
Information Processing Letters 115 (2015) 913–916
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A faster algorithm for the cluster editing problem on proper

interval graphs

Min Chih Lin a,∗, Francisco J. Soulignac b, Jayme L. Szwarcfiter c,d

a CONICET and Departamento de Computación, Universidad de Buenos Aires, Argentina
b CONICET and Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina
c Instituto de Matemática, NCE and COPPE, Universidade Federal do Rio de Janeiro, Brazil
d Instituto Nacional de Metrologia, Qualidade e Tecnologia, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 December 2014
Received in revised form 21 July 2015
Accepted 21 July 2015
Available online 26 July 2015
Communicated by B. Doerr

Keywords:
Graph algorithms
Cluster editing problem
Proper interval models
Linear space algorithm

We develop a linear-space O (n + m) time algorithm to solve the cluster editing problem
for proper interval models, where n and m are the number of vertices and edges of the
represented graph.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Data clustering based on graphs is a relevant topic with
applications in different areas, for instance, computational
biology. In general terms, the problem consists of trans-
forming a graph into a set of clusters, that is a subset of
vertices similar in some way. The process of transforma-
tion consists of removing or adding edges to the original
graph. In general, the term edge edit is employed to mean
either an edge removal or addition.

The most common and extensively studied clustering
problem is that of transforming a graph into a set of dis-
joint cliques, by edge edits. In this case, each cluster corre-
sponds to a disjoint clique. A natural parameter to measure
the effort of this transformation is that of counting the
number of edits. The corresponding Cluster editing prob-

* Corresponding author.
E-mail addresses: oscarlin@dc.uba.ar (M.C. Lin),

francisco.soulignac@unq.edu.ar (F.J. Soulignac), jayme@nce.ufrj.br
(J.L. Szwarcfiter).
http://dx.doi.org/10.1016/j.ipl.2015.07.009
0020-0190/© 2015 Elsevier B.V. All rights reserved.
lem, whose goal is to determine whether an input graph G
can be transformed into a set of disjoint cliques by at
most k edge edits, was proven NP-hard by Křivánek and
Morávek [1] (see also [2]).

In spite of its hardness, the problem was proved to be
fixed-parameter tractable, a result that follows from [3].
It admits a kernel having at most 2k vertices, which can
be constructed in O (nm) time, employing an algorithm
by Chen and Meng [4]. Alternatively, a kernel with O (k2)

vertices can be obtained in O (n + m) time [5]. Other
possible parameterizations have been considered by Dam-
aschke [6] and Komusiewicz and Uhlmann [7]. An exact
algorithm of complexity O ∗(1.62k) has been described by
Böcker [8]. ILP formulations of the Cluster editing prob-
lem have been proposed by Böcker et al. [9], while heuris-
tics have recently been described by Bastos et al. [10].
A generalization of the original cluster editing so as to al-
low overlaps among the clusters has been considered by
Damaschke [11] and Fellows et al. [12]. There is also an ex-
tensive literature on the related clustering problem, where
only edge removals are allowed (e.g. [7]). See [13] for a
recent review, with several complexity results.

http://dx.doi.org/10.1016/j.ipl.2015.07.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:oscarlin@dc.uba.ar
mailto:francisco.soulignac@unq.edu.ar
mailto:jayme@nce.ufrj.br
http://dx.doi.org/10.1016/j.ipl.2015.07.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.07.009&domain=pdf

914 M.C. Lin et al. / Information Processing Letters 115 (2015) 913–916
The extensive literature on FPT algorithms for solving
the Cluster editing problem apparently does not extend
in the same degree to polynomial time solvable cases. One
of these polynomial time cases is that of proper interval
graphs. Mannaa [14] described an algorithm of time and
space complexity O (n2) for the latter class.

The reason why proper interval graphs are of interest
for the Cluster editing problem is because each vertex of
a proper interval graph can be associated to a point of the
real line in such a way that two vertices are adjacent if and
only if their corresponding points are at distance at most
one (see [15]). So, similarity between vertices is expressed
by the distance of their corresponding points.

