}$ such that $y=y_{0} x_{1} y_{1} \cdots x_{\ell} y_{\ell}$. It is well-known that \preccurlyeq is a partial ordering and a monoid precongruence.

For any $n \in \mathbb{N}$, we write $x \sim_{n} y$ when x and y have the same subwords of length $\leq n$. For example $x \stackrel{\text { def }}{=} \mathrm{abacb} \sim_{2} y \stackrel{\text { def }}{=}$ baaacbb since both words have $\{\epsilon, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{bb}, \mathrm{bc}, \mathrm{cb}\}$ as subwords of length ≤ 2. However $x \not \chi_{3} y$ since $x \succcurlyeq$ aba $\nless y$. Note that $\sim_{0} \supseteq \sim_{1} \supseteq \sim_{2} \supseteq \cdots$, and that $x \sim_{0} y$ holds trivially. It is well-known (and easy to see) that each \sim_{n} is a congruence since the subwords of some $x y$ are the concatenations of a subword of x and a subword of y. Simon defined a piecewise testable language as any $L \subseteq A^{*}$ that is closed by \sim_{n} for some n [1]. These are exactly the languages definable by $\mathcal{B} \Sigma_{1}(<, \mathrm{a}, \mathrm{b}, \ldots)$ formulae [4], i.e., by Boolean combinations of existential first-order formulae with monadic predicates of the form $\mathrm{a}(i)$, stating that the i-th letter of a word is a. For example, $L=A^{*} \mathrm{a} A^{*} \mathrm{~b} A^{*}=\left\{x \in A^{*} \mid \mathrm{ab} \preccurlyeq x\right\}$ is definable with the following Σ_{1} formula:

$$
\exists i: \exists j: i<j \wedge \mathrm{a}(i) \wedge \mathrm{b}(j)
$$

The index of \sim_{n}. Since there are only finitely many words of length $\leq n$, the congruence \sim_{n} partitions A_{k}^{*} in finitely many classes, and we write $C_{k}(n)$ for the number of such classes, i.e., the cardinal of A_{k}^{*} / \sim_{n}.

The following is easy to see:

$$
\begin{equation*}
C_{1}(n)=n+1, \quad C_{k}(0)=1, \quad C_{k}(1)=2^{k} \tag{3}
\end{equation*}
$$

Indeed, for words over a single letter a, $x \sim_{n} y$ iff $|x|=$ $|y|<n$ or $|x| \geq n \leq|y|$, hence the first equality. The second equality restates that \sim_{0} is trivial, as noted above. For the third equality, one notes that $x \sim_{1} y$ if, and only if, the same set of letters is occurring in x and y, and that there are 2^{k} such sets of occurring letters.

3. Lower bound

The first half of Theorem 1.2 is proved by first establishing a combinatorial inequality on the $C_{k}(n)$'s (Proposition 3.3) and then using it to derive Proposition 3.4.

Consider two words $x, y \in A^{*}$ and a letter $a \in A$.
Lemma 3.1. If $x \sim_{n} y$, then $\min \left(|x|_{a}, n\right)=\min \left(|y|_{a}, n\right)$.
Proof (Sketch). If $|x|_{a}=p<n$ then $a^{p} \preccurlyeq x \nsucceq a^{p+1}$. From $x \sim_{n} y$ we deduce $a^{p} \preccurlyeq y \nsucceq a^{p+1}$, hence $|y|_{a}=p$.

Fix now $k \geq 2$, let $A=A_{k}=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{k}\right\}$ and assume $x \sim_{n} y$. If $|x|_{\mathrm{a}_{k}}=p<n$, then x is some $x_{0} \mathrm{a}_{k} x_{1} \cdots \mathrm{a}_{k} x_{p}$ with $x_{i} \in A_{k-1}^{*}$ for $i=0, \ldots, p$. By Lemma [3.1, y too is some $y_{0} \mathrm{a}_{k} y_{1} \cdots \mathrm{a}_{k} y_{p}$ with $y_{i} \in A_{k-1}^{*}$.

