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We develop a linear-space O (n + m) time algorithm to solve the cluster editing problem 
for proper interval models, where n and m are the number of vertices and edges of the 
represented graph.
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1. Introduction

Data clustering based on graphs is a relevant topic with 
applications in different areas, for instance, computational 
biology. In general terms, the problem consists of trans-
forming a graph into a set of clusters, that is a subset of 
vertices similar in some way. The process of transforma-
tion consists of removing or adding edges to the original 
graph. In general, the term edge edit is employed to mean 
either an edge removal or addition.

The most common and extensively studied clustering 
problem is that of transforming a graph into a set of dis-
joint cliques, by edge edits. In this case, each cluster corre-
sponds to a disjoint clique. A natural parameter to measure 
the effort of this transformation is that of counting the 
number of edits. The corresponding Cluster editing prob-
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lem, whose goal is to determine whether an input graph G
can be transformed into a set of disjoint cliques by at 
most k edge edits, was proven NP-hard by Křivánek and 
Morávek [1] (see also [2]).

In spite of its hardness, the problem was proved to be 
fixed-parameter tractable, a result that follows from [3]. 
It admits a kernel having at most 2k vertices, which can 
be constructed in O (nm) time, employing an algorithm 
by Chen and Meng [4]. Alternatively, a kernel with O (k2)

vertices can be obtained in O (n + m) time [5]. Other 
possible parameterizations have been considered by Dam-
aschke [6] and Komusiewicz and Uhlmann [7]. An exact 
algorithm of complexity O ∗(1.62k) has been described by 
Böcker [8]. ILP formulations of the Cluster editing prob-
lem have been proposed by Böcker et al. [9], while heuris-
tics have recently been described by Bastos et al. [10]. 
A generalization of the original cluster editing so as to al-
low overlaps among the clusters has been considered by 
Damaschke [11] and Fellows et al. [12]. There is also an ex-
tensive literature on the related clustering problem, where 
only edge removals are allowed (e.g. [7]). See [13] for a 
recent review, with several complexity results.
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The extensive literature on FPT algorithms for solving 
the Cluster editing problem apparently does not extend 
in the same degree to polynomial time solvable cases. One 
of these polynomial time cases is that of proper interval 
graphs. Mannaa [14] described an algorithm of time and 
space complexity O (n2) for the latter class.

The reason why proper interval graphs are of interest 
for the Cluster editing problem is because each vertex of 
a proper interval graph can be associated to a point of the 
real line in such a way that two vertices are adjacent if and 
only if their corresponding points are at distance at most 
one (see [15]). So, similarity between vertices is expressed 
by the distance of their corresponding points.

In the present paper, we describe a variation of Man-
naa’s dynamic programming algorithm, which reduces its 
complexity to O (n + m) time and O (n) space.

A cluster graph C is a graph whose components
C1, . . . , Ck are cliques. Every cluster graph C is uniquely 
represented by the family C = {C1, . . . , Ck}. A clustering of a 
graph G is simply a partition of its vertex set; each mem-
ber of a clustering C is a cluster of C. The value of C is the 
number val(C) of edits required to transform G into the 
cluster graph represented by C. The optimal value for G is 
opt(G) = min{val(C) | C is a clustering of G}. Those clus-
terings of G with value opt(G) are referred to as optimal. 
With this terminology, Cluster editing is the problem of 
finding an optimal clustering of G .

We use a convenient representation of proper interval 
graphs (see Fig. 1). A rightmost function (of order n) is a 
nondecreasing function r: {1, . . . , n} → {1, . . . , n} such that 
r(i) ≥ i for every 1 ≤ i ≤ n; note that r(n) = n. The left-
most function associated to r is the nondecreasing function 
�: {1, . . . , n} → {1, . . . , n} such that �(i) = min{ j | i ≤ r( j)}
for every 1 ≤ i ≤ n; note that �(1) = 1 and �(i) ≤ i for ev-
ery 1 < i ≤ n. Each rightmost function r defines a graph 
G(r) with vertex set {v1, . . . , vn} where vi is adjacent to 
v j �= vi if and only if �(i) ≤ j ≤ r(i). A graph G is a proper 
interval (PIG) graph when it is isomorphic to G(r) for some 
rightmost function r. In such a case, we say that G admits
(�, r), whereas (�, r) is a straight representation of G . For 
the sake of notation, we assume the vertices of a PIG graph 
are always v1, . . . , vn . It is not hard to see that a graph is 
PIG if and only if it is the intersection graph of a family of 
inclusion-free intervals on the real line (see Fig. 1 or [16]). 
In fact, the recognition algorithm by Deng et al. [16] out-
puts a straight representation for any input PIG graph.