In the present paper, we describe a variation of Man-
naa’s dynamic programming algorithm, which reduces its
complexity to O (n + m) time and O (n) space.

A cluster graph C is a graph whose components
C1, . . . , Ck are cliques. Every cluster graph C is uniquely
represented by the family C = {C1, . . . , Ck}. A clustering of a
graph G is simply a partition of its vertex set; each mem-
ber of a clustering C is a cluster of C. The value of C is the
number val(C) of edits required to transform G into the
cluster graph represented by C. The optimal value for G is
opt(G) = min{val(C) | C is a clustering of G}. Those clus-
terings of G with value opt(G) are referred to as optimal.
With this terminology, Cluster editing is the problem of
finding an optimal clustering of G .

We use a convenient representation of proper interval
graphs (see Fig. 1). A rightmost function (of order n) is a
nondecreasing function r: {1, . . . , n} → {1, . . . , n} such that
r(i) ≥ i for every 1 ≤ i ≤ n; note that r(n) = n. The left-
most function associated to r is the nondecreasing function
�: {1, . . . , n} → {1, . . . , n} such that �(i) = min{ j | i ≤ r(j)}
for every 1 ≤ i ≤ n; note that �(1) = 1 and �(i) ≤ i for ev-
ery 1 < i ≤ n. Each rightmost function r defines a graph
G(r) with vertex set {v1, . . . , vn} where vi is adjacent to
v j �= vi if and only if �(i) ≤ j ≤ r(i). A graph G is a proper
interval (PIG) graph when it is isomorphic to G(r) for some
rightmost function r. In such a case, we say that G admits
(�, r), whereas (�, r) is a straight representation of G . For
the sake of notation, we assume the vertices of a PIG graph
are always v1, . . . , vn . It is not hard to see that a graph is
PIG if and only if it is the intersection graph of a family of
inclusion-free intervals on the real line (see Fig. 1 or [16]).
In fact, the recognition algorithm by Deng et al. [16] out-
puts a straight representation for any input PIG graph.

Let G be a graph with a straight representation (�, r).
We write d(j) = j − �(j) for every 1 ≤ j ≤ n, i.e., d(j) is
the number of neighbors of v j in v1, . . . , v j−1. For 0 ≤
i ≤ j ≤ n, we denote by Gi, j the subgraph of G induced
by vi+1, . . . , v j , while mi, j is the number of edges of Gi, j .
(We exclude vi from Gi, j to simplify index manipulation
below.) For the special case i = 0, we write G j = G0, j and
m j = m0, j , so m = mn . Note that G0 is an empty graph that
has no vertices and m0 = 0 edges; we need G0 in order to
deal with the base case of the recurrence relation defining
the dynamic programming algorithm.
2. The algorithm

In this section we improve Mannaa’s algorithm by re-
ducing its time and space complexity. Both the algorithm
by Mannaa and our implementation are based on the fol-
lowing theorem, which has been originally conjectured by
Damaschke, see [14].

Theorem 1. (See [14].) Every PIG graph admits an optimal clus-
tering in which:

each cluster consists of vi+1, . . . , v j

for some 0 ≤ i < j ≤ n. (cons)

Remark 1. A word of caution is required here. As defined
in Section 1, the ordering v1, . . . , vn depends on which
straight representation (�, r) of G is taken. The article by
Mannaa, however, is described in terms of some restricted
PIG models. Every PIG model defines a so-called PIG or-
dering of the vertices of G . The original version of The-
orem 1 [14] holds only for those PIG orders defined by
unitary PIG models. However, Roberts [15] proved that ev-
ery connected PIG graph admits at most two PIG orderings,
one the reverse of the other, and it is a well known fact
that v1, . . . , vn is a PIG ordering of G (e.g. [16]). Thus, The-
orem 1 holds for v1, . . . , vn as well. �

For 0 ≤ i ≤ j ≤ n, let:

• mi, j = (j−i
2

)−mi, j be the number of non-edges of Gi, j ,
i.e., the number of edges that must be inserted to
transform Gi, j into a clique, and

• cuti, j be the number of edges of G joining a vertex
in {v1, . . . , vi} with a vertex in {vi+1, . . . , v j}, i.e., the
number of edges that must be removed so as to dis-
connect Gi, j from Gi .