Lemma 3.2. $x_{i} \sim_{n-p} y_{i}$ for all $i=0, \ldots, p$.
Proof. Suppose $w \preccurlyeq x_{i}$ and $|w| \leq n-p$. Let $w^{\prime} \stackrel{\text { def }}{=}$ $\mathrm{a}_{k}^{i} w \mathrm{a}_{k}^{p-i}$. Clearly $w^{\prime} \preccurlyeq x$ and thus $w^{\prime} \preccurlyeq y$ since $x \sim_{n} y$ and $\left|w^{\prime}\right| \leq n$. Now $w^{\prime}=\mathrm{a}_{k}^{i} w \mathrm{a}_{k}^{p-i} \preccurlyeq y$ entails $w \preccurlyeq y_{i}$.

With a symmetric reasoning we show that every subword of y_{i} having length $\leq n-p$ is a subword of x_{i} and we conclude $x_{i} \sim_{n-p} y_{i}$.

Proposition 3.3. For $k \geq 2, C_{k}(n) \geq \sum_{p=0}^{n} C_{k-1}^{p+1}(n-p)$.
Proof. For words $x=x_{0} \mathrm{a}_{k} x_{1} \ldots x_{p-1} \mathrm{a}_{k} x_{p}$ with exactly $p<n$ occurrences of a_{k}, we have $C_{k-1}(n-p)$ possible choices of \sim_{n-p} equivalence classes for each $x_{i}(i=$ $0, \ldots, p)$. By Lemma 3.2 all such choices will result in $\not \chi_{n}$ words, hence there are exactly $C_{k-1}^{p+1}(n-p)$ classes of words with $p<n$ occurrences of a_{k}. By Lemma 3.1, these classes are disjoint for different values of p, hence we can add the $C_{k-1}^{p+1}(n-p)$'s. There remain words with $p \geq n$ occurrences of a_{k}, accounting for at least 1, i.e., $C_{k-1}^{n+1}(0)$, additional class.

Proposition 3.4. For all $k, n>0$:

$$
\begin{equation*}
\log _{2} C_{k}(n)>\left(\frac{n}{k}\right)^{k-1} \log _{2}\left(\frac{n}{k}\right) \tag{4}
\end{equation*}
$$

Proof. Eq. (4) holds trivially when $\log _{2}\left(\frac{n}{k}\right) \leq 0$. Hence there only remains to consider the cases where $n>k$. We reason by induction on k. For $k=1$, Eq. (3) gives $\log _{2} C_{1}(n)=\log _{2}(n+1)>\log _{2} n=\left(\frac{n}{1}\right)^{0} \log _{2}\left(\frac{n}{1}\right)$. For the inductive case, Proposition 3.3 yields $C_{k+1}(n) \geq C_{k}^{p+1}(n-$ p) for all $p \in\{0, \ldots, n\}$. For $p=\left\lfloor\frac{n}{k+1}\right\rfloor$ this yields

$$
\begin{aligned}
\log _{2} C_{k+1}(n) & \geq(p+1) \log _{2} C_{k}(n-p) \\
& >(p+1)\left(\frac{n-p}{k}\right)^{k-1} \log _{2}\left(\frac{n-p}{k}\right)
\end{aligned}
$$

by ind. hyp., noting that $n-p>0$,

$$
\geq \frac{n}{k+1}\left(\frac{n}{k+1}\right)^{k-1} \log _{2}\left(\frac{n}{k+1}\right)
$$

since $\frac{n-p}{k} \geq \frac{n}{k+1} \geq 1$,

$$
=\left(\frac{n}{k+1}\right)^{k} \log _{2}\left(\frac{n}{k+1}\right)
$$

as desired.

4. Upper bound

The second half of Theorem 1.2 is again by establishing a combinatorial inequality on the $C_{k}(n)$'s (Proposition 4.3) and then using it to derive Proposition 4.4.

