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Abstract In this paper we present experiments in order to show how some
pseudo random number generators can improve the effectiveness of a statistical
cryptanalysis algorithm. We deduce mainly that a better generator enhance
the accuracy of the cryptanalysis algorithm.

Keywords Cryptanalysis · Markov Chain Monte Carlo · Pseudo Random
Number Generators

1 Introduction

Cryptography refers to the science that concerns encrypting data so that,
without a key, a third person other then the sender and the receiver can
not recover the secret data [1]. At the same time, cryptanalist try to break
cryptosystems in order to prove that there is a security flaw. According to
Kerckhoffs’ Principle, The method must not need to be kept secret, and having
it fall into the enemy’s hands should not cause problems [2]. In this paper we
deal with classical cryptosystems and try to improve a cryptanalysis algorithm
by pseudo random number generators. Classical cryptosystems operate at the
byte level of data where as the modern one at the bit level. Pseudo random
number generators have been deeply studied for their important applications in
computer science. This paper is organized as follows. the next sections present
Markov Chain Monte Carlo (mcmc) algorithm and a survey of the related
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theory. Some Pseudo Random Number Generators (prng) with their output
when applied to mcmc are given thereafter. We analyze those results and give
our interpretation in the following section.

2 Markov Chain Monte Carlo

In this section, we give the definition of Markov Chain Monte Carlo. If a
Markov chain Xn on a finite or countable state space X is irreducible and
aperiodic, with stationary distribution π, then for every subset A ⊆ X ,

lim
n→∞

P (X ∈ A) =

∫
A

π(x)dx

2.1 MCMC algorithm

In this section we rewrite the MCMC algorithm as described in [3].

– Choose an initial state X0 ∈ X , where X is the all possible states that the
Marov Chain may takes. In probability theory we call X the universe.

– For n = 1, 2, 3, ...
– Propose a new state Yn ∈ X from some symmetric proposal density q(Xn−1, ..., X0).
– Let Un Uniform[0, 1], independently of X0, ..., Xn−1, Yn.
– If Un < (π(Yn)/π(Xn−1)), then ”accept” the proposal by setting Xn = Yn,

otherwise ”reject” the proposal by setting Xn = Xn−1

2.2 An MCMC algorithm to break a substitution-transposition cryptosystem

Here is the final version of the MCMC algorithm in [3]. The authors, after a
deep study of MCMC, chose the best parameter that output the best decryp-
tion rate:

1. Choose an initial state (states here are all possible encryption keys), and
a fixed scaling parameter p > 0.

2. Repeat the following steps for many iterations (e.g. 10 000 iterations).
– Given the current state x, propose a new state y from some symmetric

density q(x, y).
– Sample Un Uniform[0, 1], independently from all other variables.
– If u < (π(y)/π(x))p, then ”accept” the proposal by replacing x with y,

otherwise reject y by leaving x unchanged.

π(x) =
∏
β1,β2

r(β1, β2)
fx(β1,β2)

where r is the frequencies of letters of the reference text and f are those of
the decrypted text using the key x.
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Table 1 drand48 prng

EN AC NSD

1 0.85 82
2 0.85 82
3 0.82 81
4 0.83 81
5 0.82 79

2.3 Testing methodology

We have tested the MCMC algorithm with different pseudo random number
generators. The obtained results in terms of accuracy and number of successful
decryption are given in the next paragraph.

3 drand48 pseudo random number generator

This generator generates a sequence of numbers according to this linear con-
gruence

Xn+1 = (aXn + c)modm

where a, c and m are constants.
Note that in table 1, the abbreviation are as follows:

– EN is the experience number, which refers to the five experiences done in
this paper,

– AC is the average correctness computed as follows. for each experience,
the text is encrypted with a different key and the cryptanalysis algorithm
is run. The cryptanalysis algorithm outputs a decryption key. The AC
measures the equality of the output of the cryptanalysis algorithm with
the actual encryption key, in the overall.

– NSD is the number of successful decryptions, which refers to the number
of successful decryptions out of the 100 performed for each experience.

4 xorshift pseudo random number generator

One of the properties of this generator is that it is a very fast algorithm with a
great period (2128 − 1) [4]. Also, as we see bellow, its design is simple. Also, it
has been proved that this generator is successful in tests measuring the quality
of a pseudo random number generator.

#include <stdint.h>

uint32_t xor128(void) {

static uint32_t x = 123456789;

static uint32_t y = 362436069;

static uint32_t z = 521288629;



4 O. Benamara, F. Merazka

Table 2 xorshift prng

EN AC NSD

1 0.896 89
2 0.9161 89
3 0.8933 89
4 0.9156 89
5 0.8811 89

Table 3 CI prng

EN AC NSD

1 0.8700 85
2 0.8744 82
3 0.88 87
4 0.8983 82
5 0.8478 87

static uint32_t w = 88675123;

uint32_t t;

t = x ^ (x << 11);

x = y; y = z; z = w;

return w = w ^ (w >> 19) ^ (t ^ (t >> 8));

}

Table 2 shows the obtained results.

Comparing 2 with 1 we can ay that .......

5 chaotic iteration (CI) pseudo random number generator

This generator is obtained from reference [5]. As shown in this later, this
generator bypass xorshift in some tests and a deep theoretical study proved
that this generator has good randomness properties. the obtained results are
tabulated in 3.

Here x is a binary array of length N .

a := XORshift1();

m := a mod 2 + c

for i = 0, . . . ,m do

b := XORshift2();

S := b mod N;

x[S] := 1 - x[S] mod 2;

end for

r := x;

return r;
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Comparing 3 with 2 and 1 we can say that the xorshift has better results
in all experiments in terms of AC and NSD.

6 Result discussion

In our experiments, we have shown that with different prng, the output of the
cryptanalysis algorithm MCMC is different. More the statistical properties
of the generator are better, more the accuracy and the number of successful
decryption are great. This is due to the fact that the resulting Markov Chain
has a better statistical behavior.

In the design of the MCMC algorithm, we see that prng plays a crucial role.
prng will be used in different steps of the algorithm. We use it to pick a number
in [0, 1] uniformly and to chose the initial state X0. The more those parameters
are random, the more Markov Chain generated is accurate. Therefore, a good
PRNG is of crucial importance in a MCMC.

Before picking any value Xn in the Markov Chain MA, we pick a random
number uniformly in [0, 1] as stated in the algorithm. Naturally, a good prng
will improve the convergence of the MC and a good prng will generate a MC
close to the theoretical expected result. As the quality of a prng is measured
with some standard tests, we may suppose that a prng generating good results
in our experiment is of better statistical property.

7 Conclusion

In this paper we presented our experiments on decryption of classical cryp-
tosystems. Our results show that xorshift prng are the most convenient to this
kind of application since with this later we obtain the highest scores. Pre-
vious studies showed that CI prng have the best statistical proprieties, but
surprisingly this does not implies that they are more suitable for all kind of
applications like those we have done in this work.
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