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Abstract

The ordered weighted averaging objective (OWA) is an aggregate func-
tion over multiple optimization criteria which received increasing attention
by the research community over the last decade. Different to the ordered
weighted sum, weights are attached to ordered objective functions (i.e.,
a weight for the largest value, a weight for the second-largest value and
so on). As this contains max-min or worst-case optimization as a special
case, OWA can also be considered as an alternative approach to robust
optimization.

For linear programs with OWA objective, compact reformulations ex-
ist, which result in extended linear programs. We present new such refor-
mulation models with reduced size. A computational comparison indicates
that these formulations improve solution times.

Keywords: multi-criteria optimization; ordered weighted averaging; linear
programming
1 Introduction

We consider multi-criteria optimization problems of the form
vec-max {C’a: |z € X} (1)

where C' € RF*" is a matrix of linear objective functions and X C R™ denotes
some set of feasible solutions; e.g., for linear programs, we have

X={zeR"| Az =b, x > 0}

for a coefficient matrix A € R™*" and a right-hand size b € R™.
To formulate the ordered weighted averaging (OWA) aggregate function as
introduced by Yager [Yag88], we further consider the ordering map © : R — R*
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with ©(y) = (61(y),02(y), ..., 0k(y)) that permutes the vector components of y
such that 6;(y) < 0;11(y). Given a weight vector w € R¥, the OWA problem is

then defined as
max { Z w;0;(Cx) | x € X} (2)

i€[k]
where we use the notation [k] := {1,...,k}. As frequently done, we make the
assumptions of equitability, which is given if w; > we > ... > wi > 0 (see

also [KOWO04]). In [0S03], this case is considered for linear programs, and
reformulations of (2) are presented. They show that the problem is equivalent
to

max z (3)
st. Cx =y (4)
z < Z W (3)Yi vrell (5)

i€ [k]
reX (6)

where II denotes all permutations of [k]. The variables y are redundant, but
often improve solver performance. Dualizing this problem, one can use column
generation over the dual variables associated with the permutations. Further-
more, they present the following compact model:

max Z Jwiry — Z Z w'idy; (7)

JEK] i€[k] j€[k]
st. Cx=y (8)
dij > 1rj —Yi Vi, j € [k] (9)
dij > 0 Vi, j € [K (10)
rekX (11)
where w) = wj —w;4q forall j =1,..., k—1 and wj, = wy. A model of this type

has been applied, e.g., to the multi-objective spanning tree problem in [GS12],
and to facility location problems in [KNPRC10]. In the following we present a
new model that can be useful to any of these application.

2 Alternative Models

We present different approaches to reformulate problem (2). Starting from the
observation that

> witi(Cz) =min ¥ w,)0;(Cx)

1€[k] 1€[k]

as presented in [0S03], we reconsider the model

max min Z Wr(3)Yi (12)
i€ (k]

st. Cx =y (13)

reX (14)



Note that instead of considering all permutations in II, one can also relax the
objective function (12) and use the convex hull of permutations conv(II) instead,
i.e., the permutahedron P™. This does not change the objective value of the
inner minimum, as there is always a corner of PY at which the optimum is
attained. Therefore, we can rewrite the inner optimization problem

IT%I%II Z Wr(i)Yi
i€ (k]

for fixed values of y as

min Z Z wjyipij (15)

i€[k] je[k]
st. > pij=1 Vi € [] (16)
i€[k]
S p=1 Vi € [k (17)
jelk]
pij =0 Vi, j € [k] (18)

the dual of which is

max Z (a; + B4) (19)

1€ [Kk]
st + B < wjy; Vi, j € [k] (20)

Using this reformulation of the inner problem, we get the following new compact
formulation for problem (2):

max Z (o + Bi) (21)

i€ k]

st. Cx=y (22)
a; + B < wiy; Vi, j € [K] (23)
reX (24)

This formulation needs 3k additional variables compared to the original problem
(1), and k% + k new constraints. In comparison, model (7-11) requires k? + 2k
additional variables and k? + k new constraints. Thus, the formulation we
propose needs an order of k variables less. Furthermore, it is numerically better
tractable.

Alternatively, for linear programming problems with X = {& € R" | Az =
b, x > 0} one might also use an extended description of P! to do column
generation in the primal problem (note that in [OSO3]7 column generation needed
the dual). To this end, we write for the inner optimization problem as

min Z YiDi (25)
i€ [k]
st > pi> s V0 < S < k] (26)

€S



Z p; = Z w; (27)

i€[k] i€[k]

where ¢y = Z?:kJrl—Z wj, i.e., @ is equal to the sum of the £ smallest weights
w (see, e.g., [Pos09] for this description of the permutahedron based on Rado’s
inequality [Rad52]).

