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Abstract

Hidden Markov models (HMMs) and their variants were successfully used for several se-
quence annotation tasks. Traditionally, inference with HMMs is done using the Viterbi and
posterior decoding algorithms. However, recently a variety of different optimization crite-
ria and associated computational problems were proposed. In this paper, we consider three
HMM decoding criteria and prove their NP hardness. These criteria consider the set of states
used to generate a certain sequence, but abstract from the exact locations of regions emitted
by individual states. We also illustrate experimentally that these criteria are useful for HIV
recombination detection.

Keywords: Hidden Markov model, NP-hardness, sequence annotation, recombination de-
tection

1 Introduction

Hidden Markov models (HMMs) and their variants were successfully used for several sequence
annotation problems in bioinformatics, including gene finding, protein secondary structure predic-
tion, protein family modeling, detection of conserved elements in multiple alignments and others
(Burge and Karlin, 1997; Krogh et al., 2001; Siepel et al., 2005; Sonnhammer et al., 1997). In many
of these areas, we assume that a particular biological sequence X was generated by the HMM, and
we wish to infer which states of the model were used to generate particular parts of the sequence
in a process called HMM decoding. The traditional algorithm for this task is the Viterbi algorithm
(Viterbi, 1967), which finds the state path (sequence of states) generating sequence X with the
highest probability.

Many other decoding criteria were proposed (Hamada and Asai, 2012). For example, we can
assign labels to states of the HMM, and then search for the most probable sequence of labels
instead of the most probable state path. If multiple states can share the same label, this problem
is NP-hard (Lyngsø and Pedersen, 2002; Brejová et al., 2007) and heuristics are used in practice
(Schwartz and Chow, 1990; Krogh, 1997). In effect, we use state labels to group together many
state paths with the same meaning and then search for the group with the highest probability. In
some application domains, it may be appropriate to group state paths together in different ways.
In this paper, we explore three optimization problems of this kind.

Definition 1.1 (The most probable footprint) The footprint of a state path (or labeling) is
the list of states (or labels) visited on the path, discarding the information about the number of
successive characters emitted by the same state (or label). The probability of a footprint is the sum
of probabilities of all paths following the footprint. The task is to find the most probable footprint
for a given HMM and sequence.
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Definition 1.2 (The most probable set) The set of a state path (or labeling) is the set of
states (or labels) visited on the path, regardless of their order or multiplicity. The probability of
a set is the sum of probabilities of all paths sharing the same set. The task is to find the set with
the highest probability for a given HMM and sequence.

Definition 1.3 (The most probable restriction) A path obeys a restriction (set of states or
labels) if it uses only states or labels included in the restriction. The probability of a restriction
is the sum of probabilities of all paths that obey the restriction. The task is to find the restriction
of size k with the highest probability for a given HMM and sequence.

These problems were motivated by the HIV recombination detection problem, which we review
in Section 2. However, their use is not limited to this application and is appropriate wherever
exact location of individual regions in the sequence is not important. We demonstrate usefulness
of these problems in practice even if we use heuristics to solve them. Indeed, exact solution is
unlikely, since in Sections 3, 4 and 5, we show that all three problems are NP-hard. The most
probable footprint problem was briefly considered by Brown and Truszkowski (2010), who observe
that it is polynomially solvable in HMMs with two states or two labels. The other two problems
were not studied previously.

Hidden Markov models and notation. In the rest of this section, we introduce the necessary
notation. A hidden Markov model (HMM) is a generative probabilistic model with a finite set of
states V and transitions E. The generative process starts by choosing a starting state v1 according
to the initial state probabilities I(v1). Then in each round, the model emits a single symbol xi from
the emission probability distribution e(vi, xi) of the current state vi, and then changes the state to
vi+1 according to the transition probability distribution a(vi, vi+1). The process continues for some
fixed number of steps n. Thus, the joint probability of generating a sequence X = x1, . . . , xn by
a state path π = v1, . . . , vn in an HMM H is Pr(π,X | H,n) = I(v1) · e(v1, x1) ·∏n

i=2 a(vi−1, vi) ·
e(vi, xi). In other words, the HMM defines a probability distribution Pr(π,X | H,n) over all
possible sequences X and state paths π of length n.