Let G be a graph with a straight representation (�, r). 
We write d( j) = j − �( j) for every 1 ≤ j ≤ n, i.e., d( j) is 
the number of neighbors of v j in v1, . . . , v j−1. For 0 ≤
i ≤ j ≤ n, we denote by Gi, j the subgraph of G induced 
by vi+1, . . . , v j , while mi, j is the number of edges of Gi, j . 
(We exclude vi from Gi, j to simplify index manipulation 
below.) For the special case i = 0, we write G j = G0, j and 
m j = m0, j , so m = mn . Note that G0 is an empty graph that 
has no vertices and m0 = 0 edges; we need G0 in order to 
deal with the base case of the recurrence relation defining 
the dynamic programming algorithm.
2. The algorithm

In this section we improve Mannaa’s algorithm by re-
ducing its time and space complexity. Both the algorithm 
by Mannaa and our implementation are based on the fol-
lowing theorem, which has been originally conjectured by 
Damaschke, see [14].

Theorem 1. (See [14].) Every PIG graph admits an optimal clus-
tering in which:

each cluster consists of vi+1, . . . , v j

for some 0 ≤ i < j ≤ n. (cons)

Remark 1. A word of caution is required here. As defined 
in Section 1, the ordering v1, . . . , vn depends on which 
straight representation (�, r) of G is taken. The article by 
Mannaa, however, is described in terms of some restricted 
PIG models. Every PIG model defines a so-called PIG or-
dering of the vertices of G . The original version of The-
orem 1 [14] holds only for those PIG orders defined by 
unitary PIG models. However, Roberts [15] proved that ev-
ery connected PIG graph admits at most two PIG orderings, 
one the reverse of the other, and it is a well known fact 
that v1, . . . , vn is a PIG ordering of G (e.g. [16]). Thus, The-
orem 1 holds for v1, . . . , vn as well. �

For 0 ≤ i ≤ j ≤ n, let:

• mi, j = ( j−i
2

)−mi, j be the number of non-edges of Gi, j , 
i.e., the number of edges that must be inserted to 
transform Gi, j into a clique, and

• cuti, j be the number of edges of G joining a vertex 
in {v1, . . . , vi} with a vertex in {vi+1, . . . , v j}, i.e., the 
number of edges that must be removed so as to dis-
connect Gi, j from Gi .

We can compute opt(G) = opt(Gn) with the recurrence re-
lation of the next theorem.

Theorem 2. For every 0 ≤ j ≤ n

opt(G j)

=
{

0 if j ≤ 1
min

j−2d( j)−1≤i< j
{opt(Gi) + mi, j + cuti, j} otherwise

(1)

Proof. The theorem is true for j = 1; suppose j > 1 and 
let:

• C j be an optimal clustering for G j satisfying (cons), 
and

• C = {vi+1, . . . , v j} be the cluster of C j that con-
tains v j .

Consider the clustering C obtained from C j by splitting 
C into C \ {v j} and {v j}. (If j = i + 1, then C = C j .) By 
definition, v j is adjacent to min{d( j), j − i − 1} vertices of 
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Fig. 1. (a) The graph G(r) corresponding to the rightmost function r = {1 �→ 3, 2 �→ 5, 3 �→ 5, 4 �→ 6, 5 �→ 7, 6 �→ 7, 7 �→ 7}. The leftmost function � associated 
to r is {1 �→ 1, 2 �→ 1, 3 �→ 1, 4 �→ 2, 5 �→ 2, 6 �→ 4, 7 �→ 5}. For every rightmost function r, G(r) is the intersection graph of the family of inclusion-free 
intervals {[i, r(i) + iε] | 1 ≤ i ≤ n} for a small enough ε . (b) Conversely, any family I of inclusion-free intervals [s1, t1], . . . , [sn, tn] with s1 < . . . < sn defines 
a rightmost function r such that r(i) = j when s j < ti < s j+1, for every 1 ≤ i ≤ n. If G is the intersection graph of I, then G is isomorphic to G(r).
C \ {v j}, and it is not adjacent to max{ j − i − 1 − d( j), 0}
vertices of C \ {v j}. Thus,

