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Abstract

We explore the correctness of the Certified Propagation Algorithm (CPA)

[6, 1, 8, 5] in solving broadcast with locally bounded Byzantine faults. CPA

allows the nodes to use only local information regarding the network topology.

We provide a tight necessary and sufficient condition on the network topology

for the correctness of CPA. To the best of our knowledge, this work is the

first to solve the open problem in [8]. We also present some simple extensions

of this result.
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1. Introduction

In this work, we explore fault-tolerant broadcast with locally bounded

Byzantine faults in synchronous point-to-point networks. We assume a f -

locally bounded model, in which at most f Byzantine faults occur in the

neighborhood of every fault-free node [6]. In particular, we are interested

in the necessary and sufficient condition on the underlying communication

network topology for the correctness of the Certified Propagation Algorithm

(CPA) – the CPA algorithm has been analyzed in prior work [6, 1, 8, 5].

Problem Formulation. Consider an arbitrary directed network of n nodes.

One node in the network, called the source (s), is given an initial input,

which the source node needs to transmit to all the other nodes. The source

s is assumed to be fault-free. We say that CPA is correct, if it satisfies the

following properties, where xs denotes the input at source node s:

• Termination: every fault-free node i eventually decides on an output

value yi.

• Validity: for every fault-free node i, its output value yi equals the

source’s input, i.e., yi = xs. As stated above, the source node is as-

sumed to be fault-free.

In this paper, we study the condition on the network topology for the

correctness of CPA.

Related Work. Several researchers have addressed CPA problem. [6] studied

the problem in an infinite grid. [1] developed a sufficient condition in the

context of arbitrary network topologies, but the sufficient condition proposed
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is not tight. [8] provided necessary and sufficient conditions, but the two

conditions are not identical (not tight). [5] provided another condition that

can approximate (within a factor of 2) the largest f for which CPA is correct

in a given graph.

Independently, conditions similar to our condition are also discovered by

other researchers [9, 3] under other contexts. [9] proved a similar condition to

be sufficient (but not tight) to solve Shamir’s (n, k) threshold secret sharing

problem, where the source wants to transmit shares of secret to all the other

nodes, and all nodes are assumed to be honest-but-curious. In the context

of cascading behavior in the network, [3] showed that a similar condition is

necessary and sufficient to achieve a complete cascade, i.e., all nodes have

learned the value transmitted by a cluster of sources with same input values

using only local information. In their model, all nodes are assumed to be

fault-free. Due to our assumption of existence of Byzantine failures, the

proofs in this paper are different from the ones in [9, 3].

2. System Model

The system is assumed to be synchronous. The synchronous communica-

tion network consisting of n nodes including source node s is modeled as a

simple directed graph G(V, E), where V is the set of n nodes, and E is the set

of directed edges between the nodes in V. We assume that n ≥ 2, since the

problem for n = 1 is trivial. Node i can transmit messages to another node j

if and only if the directed edge (i, j) is in E . Each node can transmit messages

to itself as well; however, for convenience, we exclude self-loops from set E .

That is, (i, i) 6∈ E for i ∈ V. All the links (i.e., communication channels) are
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assumed to be reliable, FIFO (first-in first-out) and deliver each transmitted

message exactly once. With a slight abuse of terminology, we will use the

terms edge and link interchangeably.

For each node i, let N−

i be the set of nodes from which i has incoming

edges. That is, N−

i = { j | (j, i) ∈ E }. Similarly, define N+
i as the set of

nodes to which node i has outgoing edges. That is, N+
i = { j | (i, j) ∈ E }.

Nodes in N−

i and N+
i are, respectively, said to be incoming and outgoing

neighbors of node i. Since we exclude self-loops from E , i 6∈ N−

i and i 6∈ N+
i .

However, we note again that each node can indeed transmit messages to

itself.

We consider the f -local fault model, with at most f incoming neighbors of

any fault-free node becoming Byzantine faulty. [6, 1, 8, 5] also studied CPA

problem under this fault model. Yet, to the best of our knowledge, the tight

necessary and sufficient conditions for the correctness of CPA in synchronous

arbitrary point-to-point networks under f -local fault model have not been

developed previously.

3. Feasibility of CPA under f -local fault model

3.1. Certified Propagation Algorithm (CPA)

In this subsection, we describe the Certified Propagation Algorithm (CPA)

from [6] formally. Note that the faulty nodes may deviate from this specifi-

cation arbitrarily. Possible misbehavior includes sending incorrect and mis-

matching (or inconsistent) messages to different outgoing neighbors.