Let Y be a sequence over some alphabet such that Y = xk11 x
k2
2 . . . xknn where xi and xi+1 are

distinct characters and each kj is greater than zero. Then the footprint f(Y ) of this sequence is
x1x2 . . . xn and its character set s(Y ) is {x1, x2, . . . xn} (note that the size of this set can be less
than n). For example for Y = aabaaacc, we have f(Y ) = abac and s(Y ) = {a, b, c}.

In particular, we will apply the footprint and set operators to state paths π. Probability of a
footprint F for a given HMM H and sequence X of length n is

Pr(f(π) = F,X | H,n) =
∑

π,f(π)=F

Pr(π,X | H,n).

Analogously we also define a probability of a given set of states S denoted as Pr(s(π) = S,X |
H,n). Note that each path π included in this probability must use every state in S at least once.
Finally, we will also discuss the probability of a state restriction S denoted as Pr(s(π) ⊆ S,X |
H,n), where we count all state paths that use only states from set S, but are not required to use
all of them.

We can also assign label `(v) to each state v of the HMM. The label `(π) of a state path π is
then concatenation of labels for individual states on the path. We can then use similar notation
for probability of footprints and sets defined on labelings, such as Pr(f(`(π)) = F,X | H,n).

We will say that a state path π can generate X if Pr(π,X|H,n) > 0. Similarly a footprint F
can generate X if Pr(f(π) = F,X | H,n) > 0 and a set of states S can generate X if Pr(s(π) =
S,X | H,n) > 0.

2 Motivation

The problems studied in this paper were inspired by the HIV recombination detection problem,
which was recently successfully approached with jumping HMMs (Schultz et al., 2006). In this
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Figure 1: Prediction of recombination on artificial recombinant of subtypes A and B (black and
white) with recombination every 950-1050 bases. HERD decoding yielded regions associated with
incorrect subtypes (gray color representing 3 different subtypes) and fixing either the set or the
footprint improved accuracy.

setting, we represent sequence of each subtype of the HIV virus as a profile HMM, and then we
combine these profiles to a single HMM by addition of special transitions modeling recombination
between genomes of different strains of the virus. Given a particular genome, we try to establish
which portions were generated by which profile. However, it is virtually impossible to determine
the exact position of the recombination. Therefore we may wish to group together state paths
that differ in positions of individual recombination points only by a small amount (Nánási et al.,
2010; Brown and Truszkowski, 2010; Truszkowski and Brown, 2011).

In this scenario, each subtype corresponds to one label. Set of a labeling s(`(π)) corresponds
to the set of subtypes present in the query sequence X. If we are not interested in the location
of recombination points, this is the most natural measure to optimize. However, we might be
interested to also know the order of subtypes along the sequence represented by the footprint of a
labeling f(`(π)).

Additionally, we can use a multi-step decoding strategy, where we first fix a set of labels or a
footprint, and then refine it to a full labeling by a secondary optimization criterion. This approach
was taken by Truszkowski and Brown (2011), mainly as a heuristic for speeding up the search.
Here we show that this two-step strategy can be also useful for improving the prediction accuracy.
In particular, as a second step we use the highest expected reward decoding (HERD) (Nánási
et al., 2010). The method has two important parameters: window size W (breakpoints within this
distance are considered equivalent) and penalty γ for false positives (each true positive breakpoint
is scored +1, false positive breakpoint scores −γ). HERD optimizes expected value of this scoring
function under the assumption that the sequence was generated from the HMM.

As we can see in Figure 2, the program is very sensitive to the choice of γ: for the optimal
value of γ it is significantly more accurate than the Viterbi algorithm, but if we increase γ too
much, the performance deteriorates. The most common problem is that HERD predicts too many
breakpoints when γ is low (Figure 1). By fixing a footprint as a constraint in the two-step strategy,
and then optimizing the HERD criterion only for labelings obeying this footprint, the prediction
accuracy is virtually independent of γ and relatively close to the optimum values. Fixing the
set instead of the footprint yields slightly higher specificity and lower sensitivity compared to
optimizing HERD directly. Note that the footprints and sets are chosen by a simple heuristic;
perhaps even better results could be obtained with optimal choice of these constraints.