Via dualization, this description gives the following problem formulation:

max Z p|5|08 (28)
SeP([k])

st. Av =10 (29)

Cr=y (30)

Y as=uyi Vi € [K] (31)
SE_}Z(SEIC])

xz; >0 Vi € [n] (32)

as >0 VS5 e P([k]) \ {[K]} (33)

where the exponentially many variables ag can be generated as required using
column generation. The pricing problem can be easily solved by sorting the
dual variables of Constraint (31). Then for ¢ = 1,...,k one needs to check if
the sum of the ¢ smallest dual variables is less or equal to . If that is the case,
the variable corresponding this subset is added to the master problem.

3 Computational Experiments

In this section we compare the compact model of [0S03] with our model. Note
that the purpose here is not to find the fastest solution algorithm: To this end,
other approaches (such as column generation or constraint generation) should
be used with careful consideration of the application at hand. Rather, our
intention it to show the advantage of using O(k) additional variables instead of
O(k?).

We use Cplex v.12.6. All experiments were conducted on a computer with a
16-core Intel Xeon E5-2670 processor, running at 2.60 GHz with 20MB cache,
and Ubuntu 12.04. Processes were pinned to one core.

For benchmark instances, we consider the same simplified portfolio optimiza-
tion problems as [0S03], that is,

max C’x:Zmi:LxEO

1€[n]

Problem parameters are generated in the same way. Objective values c;; are
generated by choosing a random value r; uniformly distributed in [0.05,0.15]
for every column j € [n]. Then, for every row we choose ¢;; € [—0.75r;,7;]
uniformly distributed. Weights w; for the OWA objective are generated so
that wy = 1, and the difference between two subsequent values is uniformly
distributed in [1, 2], except for 5 values on average, which have a difference in
[1,k/3]. Note that weights generated this way fulfill the equitability criterion.



# items (n)

Old model New model

20 40 60 80 100 20 40 60 80 100

401 0.09 0.12 015 0.16 0.17|0.06 0.07 0.08 0.08 0.09
50 1 023 032 039 044 044|015 017 0.17 0.18 0.19
60 | 0.46 065 0.77 0.86 0.89 | 0.28 0.32 035 0.36 0.37
70 1 0.84 1.13 1.40 1.51 1.68 | 0.48 0.53 0.58 0.61 0.63
80 ] 236 3.15 353 365 4.04| 035 042 046 0.50 0.54
90 | 430 536 624 696 721|051 0.62 070 0.74 0.79
100 | 6.19 8.04 9.51 10.03 10.55 | 0.73 0.88 0.99 1.06 1.14

# objectives (k)

Table 1: Primal simplex. Average computation times in seconds.

# items (n)
Old model New model
20 40 60 80 100 20 40 60 80 100
40 | 0.07 0.09 0.10 0.10 0.11 | 0.03 0.03 0.04 0.04 0.05
50 | 0.16 0.20 0.22 0.24 0.25 | 0.06 0.06 0.07 0.08 0.09
60 | 0.31 0.39 045 0.48 0.51 | 0.11 0.11 0.14 0.16 0.17
70 | 0.56 0.71 0.81 0.89 0.92 | 0.18 0.20 0.23 0.26 0.27
80 | 1.03 1.22 1.33 1.51 1.68 | 0.08 0.16 0.26 0.31 0.41
90 | 1.66 196 2.21 2.60 2.83 | 0.11 0.20 0.33 0.43 0.50
100 | 1.44 1.70 296 3.20 3.20 | 0.13 0.23 0.40 0.56 0.73

# objectives (k)

Table 2: Dual simplex. Average computation times in seconds.

We compare formulation (7-11) (“old model”) with formulation (21-24)
(“new model”) using the primal simplex method in Table 1 and the dual simplex
method in Table 2, averaging over 50 instances of each size.

As can be seen, the new formulation can be solved up to nearly 10 times
faster for the primal simplex, and up to around 5 times faster using the dual
simplex method. Furthermore, the new model scales better with k£ than the old
model.

4 Conclusion

We proposed a new and simple model to solve multi-criteria problems which
use the ordered weighted averaging aggregation. While our compact model re-
duces the required number of variables by a factor & compared to a formulation
currently in use, an extended formulation allows for column generation in the
primal problem instead of the dual problem as before. Furthermore, experimen-
tal experience suggests that our formulation is considerably easier to solve.

Further research should include if similar progress can be made on problems
with the even harder weighted ordered weighted averaging (WOWA) criterion,
see [0S09].
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