Fix $k>0$ and consider words in A_{k}^{*}. We say that a word x is rich if all the k letters of A_{k} occur in it, and that it is poor otherwise. For $\ell>0$, we further say that x is ℓ-rich if it can be written as a concatenation of ℓ rich factors (by extension " x is 0 -rich" means that x is poor). The richness of x is the largest $\ell \in \mathbb{N}$ such that x is ℓ-rich. Note that $\forall a \in A_{k}:|x|_{a} \geq \ell$ does not imply that x is ℓ-rich. We shall use the following easy result:

Lemma 4.1. If x_{1} and x_{2} are respectively ℓ_{1}-rich and ℓ_{2} rich, then $y \sim_{n} y^{\prime}$ implies $x_{1} y x_{2} \sim_{\ell_{1}+n+\ell_{2}} x_{1} y^{\prime} x_{2}$.

Proof. A subword u of $x_{1} y x_{2}$ can be decomposed as $u=$ $u_{1} v u_{2}$ where u_{1} is the largest prefix of u that is a subword of x and u_{2} is the largest suffix of the remaining $u_{1}^{-1} u$ that is a subword of x_{2}. Thus $v \preccurlyeq y$ since $u \preccurlyeq x_{1} y x_{2}$. Now, since x_{1} is ℓ_{1}-rich, $\left|u_{1}\right| \geq \ell_{1}$ (unless u is too short), and similarly $\left|u_{2}\right| \geq \ell_{2}$ (unless \ldots). Finally $|v| \leq n$ when $|u| \leq \ell_{1}+n+\ell_{2}$, and then $v \preccurlyeq y^{\prime}$ since $y \sim_{n} y^{\prime}$, entailing $u \preccurlyeq x_{1} y^{\prime} x_{2}$. A symmetrical reasoning shows that subwords of $x_{1} y^{\prime} x_{2}$ of length $\leq \ell_{1}+n+\ell_{2}$ are subwords of $x_{1} y x_{2}$ and we are done.

The rich factorization of $x \in A_{k}^{*}$ is the decomposition $x=x_{1} a_{1} \cdots x_{m} a_{m} y$ obtained in the following way: if x is poor, we let $m=0$ and $y=x$; otherwise x is rich, we let $x_{1} a_{1}$ (with $a_{1} \in A_{k}$) be the shortest prefix of x that is rich, write $x=x_{1} a_{1} x^{\prime}$ and let $x_{2} a_{2} \ldots x_{m} a_{m} y$ be the rich factorization of the remaining suffix x^{\prime}. By construction
m is the richness of x. E.g., assuming $k=3$, the following is a rich factorization with $m=2$:

Note that, by definition, x_{1}, \ldots, x_{m} and y are poor.
Lemma 4.2. Consider two words x, x^{\prime} of richness m and with rich factorizations $x=x_{1} a_{1} \ldots x_{m} a_{m} y$ and $x^{\prime}=$ $x_{1}^{\prime} a_{1} \ldots x_{m}^{\prime} a_{m} y^{\prime}$. Suppose that $y \sim_{n} y^{\prime}$ and that $x_{i} \sim_{n+1}$ x_{i}^{\prime} for all $i=1, \ldots, m$. Then $x \sim_{n+m} x^{\prime}$.

Proof. By repeatedly using Lemma 4.1, one shows

$$
\begin{aligned}
& x_{1} a_{1} x_{2} a_{2} \ldots x_{m} a_{m} y \sim_{n+m} x_{1}^{\prime} a_{1} x_{2} a_{2} \ldots x_{m} a_{m} y \\
& \sim_{n+m} x_{1}^{\prime} a_{1} x_{2}^{\prime} a_{2} \ldots x_{m} a_{m} y \\
& \vdots \\
& \sim_{n+m} x_{1}^{\prime} a_{1} x_{2}^{\prime} a_{2} \ldots x_{m}^{\prime} a_{m} y \\
& \sim_{n+m} x_{1}^{\prime} a_{1} x_{2}^{\prime} a_{2} \ldots x_{m}^{\prime} a_{m} y^{\prime}
\end{aligned}
$$

using the fact that each factor $x_{i} a_{i}$ is rich.
Proposition 4.3. For all $n \geq 0$ and $k \geq 2$,

$$
C_{k}(n) \leq 1+\sum_{m=0}^{n-1} k^{m+1} C_{k-1}^{m}(n-m+1) C_{k-1}(n-m)
$$

Furthermore, for $k=2$,

$$
\begin{equation*}
C_{2}(n) \leq 2 \sum_{m=0}^{2 n-1} n^{m}=2 \frac{n^{2 n}-1}{n-1} \tag{5}
\end{equation*}
$$