3 The Most Probable Footprint

As previously seen, finding the most probable footprint is a reasonable decoding criterion, and
it may also serve as a starting point in a multi-stage strategy. In this section we show that this
problem is NP-hard. In particular, we will consider the footprint of a state path f(π). The
problem of optimizing the footprint of a labeling f(`(π)) is also NP-hard, because optimizing f(π)
is its special case, equivalent to optimizing f(`(π)) in an HMM in which each state has a unique
label.
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Figure 2: Feature specificity (a) and sensitivity (b) as a function of parameter γ ∈ [0.1, 2] on a
semi-artificial set. A feature is correctly predicted if its boundaries are within 30 symbols of the
corresponding feature in the correct annotation. Sensitivity is the proportion of real features that
were correctly predicted and specificity is the proportion of predicted features that are correct.
We use HERD parameters Pj = 10−5 and W = 10. F-HERD optimizes the same criterion
among labelings obeying the footprint obtained by sampling several paths from the probability
distribution Pr(π | X,H, n), computing the footprint for each path, and then taking the most
frequently occurring footprint among the samples, using the software by Truszkowski and Brown
(2011). S-HERD optimizes HERD criterion among labelings using only labels from this footprint.
The data set consists of 150 artificial recombinants of members of various subtypes of HIV virus
with recombination every 200-300 residues.

Theorem 3.1 There is a fixed HMM H such that the following problem is NP-complete: Given
a sequence X of length n and probability p ∈ [0, 1], determine if there is a footprint F such that
Pr(f(π) = F,X | H,n) ≥ p.

Proof We will prove NP-hardness by a reduction from the maximum clique problem using the
HMM in Figure 3 with eight states and alphabet Σ = {S, S′, T, T ′,#, 0, 1, ?}.

Let G = (V,E) be an undirected graph with n vertices V = {1, 2, . . . , n}. We will encode it
in a sequence X over alphabet Σ as follows. For every vertex v ∈ V , we create a block Xv with
2n+ 3 symbols: Xv = S′#bv,1#bv,2# . . .#bv,n#T ′ where bi,j = 1 if i = j, bi,j =? if (i, j) ∈ E and
bi,j = 0 otherwise. Sequence X is a concatenation of blocks for all vertices with additional first
and last symbols: X = SX1X2 . . . XnT .

All state paths that can generate X have a similar structure. The first symbol S and several
initial blocks are generated in state S, one block, say Xi, is generated in states S′, #, 0, 1, and
T ′ and the rest of the sequence, including the final symbol T is generated in state T . We will
say that a state path with this structure covers the block Xi. Note that state E is never used in
generating X, its role is to ensure that the probability of self-transition is the same in states S
and T . All state paths that can generate X have the same probability q = Pr(π,X | H, |X|) =

2−2n
2−2n3−n−17−2n

2−n+1.
We say that a state path π is a run of footprint F , if π can generate X, and f(π) = F . Every

footprint F that can generate X has the following structure: F = SS′#c1#c2# . . .#cn#T ′T
where ci ∈ {0, 1}. The probability of footprint F is qk where k is the number of its runs. Also
note that every run of F covers a different Xi, because once Xi is known, the whole path is
uniquely determined.

We will now prove that the graph G has a clique of size at least k if and only if there is a
footprint for sequence X with probability at least qk. First, let R be a clique in G of size at least
k > 0. Consider the footprint F = SS′#c1#c2# . . .#cn#T ′T where ci = 1 if i ∈ R and ci = 0
otherwise. For any i ∈ R, there is a run πi of F that covers Xi. This run will use state 1 for
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Figure 3: The HMM from the proof of Theorem 3.1. Each circle denotes one state. The HMM
always starts in state S. Under each state is the set of symbols that the state emits with non-zero
probability. Each of these symbols is emitted with probability 1/k, where k is the size of the set.
Alternatively, all outgoing transitions from a particular state have the same probability.

generating each bi,j such that j ∈ R and thus both bi,j ∈ {?, 1} and cj = 1. For j /∈ R we have
bi,j = 0 and cj = 0, thus they will use state 0 in π. Since there is a different run for every i ∈ R,
footprint F has at least k runs.