We can compute opt(G) = opt(Gn) with the recurrence re-
lation of the next theorem.

Theorem 2. For every 0 ≤ j ≤ n

opt(G j)

=
{

0 if j ≤ 1
min

j−2d(j)−1≤i< j
{opt(Gi) + mi, j + cuti, j} otherwise

(1)

Proof. The theorem is true for j = 1; suppose j > 1 and
let:

• C j be an optimal clustering for G j satisfying (cons),
and

• C = {vi+1, . . . , v j} be the cluster of C j that con-
tains v j .

Consider the clustering C obtained from C j by splitting
C into C \ {v j} and {v j}. (If j = i + 1, then C = C j .) By
definition, v j is adjacent to min{d(j), j − i − 1} vertices of

M.C. Lin et al. / Information Processing Letters 115 (2015) 913–916 915
Fig. 1. (a) The graph G(r) corresponding to the rightmost function r = {1 �→ 3, 2 �→ 5, 3 �→ 5, 4 �→ 6, 5 �→ 7, 6 �→ 7, 7 �→ 7}. The leftmost function � associated
to r is {1 �→ 1, 2 �→ 1, 3 �→ 1, 4 �→ 2, 5 �→ 2, 6 �→ 4, 7 �→ 5}. For every rightmost function r, G(r) is the intersection graph of the family of inclusion-free
intervals {[i, r(i) + iε] | 1 ≤ i ≤ n} for a small enough ε . (b) Conversely, any family I of inclusion-free intervals [s1, t1], . . . , [sn, tn] with s1 < . . . < sn defines
a rightmost function r such that r(i) = j when s j < ti < s j+1, for every 1 ≤ i ≤ n. If G is the intersection graph of I, then G is isomorphic to G(r).
C \ {v j}, and it is not adjacent to max{ j − i − 1 − d(j), 0}
vertices of C \ {v j}. Thus,

val(C) = val(C j) + min{d(j), j − i − 1}
− max{ j − i − 1 − d(j),0}.

Since C j is optimal, we have val(C) ≥ val(C j), thus

i ≥ j − 2d(j) − 1 (2)

Next, observe that Ci = C j \ {C} is a clustering of Gi .
Then, by (2), it follows that

opt(G j) = val(Ci) + mi, j + cuti, j

≥ min
j−2d(j)−1≤i< j

{opt(Gi) + mi, j + cuti, j}.

For the other inequality, consider any optimal cluster-
ing Ck of Gk with j − 2d(j) − 1 ≤ k < j. Clearly, Ck ∪{{vk+1, . . . , v j}

}
is a clustering of G j , thus

opt(G j) ≤ min
j−2d(j)−1≤i< j

{opt(Gi) + mi, j + cuti, j} �

The next lemma proves that opt(G j) can be obtained
efficiently once opt(Gi) was computed for every 0 ≤ i < j.

Lemma 3. Let i, j ∈N be such that 0 ≤ i ≤ j ≤ n. If mi, . . . , m j

are given, then mi, j and cuti, j can be computed in O (1) time.

Proof. The lemma is true for i = 0 because m0, j = m j and
cut0, j = 0; suppose i > 0. By definition,

mi, j + cuti, j = m j − mi . (3)

To compute mi, j and cuti, j , we observe the following two
cases.

Case 1: j ≤ r(i).
In this case Gi, j has all the possible edges, thus

mi, j =
(

j − i

2

)
. (4)

Then, by (3) we obtain

cuti, j = m j − mi −
(

j − i

2

)
. (5)
Case 2: j > r(i).
This time, no vertex in {vr(i)+1, . . . , v j} is adjacent to a ver-
tex in {v1, . . . , vi}. Then, by (5), it follows that

cuti, j = cuti,r(i) = mr(i) − mi −
(

r(i) − i

2

)
. (6)

Therefore, by (3), it follows that

mi, j = m j − mr(i) +
(

r(i) − i

2

)
. (7)