Proof. Consider two words x, x^{\prime} and their rich factorization $x=x_{1} a_{1} \ldots x_{m} a_{m} y$ and $x^{\prime}=x_{1}^{\prime} a_{1}^{\prime} \ldots x_{\ell}^{\prime} a_{\ell}^{\prime} y^{\prime}$. By Lemma 4.2 they belong to the same \sim_{n} class if $\ell=m$, $y \sim_{n-m} y^{\prime}$, and $a_{i}=a_{i}^{\prime}$ and $x_{i} \sim_{n-m+1} x_{i}^{\prime}$ for all $i=1, \ldots, m$. Now for every fixed m, there are at most k^{m} choices for the a_{i} 's, $C_{k-1}^{m}(n-m+1)$ non-equivalent choices for the x_{i} 's, $k C_{k-1}(n-m)$ choices for y and a letter that is missing in it. We only need to consider m varying up to $n-1$ since all words of richness $\geq n$ are \sim_{n}-equivalent, accounting for one additional possible \sim_{n} class.

For the second inequality, assume that $k=2$ and $A_{2}=$ $\{\mathrm{a}, \mathrm{b}\}$. A word $x \in A_{2}^{*}$ can be decomposed as a sequence of m non-empty blocks of the same letter, of the form, e.g., $x=\mathrm{a}^{\ell_{1}} \mathrm{~b}^{\ell_{2}} \mathrm{a}^{\ell_{3}} \mathrm{~b}^{\ell_{4}} \ldots \mathrm{a}^{\ell_{m}}$ (this example assumes that x starts and ends with a, hence m is odd). If two words like $x=\mathrm{a}^{\ell_{1}} \mathrm{~b}^{\ell_{2}} \mathrm{a}^{\ell_{3}} \mathrm{~b}^{\ell_{4}} \ldots \mathrm{a}^{\ell_{m}}$ and $x^{\prime}=\mathrm{a}^{\ell_{1}^{\prime}} \mathrm{b}^{\ell_{2}^{\prime}} \mathrm{a}^{\mathrm{a}_{3}^{\prime}} \mathrm{b}_{4}^{\ell_{4}^{\prime}} \ldots \mathrm{a}^{\ell_{m}^{\prime}}$ have the same first letter a, the same alternation depth m, and have $\min \left(\ell_{i}, n\right)=\min \left(\ell_{i}^{\prime}, n\right)$ for all $i=1, \ldots, m$, then they are \sim_{n}-equivalent. For a given $m>0$, there are 2 possibilities for choosing the first letter and n^{m} non-equivalent choices for the ℓ_{i} 's. Finally, all words with alternation depths $m \geq 2 n$ are \sim_{n}-equivalent, hence we can restrict our attention to $1 \leq m \leq 2 n-1$. The extra summand $2 n^{0}$ in Eq. (5) accounts for the single class with $m \geq 2 n$ and the single class with $m=0$.

Proposition 4.4. For all $k, n>1$:

$$
C_{k}(n)<2^{k\left(\frac{n+2 k-3}{k-1}\right)^{k-1} \log _{2} n \log _{2} k}
$$

Proof. By induction on k. For $k=2$, Eq. (5) yields:

$$
C_{2}(n) \leq 2 \frac{n^{2 n}-1}{n-1}<n \frac{n^{2 n+1}}{1}
$$

since $n \geq 2$,

$$
\begin{aligned}
& =n^{2 n+2}=2^{2(n+1) \log _{2} n} \\
& =2^{k\left(\frac{n+2 k-3}{k-1}\right)^{k-1} \log _{2} n \log _{2} k}
\end{aligned}
$$