Conversely, let F be a footprint with probability at least qk > 0 and thus with at least k runs.
We will construct a clique of size at least k as follows. Let R be the set of all vertices i such that
f has a run that covers Xi. Clearly the size of R is at least k. Since F has non-zero probability, it
has the form SS′#c1#c2 . . .#cn#T ′T for ci ∈ {0, 1}. For all i ∈ R, ci = 1 because the i-th block
has bi,i = 1. Therefore for all i, j ∈ R, we have bi,j ∈ {1, ?}, which means that (i, j) ∈ E or i = j.
This implies that R is indeed a clique.

To summarize, given graph G and threshold k, we can compute in polynomial time sequence
X and threshold qk such that G has a clique of size at least k if and only if sequence X has a
footprint with probability at least qk. This completes our reduction.

The problem is in NP (even if HMM is not fixed, but given on input), because given an HMM
H, sequence X and a footprint F , we can compute the probability Pr(f(π) = F,X | H, |X|) in
polynomial time by a dynamic programming algorithm which considers all prefixes of X and all
prefixes of F . If probability p and parameters of HMMs are given as rational numbers, we can
compute all quantities without rounding in polynomial number of bits.

4 The Most Probable Set of States

In this section, we prove NP-hardness of finding the most probable set of states. Again, as with
footprint, this is a special case of the problem of finding the most probable set of labels.

Theorem 4.1 The following decision problem is NP-hard: Given an HMM H, sequence X of
length n, and a number p ∈ [0, 1], decide if there exists a set of states S such that Pr (s(π) = S,X | H,n) ≥
p.

To prove this theorem, we will use a reduction from the maximum clique problem. Given a
graph G = (V,E) and a clique size k, we first choose a suitable threshold k′ ≥ k, as detailed below,
and construct a graph G′ = (V ′, E′) such that G′ has a clique of size k′ if and only if G has a
clique of size k. This is achieved simply by adding k′ − k new vertices and connecting each of the
new vertices to all other vertices in V ′. As long as k′ − k is not too large, this transformation can
be done in polynomial time.

In the next step, we use G′ and k′ to construct an HMM, an input sequence and a probability
threshold. We will use the following straightforward way of converting a graph to an HMM.

Definition 4.1 Let G = (V,E) be an undirected graph (without self-loops). Then the graph HMM
HG is defined as follows:

• Its set of states is V ∪ {ψ}, where ψ /∈ V is a new state called the error state.

• Its emission alphabet is {0, 1}.

5



• Each state v ∈ V has initial probability I(v) = 1/|V |, the error state has initial probability
I(ψ) = 0.

• Each state v ∈ V emits 0 with probability 1, the error state emits 1 with probability 1.

• Transitions with non-zero probability between states u, v ∈ V correspond to edges in E, more
precisely:

a(u, v) =

{
1
|V | {u, v} ∈ E
0 otherwise

• For u ∈ V , we also have a(u, ψ) = 1−∑v∈V a(u, v) and a(ψ, u) = 0. The error state has a
self-transition with probability 1: a(ψ,ψ) = 1.

The error state ψ is added to the HMM so that all non-zero transitions between states in
V have the same probability. Any state path π containing only states from V connected by
transitions with non-zero probability has the same probability of generating sequence X = 0n:
Pr(π,X = 0n|HG, n) = |V |−n. Such paths correspond to walks in graph G.

Therefore, we will be interested in counting the number of walks in different graphs. Let
Y (n,G) be the number of walks of length n − 1 in a graph G = (V,E) that visit every vertex
from G at least once. Note that a walk of length n − 1 contains n − 1 edges and n vertices, and
therefore Y (n,G) = 0 for n < |V |. As a special case we consider D(n, k) = Y (n,Kk), where Kk is
the complete graph with k vertices. The following claim clearly holds:

Lemma 4.2 If G is a graph with k vertices and n ≥ k, then Y (n,G) ≤ D(n, k) with equality only
for G = Kk.