By (4)–(7), we conclude that O (1) time is enough to
compute mi, j , mi, j , and cuti, j for any 0 ≤ i ≤ j ≤ n. �

Our algorithm finds opt(G j) and m j for every j =
0, . . . , n; the case j = 0 is trivial. For j > 0, suppose
opt(G j−2d(j)−1), . . . , opt(G j−1) and m j−2d(j)−1, . . . , m j−1
have been computed and can be accessed in O (1) time
each. Observe, on the one hand, that m j = m j−1 + d(j) =
m j−1 + j − �(j), thus it can be computed in O (1)

time. On the other hand, by Theorem 2, opt(G j) =
min j−2d(j)−1≤i< j{opt(Gi) + mi, j + cuti, j}, thus opt(G j) can
be obtained in O (d(j)) time by Lemma 3. Consequently,
O (n + m) time and O (max1≤ j≤n d(j)) space is required to
compute opt(Gn) when a straight representation (�, r) is
given as input.

3. Main theorem

We recall that a straight representation of a PIG
graph G can be obtained in O (n + m) time and O (n)

space [16]. The main theorem of this note then follows.

Theorem 4. There exists an O (n + m) time and O (n) space
algorithm that solves Cluster editing for PIG graphs.

When all the edges of G are given as part of the in-
put, our algorithm has linear time complexity. It remains
an open problem if we can solve Cluster editing in O (n)

time for a PIG graph when the straight representation is
known.

Acknowledgements

We thank the anonymous reviewers for their helpful
comments.

The first author was partially supported by UBA-
CyT Grant 20020120100058, and PICT ANPCyT Grants
2010-1970 and 2013-2205. The second author was par-
tially supported by PICT ANPCyT Grants 2010-1970 and

916 M.C. Lin et al. / Information Processing Letters 115 (2015) 913–916
2013-2205. The third author was partially supported by
CNPq and CAPES, research agencies.

References

[1] M. Křivánek, J. Morávek, NP-hard problems in hierarchical-tree clus-
tering, Acta Inform. 23 (3) (1986) 311–323, http://dx.doi.org/10.1007/
BF00289116.

[2] R. Shamir, R. Sharan, D. Tsur, Cluster graph modification problems,
Discrete Appl. Math. 144 (1–2) (2004) 173–182, http://dx.doi.org/
10.1016/j.dam.2004.01.007.

[3] L. Cai, Fixed-parameter tractability of graph modification problems
for hereditary properties, Inf. Process. Lett. 58 (4) (1996) 171–176,
http://dx.doi.org/10.1016/0020-0190(96)00050-6.

[4] J. Chen, J. Meng, A 2k kernel for the cluster editing problem,
J. Comput. Syst. Sci. 78 (1) (2012) 211–220, http://dx.doi.org/10.1016/
j.jcss.2011.04.001.

[5] F. Protti, M. Dantas da Silva, J.L. Szwarcfiter, Applying modular de-
composition to parameterized cluster editing problems, Theory Com-
put. Syst. 44 (1) (2009) 91–104, http://dx.doi.org/10.1007/s00224-
007-9032-7.

[6] P. Damaschke, Cluster editing with locally bounded modifications re-
visited, in: Combinatorial Algorithms, in: Lecture Notes in Computer
Science, vol. 8288, Springer, Heidelberg, 2013, pp. 433–437.

[7] C. Komusiewicz, J. Uhlmann, Cluster editing with locally bounded
modifications, Discrete Appl. Math. 160 (15) (2012) 2259–2270,
http://dx.doi.org/10.1016/j.dam.2012.05.019.
[8] S. Böcker, A golden ratio parameterized algorithm for cluster editing,
J. Discrete Algorithms 16 (2012) 79–89, http://dx.doi.org/10.1016/
j.jda.2012.04.005.

[9] S. Böcker, S. Briesemeister, G.W. Klau, Exact algorithms for clus-
ter editing: evaluation and experiments, Algorithmica 60 (2) (2011)
316–334, http://dx.doi.org/10.1007/s00453-009-9339-7.