For the inductive case, Proposition 4.3 yields:

$$
\begin{aligned}
C_{k+1}(n) \leq & 1+\sum_{m=0}^{n-1}(k+1)^{m+1} C_{k}^{m}(n-m+1) C_{k}(n-m) \\
= & 1+(k+1) C_{k}(n) \\
& +\sum_{m=1}^{n-1}(k+1)^{m+1} C_{k}^{m}(n-m+1) C_{k}(n-m) \\
< & (k+1)^{n} C_{k}(n)+\sum_{m=1}^{n-1}(k+1)^{n} C_{k}^{m+1}(n-m+1)
\end{aligned}
$$

since $C_{k}(q) \leq C_{k}(q+1)$,

$$
\begin{aligned}
< & (k+1)^{n} 2^{k\left(\frac{n+2 k-3}{k-1}\right)^{k-1} \log _{2} n \log _{2} k} \\
& +\sum_{m=1}^{n-1}(k+1)^{n} 2^{k(m+1)\left(\frac{n-m+2 k-2}{k-1}\right)^{k-1} \log _{2} n \log _{2} k}
\end{aligned}
$$

by ind. hyp.,

$$
<(k+1)^{n} \sum_{m=0}^{n-1} 2^{k(m+1)\left(\frac{n-m+2 k-2}{k-1}\right)^{k-1} \log _{2} n \log _{2} k}
$$

Since $(m+1)\left(\frac{n-m+2 k-2}{k-1}\right)^{k-1} \leq\left(\frac{n+2 k-1}{k}\right)^{k}$ for all $m \in$ $\{0, \ldots, n-1\}-$ see Appendix A-, we may proceed with:

$$
\begin{aligned}
C_{k+1}(n) & <(k+1)^{n} \sum_{m=0}^{n-1} 2^{k\left(\frac{n+2 k-1}{k}\right)^{k} \log _{2} n \log _{2} k} \\
& =n(k+1)^{n} 2^{k\left(\frac{n+2 k-1}{k}\right)^{k} \log _{2} n \log _{2} k} \\
& =2^{\log _{2} n+n \log _{2}(k+1)+k\left(\frac{n+2 k-1}{k}\right)^{k} \log _{2} n \log _{2} k} \\
& <2^{\left(\log _{2} n+n+k\left(\frac{n+2 k-1}{k}\right)^{k} \log _{2} n\right) \log _{2}(k+1)} \\
& <2^{(k+1)\left(\frac{n+2 k-1}{k}\right)^{k} \log _{2} n \log _{2}(k+1)}
\end{aligned}
$$

since $\log _{2} n+n<\left(\frac{n+2 k-1}{k}\right)^{k} \log _{2} n$ (see below). This is the desired bound.

To see that $\log _{2} n+n<\left(\frac{n+2 k-1}{k}\right)^{k} \log _{2} n$, we use

$$
\begin{aligned}
\left(\frac{n+2 k-1}{k}\right)^{k} & >\left(\frac{n}{k}+1\right)^{k}=\sum_{j=0}^{k}\binom{k}{j} \cdot\left(\frac{n}{k}\right)^{j} \\
& =1+k \cdot\left(\frac{n}{k}\right)+\cdots \geq n+1
\end{aligned}
$$

This completes the proof.

By combining the two bounds in Propositions 3.4 and 4.4 we obtain Theorem 1.2, implying that $\log C_{k}(n)$ is in $\Theta\left(n^{k-1} \log n\right)$ for fixed alphabet size k.

5. Conclusion

We proved that, over a fixed k-letter alphabet, $C_{k}(n)$ is in $2^{\Theta\left(n^{k-1} \log n\right)}$. This shows that $C_{k}(n)$ is not doubly exponential in n as Eq. (2) and Theorem 1.1 would allow. It also is not simply exponential, bounded by a term of the form $2^{f(k) \cdot n^{c}}$ where the exponent c does not depend on k.

We are still far from having a precise understanding of how $C_{k}(n)$ behaves and there are obvious directions for improving Theorem 1.2 For example, its bounds are not monotonic in k (while the bounds in Theorem 1.1 are not monotonic in n) and it only partially uses the combinatorial inequalities given by Propositions 3.3 and 4.3

Acknowledgments. We thank J. Berstel, J.-É. Pin and M. Zeitoun for their comments and suggestions.