In our reduction we use HMM H = HG′ and X = 0n for a suitable choice of n discussed below.
As threshold p we will use the value D(n, k′)/|V |n. Clearly, if the input graph G has a clique S of
size k, graph G′ has a clique S′ of size k′. There are at least D(n, k′) walks of length n − 1 that
use only vertices in S′ and visit each of them at least once. Each of such walks corresponds to one
state path, and therefore the probability of the set of states S′ is exactly p.

In order to prove the opposite implication, we need suitable choices of n and k′. Table 1 shows
values of D(n, k) for small values of n and k. For a fixed length of walk n, the number of walks
in Kk initially grows with increasing k, as we have more choices which vertex to use next, but
as k approaches n, D(n, k) may start to decrease, because the walks are more constrained by the
requirement to cover every vertex. We are particularly interested in the value of k where D(n, k)
achieves the maximum value for a fixed n. In particular we use the following notation:

Mn = min

{
k;D(n, k) = max

0≤k′≤n
D(n, k′)

}
Note that if there are multiple values of k achieving maximum, we take the smallest one as Mn.
In our reduction, we would like to set n to be the smallest value such that Mn = k, but we were
not able to prove that such n exists for each k. Therefore we choose as n the smallest value such
that Mn ≥ k, and we denote this value nk. As k′ we then use Mnk

. The following lemma states
important properties of nk and Mnk

.

Lemma 4.3 The value of nk is at most dk ln ke and nk and Mnk
can be computed in O(kO(1))

time.

Before proving this lemma, we finish the proof of the reduction. Let us assume that there is
a set of states S such that Pr(s(π) = S,X|H,n) ≥ p. This means that if we consider walks in
the subgraph G′(S) induced by the set S, we get Y (n,G′(S)) ≥ D(n, k′). We will consider three
cases:

• If S is a clique and |S| ≥ k′, we have the desired clique in graph G′, and therefore there is
also a clique of size k in graph G.

6



n/k 0 1 2 3 4 5 6 7 8 Mn

0 1 0
1 1 1
2 2 2
3 2 6 3
4 2 18 24 4
5 2 42 144 120 4
6 2 90 600 1200 720 5
7 2 186 2160 7800 10800 5040 6
8 2 378 7224 42000 100800 105840 40320 7
9 2 762 23184 204120 756000 1340640 1128960 7
10 2 1530 72600 932400 5004720 13335840 18627840 8

nk 0 1 2 3 4 6 7 8 10
Mnk

0 1 2 3 4 5 6 7 8

Table 1: Values of D(n, k), nk, Mn, and Mnk
for small values of n and k. Empty cells contain

zeros.

• If S is a clique and |S| < k′, then by definition of Mn we have Y (n,G′(S)) = D(n, |S|) <
D(n,Mn) = D(n, k′). This is a contradiction with our assumption.

• If S is not a clique, then by Lemma 4.2 and definition of Mn we have Y (n,G′(S)) <
D(n,K|S|) ≤ D(n,Mn) = D(n, k′). Again we get a contradiction with the inequality
Y (n,G′(S)) ≥ D(n, k′).

Therefore we have proved that G contains a clique of size k if and only if the most probable set
of states in HG′ that can generate X has probability at least p. Moreover, we can construct nk,
Mnk

, HG′ , X, and p in polynomial time.
To complete this proof we need to prove Lemma 4.3. We start by proving another useful

lemma.

Lemma 4.4 For 2 ≤ k ≤ n the following recurrence holds:

D(n, k) = (k − 1)D(n− 1, k) + kD(n− 1, k − 1).

In addition, D(n, n) = n!, D(n, 1) = 0 for n > 1, and D(n, k) = 0 for k > n.

Proof Clearly, D(n, n) = n! since walks of length n − 1 correspond to permutations of vertices.
If n > 1 then D(n, 1) = 0, since K1 does not contain any edges. If k > n, D(n, k) = 0 since a walk
of length n− 1 can pass through at most n vertices.

Now let 2 ≤ k ≤ n. Denote as v(w) the number of different vertices covered by walk w. Let w
be a walk of length n − 1 with v(w) = k and let w′ be a walk obtained by taking the first n − 1
vertices of walk w. Then v(w′) is either k or k − 1.