val(C) = val(C j) + min{d( j), j − i − 1}
− max{ j − i − 1 − d( j),0}.

Since C j is optimal, we have val(C) ≥ val(C j), thus

i ≥ j − 2d( j) − 1 (2)

Next, observe that Ci = C j \ {C} is a clustering of Gi . 
Then, by (2), it follows that

opt(G j) = val(Ci) + mi, j + cuti, j

≥ min
j−2d( j)−1≤i< j

{opt(Gi) + mi, j + cuti, j}.

For the other inequality, consider any optimal cluster-
ing Ck of Gk with j − 2d( j) − 1 ≤ k < j. Clearly, Ck ∪{{vk+1, . . . , v j}

}
is a clustering of G j , thus

opt(G j) ≤ min
j−2d( j)−1≤i< j

{opt(Gi) + mi, j + cuti, j} �

The next lemma proves that opt(G j) can be obtained 
efficiently once opt(Gi) was computed for every 0 ≤ i < j.

Lemma 3. Let i, j ∈N be such that 0 ≤ i ≤ j ≤ n. If mi, . . . , m j

are given, then mi, j and cuti, j can be computed in O (1) time.

Proof. The lemma is true for i = 0 because m0, j = m j and 
cut0, j = 0; suppose i > 0. By definition,

mi, j + cuti, j = m j − mi . (3)

To compute mi, j and cuti, j , we observe the following two 
cases.

Case 1: j ≤ r(i).
In this case Gi, j has all the possible edges, thus

mi, j =
(

j − i

2

)
. (4)

Then, by (3) we obtain

cuti, j = m j − mi −
(

j − i

2

)
. (5)
Case 2: j > r(i).
This time, no vertex in {vr(i)+1, . . . , v j} is adjacent to a ver-
tex in {v1, . . . , vi}. Then, by (5), it follows that

cuti, j = cuti,r(i) = mr(i) − mi −
(

r(i) − i

2

)
. (6)

Therefore, by (3), it follows that

mi, j = m j − mr(i) +
(

r(i) − i

2

)
. (7)

By (4)–(7), we conclude that O (1) time is enough to 
compute mi, j , mi, j , and cuti, j for any 0 ≤ i ≤ j ≤ n. �

Our algorithm finds opt(G j) and m j for every j =
0, . . . , n; the case j = 0 is trivial. For j > 0, suppose 
opt(G j−2d( j)−1), . . . , opt(G j−1) and m j−2d( j)−1, . . . , m j−1
have been computed and can be accessed in O (1) time 
each. Observe, on the one hand, that m j = m j−1 + d( j) =
m j−1 + j − �( j), thus it can be computed in O (1)

time. On the other hand, by Theorem 2, opt(G j) =
min j−2d( j)−1≤i< j{opt(Gi) + mi, j + cuti, j}, thus opt(G j) can 
be obtained in O (d( j)) time by Lemma 3. Consequently, 
O (n + m) time and O (max1≤ j≤n d( j)) space is required to 
compute opt(Gn) when a straight representation (�, r) is 
given as input.

3. Main theorem

We recall that a straight representation of a PIG 
graph G can be obtained in O (n + m) time and O (n)

space [16]. The main theorem of this note then follows.

Theorem 4. There exists an O (n + m) time and O (n) space 
algorithm that solves Cluster editing for PIG graphs.

When all the edges of G are given as part of the in-
put, our algorithm has linear time complexity. It remains 
an open problem if we can solve Cluster editing in O (n)

time for a PIG graph when the straight representation is 
known.
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