References

[1] I. Simon, Piecewise testable events, in: Proc. 2nd GI Conf. on Automata Theory and Formal Languages, volume 33 of Lecture Notes in Computer Science, Springer, 1975, pp. 214-222. doi 10.1007/3-540-07407-4_23
[2] J. Sakarovitch, I. Simon, Subwords, in: M. Lothaire (Ed.), Combinatorics on words, volume 17 of Encyclopedia of Mathematics and Its Applications, Cambridge Univ. Press, 1983, pp. 105-142.
[3] J.-E. Pin, Varieties of Formal Languages, Plenum, New-York, 1986.
[4] V. Diekert, P. Gastin, M. Kufleitner, A survey on small fragments of first-order logic over finite words, Int. J. Foundations of Computer Science 19 (2008) 513-548.
[5] L. Kontorovich, C. Cortes, M. Mohri, Kernel methods for learning languages, Theoretical Computer Science 405 (2008) 223236.
[6] J. Rogers, J. Heinz, G. Bailey, M. Edlefsen, M. Visscher, D. Wellcome, S. Wibel, On languages piecewise testable in the strict sense, in: Proc. 10th and 11th Biennal Conf. Mathematics of Language (MOL 10), volume 6149 of Lecture Notes in Computer Science, Springer, 2010, pp. 255-265. doi 10.1007/978-3-642-14322-9_19
[7] W. Czerwiński, W. Martens, T. Masopust, Efficient separability of regular languages by subsequences and suffixes, in: Proc. 40th Int. Coll. Automata, Languages, and Programming (ICALP 2013), volume 7966 of Lecture Notes in Computer Science, Springer, 2013, pp. 150-161. doi 10.1007/978-3-642-39212-2_16
[8] O. Klíma, L. Polák, Alternative automata characterization of piecewise testable languages, in: Proc. 17th Int. Conf. Developments in Language Theory (DLT 2013), volume 7907 of Lecture Notes in Computer Science, Springer, 2013, pp. 289-300. doi 10.1007/978-3-642-38771-5_26
[9] Th. Place, L. van Rooijen, M. Zeitoun, Separating regular languages by piecewise testable and unambiguous languages, in: Proc. 38th Int. Symp. Math. Found. Comp. Sci. (MFCS 2013), volume 8087 of Lecture Notes in Computer Science, Springer, 2013, pp. 729-740. doi 10.1007/978-3-642-40313-2_64.
[10] K. Kátai-Urbán, P. P. Pach, G. Pluhár, A. Pongrácz, C. Szabó, On the word problem for syntactic monoids of piecewise testable languages, Semigroup Forum 84 (2012) 323-332.

Appendix A. Additional proofs

We prove that $(m+1)\left(\frac{n-m+2 k-2}{k-1}\right)^{k-1} \leq\left(\frac{n+2 k-1}{k}\right)^{k}$ for all $m=0, \ldots, n-1$, an inequality that was used to establish Proposition 4.4

For $k>0$ and $x, y \in \mathbb{R}$, let

$$
\begin{aligned}
F_{k}(x) & \stackrel{\text { def }}{=}\left(\frac{x+2 k-1}{k}\right)^{k} \\
G_{k, x}(y) & \stackrel{\text { def }}{=}(y+1) F_{k}(x-y+1)=\frac{(y+1)(x-y+2 k)^{k}}{k^{k}}
\end{aligned}
$$

Let us check that $G_{k, x}\left(\frac{k+x}{k+1}\right)=F_{k+1}(x)$ for any $k>0$ and $x \geq 0$:

$$
\begin{align*}
G_{k, x}\left(\frac{k+x}{k+1}\right) & =\left(\frac{k+x}{k+1}+1\right) \frac{1}{k^{k}}\left(x-\frac{k+x}{k+1}+2 k\right)^{k} \\
& =\frac{x+2 k+1}{k+1} \frac{1}{k^{k}}\left(\frac{k x+2 k^{2}+k}{k+1}\right)^{k} \\
& =\frac{x+2 k+1}{k+1} \frac{1}{k^{k}}\left(\frac{k}{k+1}\right)^{k}(x+2 k+1)^{k} \\
& =\left(\frac{x+2 k+1}{k+1}\right)^{k+1}=F_{k+1}(x)
\end{align*}
$$