Every walk w′ of length n− 2 with v(w′) = k can be extended to a walk w of length n− 1 in
Kk in k − 1 ways, because as the last vertex of w we can use any vertex except the last vertex of
w′. Therefore there are (k − 1)D(n− 1, k) different walks w in Kk with property v(w′) = k.

On the other hand if v(w′) = k − 1, we can create a walk w′′ in Kk−1 by renumbering the
vertices in w′ so that only numbers {1, . . . , k − 1} are used (if the vertex missing in w′ is i, we
replace j by j−1 for every vertex j > i). The same representative w′′ is shared by k different walks
w, because to create w from w′′, we need to choose the missing vertex i from all k possibilities,
renumber vertices to get w′ and then to add the missing vertex i at the end of the walk. Therefore
there are kD(n − 1, k − 1) walks with the property v(w′) = k − 1. Combining the two cases we
get the desired recurrence.

7



Proof of lemma 4.3 Assume that k ≥ 3. Clearly, D(n, k) ≤ k(k − 1)n−1, since k(k − 1)n−1 is
the number of all walks of length n− 1 in Kk. However, this number includes also walks avoiding
some vertices. The number of such walks can be bounded from above by k(k−1)(k−2)n−1 where
we choose one of the k vertices to avoid and then consider all possible walks on the remaining k−1
vertices. In this way we count some walks multiple times, nonetheless by Bonferroni inequality we
obtain bound D(n, k) ≥ k(k − 1)n−1 − k(k − 1)(k − 2)n−1.

For k ≥ 4 we therefore have that if (k− 1)(k− 2)n−1 < k(k− 1)n−1− k(k− 1)(k− 2)n−1, then
D(n, k − 1) < D(n, k). By taking logarithm of both sides of the inequality we obtain n > f(k)

where f(k) = 1 + ln(k2−1)−ln k
ln(k−1)−ln(k−2) . Let n = df(k)e for some k ≥ 4 and consider row n in Table

1. We have that D(n, k − 1) < D(n, k) and since function f is increasing, we also we have that
D(n, k′ − 1) < D(n, k′) for all k′ ≤ k (we have proved it only for k′ ≥ 4, but it is easy to see
that it is also true for 2 ≤ k′ ≤ 3). The maximum in row n is therefore achieved at some position
Mn ≥ k. Recall, that nk is the smallest n such that Mn ≥ k. Therefore nk ≤ df(k)e. The function
k ln k/f(k) is decreasing and its limit is 1 as k approaches ∞. Therefore df(k)e ≤ dk ln ke, which
gives us the inequality nk ≤ dk ln ke. This inequality can also be easily verified for k < 4. Since
Mn ≤ n, we also have Mnk

≤ dk ln ke.
We can compute nk and Mnk

by filling in table D(m, j) for all values of m and j up to
dk ln ke using the recurrence from lemma 4.4. Since D(n, k) ≤ kn ≤ nn, we can store D(m, j)
in O(kpolylog(k)) bits. Therefore computing the desired values nk and Mnk

can be done in
polynomial time.

By using the same reduction as in Theorem 4, we can also prove NP-hardness of the following
variant of the problem, in which we restrict the size of the set of states S.

Corollary 4.1 The following problem is NP-hard: Given is an HMM H, sequence X of length
n, integer k and a number p ∈ [0, 1] and the task to decide if there exists a set of states S of size
exactly k such that Pr (s(π) = S,X | H,n) ≥ p.

Note that it is not clear if the most probable set of states problem is in NP. In particular, given
a set of states S, it is NP-hard to find out if its probability is greater than some threshold p, even
if this threshold is 0, as we show next.

Theorem 4.5 Given HMM H, sequence X of length n and a subset of state space S, the problem
of deciding if Pr (s(π) = S,X | H,n) is non-zero is NP-complete.

Proof Let G = (V,E) be a graph and HG be the corresponding graph HMM as in Definition 4.1.
Let X = 0|V |. Any state path that can generate X and contains all vertices from V contains each
vertex exactly once. It is easy to see that Pr (s(π) = V,X | HG, |X|) > 0 if and only if G contains
a Hamiltonian path.