Source node s commits to its input xs at the start of the algorithm, i.e.,

sets its output equal to xs. The source node is said to have committed to xs
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in round 0. The algorithm for each round r (r > 0), is as follows:

1. Each node that commits in round r − 1 to some value x, transmits

message x to all its outgoing neighbors, and then terminates.

2. If any node receives message x directly from source s, it commits to

output x.

3. Through round r, if a node has received messages containing value x

from at least f + 1 distinct incoming neighbors, then it commits to

output x.

3.2. The Necessary Condition

For CPA to be correct, the network graph G(V, E) must satisfy the nec-

essary condition proved in this section. We borrow two relations ⇒ and 6⇒

from our previous paper [11].

Definition 1. For non-empty disjoint sets of nodes A and B,

• A ⇒ B iff there exists a node v ∈ B that has at least f + 1 distinct

incoming neighbors in A, i.e., |N−

v ∩A| > f .

• A 6⇒ B iff A ⇒ B is not true.

Definition 2. Set F ⊆ V is said to be a feasible f -local fault set, if for each

node v 6∈ F , F contains at most f incoming neighbors of node v. That is,

for every v ∈ V − F, |N−
v ∩ F | ≤ f .

We now derive the necessary condition on the network topology.
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Theorem 1. Suppose that CPA is correct in graph G(V, E) under the f -local

fault model. Let sets F, L,R form a partition4 of V, such that (i) source

s ∈ L, (ii) R is non-empty, and (iii) F is a feasible f -local fault set. Then

• L ⇒ R, or

• R contains an outgoing neighbor of s, i.e., N+
s ∩R 6= ∅.

Proof. Consider any partition F, L,R such that s ∈ L, R is non-empty, and

F is a feasible f -local fault set. Suppose that the input at s is xs. Consider

any single execution of the CPA algorithm such that the nodes in F behave

as if they have crashed.

By assumption, CPA is correct in the given network under such a behavior

by the faulty nodes. Thus, all the fault-free nodes eventually commit their

output to xs. Let round r (r > 0), be the earliest round in which at least

one of the nodes in R commits to xs. Let v be one of the node in R that

commits in round r. Such a node v must exist since R is non-empty, and

it does not contain source node s. For node v to be able to commit, as per

specification of the CPA algorithm, either node v should receive the message

xs directly from the source s, or node v must have f + 1 distinct incoming

neighbors that have already committed to xs. By definition of node v, nodes

that have committed to xs prior to v must be outside R; since nodes in F

behave as crashed, these f + 1 nodes must be in L. Thus, either (s, v) ∈ E ,

or node v has at least f + 1 distinct incoming neighbors in set L.

4Sets X1, X2, X3, ..., Xp are said to form a partition of set X provided that (i)
∪1≤i≤pXi = X , and (ii) Xi ∩Xj = Φ if i 6= j.
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3.3. Sufficiency

We now show that the condition in Theorem 1 is also sufficient.

Theorem 2. If G(V, E) satisfies the condition in Theorem 1, then CPA is

correct in G(V, E) under the f -local fault model.

Proof. Suppose that G(V, E) satisfies the condition in Theorem 1. Let F ′ be

the set of faulty nodes. By assumption, F ′ is a feasible local fault set. Let

xs be the input at source node s. We will show that, (i) fault-free nodes do

not commit to any value other than xs (Validity), and, (ii) until all the fault-

free nodes have committed, in each round of CPA, at least one additional

fault-free node commits to value xs (Termination). The proof is by induction.

Induction basis: Source node s commits in round 0 to output equal to its

input xs. No other fault-free nodes commit in round 0.

Induction: Suppose that L is the set of fault-free nodes that have committed

to xs through round r, r ≥ 0. Thus, s ∈ L. Define R = V −L−F ′. If R = ∅,

then the proof is complete. Let us now assume that R 6= ∅.

Now consider round r + 1.

• Validity:

Consider any fault-free node u that has not committed prior to round

r+1 (i.e., u ∈ R). All the nodes in L have committed to xs by the end

of round r. Thus, in round r+1 or earlier, node u may receive messages

containing values different from xs only from nodes in F ′. Since there

are at most f incoming neighbors of u in F ′, node u cannot commit to

any value different from xs in round r + 1.
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• Termination:

By the condition in Theorem 1, there exists a node w in R such that

(i) node w has an incoming link from s, or (ii) node w has incoming

links from f + 1 nodes in L. In case (i), node w will commit to xs on

receiving xs from node s in round r+1 (in fact, r+1 in this case must

be 1). In case (ii), since all the nodes in L from whom node w has

incoming links have committed to xs (by definition of L), node w will

be able to commit to xs after receiving messages from at least f + 1

incoming neighbors in L, since all nodes in L have committed to xs by

the end of round r by the definition of L.5 Thus, node w will commit

to xs in round r + 1.