We now claim that $G_{k, x}(y) \leq F_{k+1}(x)$ for all $y \in[0, x]$. For $n, k \geq 2$, the claim entails $G_{k-1, n}(m) \leq F_{k}(m)$, i.e. $(m+1)\left(\frac{n-m+2 k-2}{k-1}\right)^{k-1} \leq\left(\frac{n+2 k-1}{k}\right)^{k}$, for $m=0, \ldots, n-1$ as announced.

Proof (of The Claim). Let $y_{\max } \stackrel{\text { def }}{=} \frac{k+x}{k+1}$. We prove that $G_{k, x}(y) \leq G_{k, x}\left(y_{\max }\right)$ and conclude using Eq. (\dagger): $G_{k, x}$ is well-defined and differentiable over \mathbb{R}, its derivative is

$$
\begin{aligned}
G_{k, x}^{\prime}(y) & =\frac{(x-y+2 k)^{k}-(y+1) k(x-y+2 k)^{k-1}}{k^{k}} \\
& =\frac{(x-y+2 k)^{k-1}}{k^{k}}((x-y+2 k)-(y+1) k) \\
& =\frac{(x-y+2 k)^{k-1}}{k^{k}}(x+k-y(k+1)) .
\end{aligned}
$$

Thus $G_{k, x}^{\prime}(y)$ is 0 for $y=y_{\text {max }}$, is strictly positive for $0 \leq y<y_{\max }$, and strictly negative for $y_{\max }<y \leq x$. Hence, over $[0, x], G_{k, x}$ reaches its maximum at $y_{\text {max }}$.

Appendix B. First values for $C_{k}(n)$

We computed the first values of $C_{k}(n)$ by a brute-force method that listed all minimal representatives of \sim_{n} equivalence classes over a k-letter alphabet. Here x is minimal if $x \sim_{n} y$ implies $\left(|x|<|y|\right.$ or $\left(|x|=|y|\right.$ and $\left.x \leq_{\text {lex }} y\right)$). Every equivalence class has a unique minimal representative. Note that if a concatenation $x x^{\prime}$ is minimal then both x and x^{\prime} are. Therefore, when listing the minimal
representatives in order of increasing length, it is possible to stop when, for some length ℓ, one finds no minimal representatives. In that case we know that there cannot exist minimal representatives of length $>\ell$.

The cells left blank in the table were not computed for lack of memory.

	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$	k
$n=0$	1	1	1	1	1	1	1	1	1
$n=1$	2	4	8	16	32	64	128	256	2^{k}
$n=2$	3	16	152	2326	52132	1602420	64529264	$\geq 173 \cdot 10^{7}$	
$n=3$	4	68	5312	1395588	1031153002	$\geq 23 \cdot 10^{7}$			
$n=4$	5	312	334202	$\geq 73 \cdot 10^{7}$					
$n=5$	6	1560	38450477						
$n=6$	7	8528	$\geq 39 \cdot 10^{7}$						
$n=7$	8	50864							
$n=8$	9	329248							
$n=9$	10	2298592							
$n=10$	11	17203264							
$n=11$	12	137289920							
n	$n+1$								

Table B.1: Computed values for $C_{k}(n)$

[^0]: ${ }^{1}$ Partially supported by Tata Consultancy Services.
 ${ }^{2}$ Supported by ANR grant 11-BS02-001-01.
 ${ }^{3}$ Supported by DFG grant DI 435/5-2.

[^1]: ${ }^{4}$ Comparing the bounds from Eqs. (1) and (2) with actual values does not bring much light here since the magnitude of $C_{k}(n)$ makes it hard to compute beyond some very small values of k and n, see Table B. 1