[10] L. Bastos, L. Satoru Ochi, F. Protti, A. Subramanian, I.C. Martins,
R.G.S. Pinheiro, Efficient algorithms for cluster editing, J. Comb. Op-
tim. (2014), http://dx.doi.org/10.1007/s10878-014-9756-7, available
online.

[11] P. Damaschke, Fixed-parameter enumerability of cluster editing and
related problems, Theory Comput. Syst. 46 (2) (2010) 261–283,
http://dx.doi.org/10.1007/s00224-008-9130-1.

[12] M.R. Fellows, J. Guo, C. Komusiewicz, R. Niedermeier, J. Uhlmann,
Graph-based data clustering with overlaps, Discrete Optim. 8 (1)
(2011) 2–17, http://dx.doi.org/10.1016/j.disopt.2010.09.006.

[13] S. Böcker, J. Baumbach, Cluster editing, in: The Nature of Computa-
tion. Logic, Algorithms, Applications, in: Lecture Notes in Computer
Science, vol. 7921, Springer, Heidelberg, 2013, pp. 33–44.

[14] B. Mannaa, Cluster editing problem for points on the real line:
a polynomial time algorithm, Inf. Process. Lett. 110 (21) (2010)
961–965, http://dx.doi.org/10.1016/j.ipl.2010.08.002.

[15] F.S. Roberts, Indifference graphs, in: Proof Techniques in Graph The-
ory (Proc. Second Ann Arbor Graph Theory Conf.), Ann Arbor, Mich.,
1968, Academic Press, New York, 1969, pp. 139–146.

[16] X. Deng, P. Hell, J. Huang, Linear-time representation algo-
rithms for proper circular-arc graphs and proper interval graphs,
SIAM J. Comput. 25 (2) (1996) 390–403, http://dx.doi.org/10.1137/
S0097539792269095.

http://dx.doi.org/10.1007/BF00289116
http://dx.doi.org/10.1016/j.dam.2004.01.007
http://dx.doi.org/10.1016/0020-0190(96)00050-6
http://dx.doi.org/10.1016/j.jcss.2011.04.001
http://dx.doi.org/10.1007/s00224-007-9032-7
http://refhub.elsevier.com/S0020-0190(15)00131-3/bib44616D617363686B6532303133s1
http://refhub.elsevier.com/S0020-0190(15)00131-3/bib44616D617363686B6532303133s1
http://refhub.elsevier.com/S0020-0190(15)00131-3/bib44616D617363686B6532303133s1
http://dx.doi.org/10.1016/j.dam.2012.05.019
http://dx.doi.org/10.1016/j.jda.2012.04.005
http://dx.doi.org/10.1007/s00453-009-9339-7
http://dx.doi.org/10.1007/s10878-014-9756-7
http://dx.doi.org/10.1007/s00224-008-9130-1
http://dx.doi.org/10.1016/j.disopt.2010.09.006
http://refhub.elsevier.com/S0020-0190(15)00131-3/bib426F636B65724261756D6261636832303133s1
http://refhub.elsevier.com/S0020-0190(15)00131-3/bib426F636B65724261756D6261636832303133s1
http://refhub.elsevier.com/S0020-0190(15)00131-3/bib426F636B65724261756D6261636832303133s1
http://dx.doi.org/10.1016/j.ipl.2010.08.002
http://refhub.elsevier.com/S0020-0190(15)00131-3/bib526F626572747331393639s1
http://refhub.elsevier.com/S0020-0190(15)00131-3/bib526F626572747331393639s1
http://refhub.elsevier.com/S0020-0190(15)00131-3/bib526F626572747331393639s1
http://dx.doi.org/10.1137/S0097539792269095
http://dx.doi.org/10.1007/BF00289116
http://dx.doi.org/10.1016/j.dam.2004.01.007
http://dx.doi.org/10.1016/j.jcss.2011.04.001
http://dx.doi.org/10.1007/s00224-007-9032-7
http://dx.doi.org/10.1016/j.jda.2012.04.005
http://dx.doi.org/10.1137/S0097539792269095

	A faster algorithm for the cluster editing problem on proper interval graphs
	1 Introduction
	2 The algorithm
	3 Main theorem
	Acknowledgements
	References