This completes the proof.

4. CPA without prior knowledge of f

In this section, we present a parameter-independent algorithm CPA-P

that does not require prior knowledge of f , and each node only needs to

know n, the number of nodes in the system. That is, given a graph G

that can tolerate f -local faults (where f is unknown), the algorithm CPA-P

presented below solves the broadcast problem in G without usage of f .

The core idea of CPA-P is for each node to exhaustively test all possible

parameters by running n + 1 instances of CPA algorithm in parallel. Each

instance of CPA algorithm corresponds to a tested parameter ranging from

5Since node w did not commit prior to round r+1, it follows that at least one node in
L must have committed in round r.
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0 to n. That is, each instance assumes that the tested parameter is the real

bound (f) on the local faults at each node.6 The correctness of CPA-P is

based on the following observation: For each fault-free node, when the tested

parameter is larger than or equal to the real parameter f , then there are only

two outcomes: (i) it cannot commit, since it did not receive enough identical

messages (violating Step 3 in CPA as specified in 3.1), or (ii) it commits to

a correct value, i.e., the input value of the source. Thus, in the end of the

CPA-P,7 each node can simply commit to the non-null value corresponding

to the largest tested parameter. Now, we describe CPA-P formally.

Throughout the execution, each node i (excluding s and outgoing neigh-

bors of s) maintains an (n+1)-entry vector vi, where vi[t] (0 ≤ t ≤ n) is the

estimate of output corresponding to the tested parameter t. In the beginning

of the algorithm, every entry of vector vi is initialized to be a null value ⊥,

where ⊥ is distinguished from all possible values of xs.

Source node s commits to its input xs at the start of the algorithm (round

0), and transmits message xs to all its outgoing neighbors in round 1. For

the other nodes, the algorithm is as follows.

• For outgoing neighbor of the source s:

1. In round 1, it receives message x directly from source s, and com-

mits to output x.

6For simplicity of presentation, we assume that every node keeps track of n+1 instances
(of the CPA algorithm) at the same time, even if the node already knows that some
instances cannot terminate, since it may never receive enough identical messages if the
tested parameter is too large. In a real implementation, each node i only needs to keep
track of ⌈di

2
⌉−1 instances of CPA algorithm, where di is the number of incoming neighbors

at node i.
7Note that CPA is guaranteed to terminate in n steps, and so is CPA-P.
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2. In round 2, it transmits messages < x, 0 >,< x, 1 >, ..., < x, n >

to all its outgoing neighbors, and terminates.

• For node that is not an outgoing neighbor of s, in each round r (r > 0):

1. For 0 ≤ t ≤ n, each node i that sets vi[t] in round r − 1 to some

value x, transmits message < x, t > to all its outgoing neighbors.

2. For 0 ≤ t ≤ n, through round r, if a node i has received messages

containing value < x, t > from at least t + 1 distinct incoming

neighbors, then it sets vi[t] = x.

3. In round n, each node i commits to value vi[t
′], where t′ is the

largest value in range [0, n] such that vi[t
′] 6=⊥.

Note that the algorithm performs n rounds.

Now, we show that CPA-P is correct.

Theorem 3. Given a graph G that can tolerate f -local faults, CPA-P achieves

both validity and termination.

Proof. Denote by CPA-P-t (0 ≤ t ≤ n) the instance of CPA-P corresponding

to the tested parameter t. Then by assumption of G, CPA-P-f is correct.

Thus, for each fault-free node i, vi[f ] = xs, the input value at source s. Now,

we prove the following claim:

Claim 1. For t > f , in CPA-P-t, fault-free nodes never decide on an invalid

value, i.e., for each fault-free node i, either vi[t] = xs or vi[t] =⊥.
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Proof. The proof is by induction.

Induction basis: Source node s and its outgoing neighbors commit to output

equal to the source’s input xs in round 0 and 1, respectively. No other fault-

free nodes commit in round 0 and 1.

Induction: Suppose that L is the set of fault-free nodes that have committed

to xs through round r (r > 0). Thus, s ∈ L. Let F ′ be the set of faulty

nodes, and |F ′| = f . Define R = V − L − F ′. If R = ∅, then the proof is

complete. Let us now assume that R 6= ∅.

Now consider round r + 1.