Unlike the most probable footprint problem, which was NP-hard even for a fixed HMM of a
constant size, the most probable set problem is fixed-parameter tractable with respect to the size
of the HMM. Given an HMM with m states and a sequence of length n, we can find the most
probable set of states in time O(2mm2n) by a dynamic programming algorithm similar to the
Forward algorithm. We define F [i, S, v] to be the sum of probabilities of all states paths π of
length i such that s(π) = S, π ends in state v and generates the first i characters of sequence X.
To compute F [n, S, v] we use the following equation:

F [i, S, v] =


I(v)e(v,X[1]) i = 1, S = {v}∑
u→v

a(u, v)e(v,X[i]) (F [i− 1, S\{v}, u] + F [i− 1, S, u]) i > 1, v ∈ S

0 otherwise
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5 The Most Probable State Restriction

In the most probable set problem, we consider only paths that use each state in the set. In
some situations it is more natural to allow paths to use only some of these states, as in the most
probable restriction problem. However, the full set of states of the model is trivially the most
probable restriction. To get a meaningful problem definition, we restrict the size of the restriction
to be k. As we will show, this problem is also NP-hard.

Theorem 5.1 The following problem is NP-complete: Given is an HMM H, sequence X, integer
k and number p ∈ [0, 1]. Determine if there is a subset of states S of size k such that Pr(s(π) ⊆
S,X | H, |X|) ≥ p.

Proof We will prove NP-hardness by a reduction from 3-SAT. Consider an instance of 3-SAT
with the set of variables U = {u1, u2, . . . , un} and the set of clauses C = {c1, c2, . . . , cm}. Based
on sets U and C, we construct an HMM H as follows. The set of states V will contain all positive
and negative literals. The emission alphabet Σ contains all clauses, all variables and a special
error symbol ψ. The initial probability I(v) of each state is 1/(2n), and the transition probability
a(u, v) between any two states is also 1/(2n). State for a literal u emits with probability 1/|Σ|
every clause that contains u. State for literal u also generates the positive form of the literal with
probability 1/|Σ|. Finally, to achieve the sum of emission probabilities to be one, it also generates
the error symbol with probability 1−∑x∈C∪U e(v, x).

Based on the SAT instance, we also create string X = u1u2 . . . unc1c2 . . . cm and set the size of
the restriction k to equal the number of variables n. Every state path π that can generate X has
probability (2n|Σ|)−|X|, we set threshold p to this value. The first part of sequence X contains
all variables, and variable ui can be generated only by states ui and ūi. Therefore one of these
two states needs to be in the path. Since the first portion of the path already traverses k different
states, only these states can be used to emit the second part of the sequence. Every clause can be
emitted only by states for literals that satisfy it. The set of states used by a particular state path
with non-zero probability therefore corresponds to a satisfying assignment in a straightforward
way. The HMM has a restriction of size k with probability at least p if and only if the 3-SAT
instance has a satisfying assignment.

Note that given a restriction S, we can easily verify if its probability is at least p by a variant
of the Forward algorithm in which we allow only states in S. Therefore the problem is in NP.

6 Conclusion

In this paper, we have proved NP-hardness of three HMM decoding problems. The most probable
footprint problem can be viewed as a special case of the most probable ball problem under the
border shift distance considered by Brown and Truszkowski (2010). In this problem, we sum
probabilities of all labelings that have the same footprint and differ in positions of all feature
boundaries by at most d. Brown and Truszkowski (2010) observe that if the HMM is allowed to
contain multiple states of the same label, the most probable ball problem is NP-hard even for
d = 0. If d ≥ n, where n is the length of the input sequence, the most probable ball problem
is equivalent to the most probable footprint problem. Therefore, our results imply NP hardness
of the most probable ball problem for large values of d even in HMMs in which each state has a
unique label. However, it is open if the problem is NP hard even for small values of d in such
HMMs.

In spite of their hardness, we have demonstrated that the studied problems do have practical
applications, even if we have to resort to heuristics in order to solve them. From a practical
point of view, it would be useful to explore better heuristic approaches, or even approximation
algorithms with provable bounds. It is also of interest to study if polynomial algorithms exist for
some special classes of HMMs. For example, as pointed out by Brown and Truszkowski (2010),
the most probable footprint problem is polynomially solvable in HMMs with two states or two
labels, because a sequence of length n has only 2n possible footprints.
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