Consider any fault-free node u that has not committed prior to round

r + 1 (i.e., u ∈ R). All the nodes in L have committed to xs by the end

of round r. Thus, in round r + 1 or earlier, node u may receive messages

containing values different from xs only from nodes in F ′. Therefore, node

u cannot commit to any value different from xs in round r + 1, since by

assumption |N−

u ∩ F ′| ≤ f < t.

Unlike the proof in Theorem 2, node u may never gather enough (i.e.,

at least t + 1) identical messages from its incoming neighbors, since t > f .

Thus, for CPA-P-t, node u may never terminate. In this case, vu[t] =⊥.

The source node s and fault-free outgoing neighbors of s commit to xs

in round 0 and 1, respectively. By Claim 1 and the fact that CPA-P-f

satisfies both validity and termination, each fault-free node i (excluding s

and outgoing neighbors of s) commits to xs. Thus, CPA-P is correct.
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5. Discussion

This section discusses some extensions on the result presented above.

5.1. Generalized Fault Model

In this subsection, we briefly discuss how to extend the above results

under a generalized fault model. The generalized fault model [10] is char-

acterized using fault domain F ⊆ 2V as follows: Nodes in set F may fail

during an execution of the algorithm only if there exists set F ∗ ∈ F such

that F ⊆ F ∗. Set F is then said to be a feasible fault set.

Definition 3. Set F ⊆ V is said to be a feasible fault set, if there exists

F ∗ ∈ F such that F ⊆ F ∗.

For a set of nodes B, define N−(B) = {i | (i, j) ∈ E , i 6∈ B, j ∈ B}, the

set of incoming neighbors of B.

Definition 4. Given F , for disjoint sets of nodes A and B, where B is

non-empty.

• A
g
⇒ B iff for every F ∗ ∈ F , N−(B) ∩A 6⊆ F ∗.

• A 6
g
⇒ B iff A

g
⇒ B is not true.

Under the generalized fault model, step 3 of CPA needs to be modified

as follows. Let us call the modified algorithm CPA-G.

3. Through round r, if a node has received messages containing value

x from a set M , where M is not a feasible fault set, then the node

commits to value x.
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It is easy to show that a modified version of Theorem 1 stated below holds

for the generalized fault model.

Theorem 4. Suppose that CPA-G is correct in graph G(V, E) under the

generalized fault model. Let sets F, L,R form a partition of V, such that

source (i) s ∈ L, (ii) R is non-empty, and (iii) F is a feasible fault set, then

• L ⇒ R, or

• R contains an outgoing neighbor of s, i.e., N+
s ∩R 6= ∅.

5.2. Broadcast Channel

We have so far assumed that the underlying network is a point-to-point

network. The results, however, can be easily extended to the broadcast or

radio model [6, 1] as well. In the broadcast model, when a node transmits a

value, all of its outgoing neighbors receive this value identically. Thus, no

node can transmit mismatching values to different outgoing neighbors. Then,

it is easy to see that the same condition as the point-to-point network can be

shown to be necessary and sufficient for of CPA under the broadcast model

as well.

Now consider the following variation of the CPA algorithm: if the out-

going neighbors of source s do not receive a message from s in round 1, the

message value is assumed to be some default value. With this modification,

the condition in Theorem 1 can also be shown to be necessary and suffi-

cient to perform Byzantine Broadcast [7] under the broadcast model, while

satisfying the following three conditions (allowing s to be faulty):

• Termination: every fault-free node i eventually decides on an output

value yi.
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• Agreement: the output values of all the fault-free nodes are equal,

i.e., there exists y such that, for every fault-free node i, yi = y.

• Validity: if the source node is fault-free, then for every fault-free node

i, the output value equals the source’s input, i.e., y = xs.

The proof follows from the proof of Theorem 1 and the observation that if s

transmits a value, then all the outgoing neighbors of s receive identical value

from s, which equals its input xs when s is fault-free.

5.3. Asynchronous Network

In our analysis so far, we have assumed that the system is synchronous.

For a point-to-point network with fault-free source s, it should be easy to see

that the condition in Theorem 1 is also necessary and sufficient to achieve

agreement using a CPA-like under the asynchronous model [2] as well. In

this case, the algorithm may not proceed in rounds, but a node still commits

to value x either on receiving the value directly from s, or from f +1 nodes.

This claim may seem to contradict the FLP result [4]. However, our claim

assumes that the source node is fault-free, unlike [4].

6. Conclusion

In this paper, we explore broadcast in arbitrary network using the CPA

algorithm in f -local fault model. In particular, we provide a tight necessary

and sufficient condition on the underlying network for the correctness of CPA.
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