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Abstract. A group valued function on a graph is called balanced if the product
of its values along any cycle is equal to the identity element of the group. We
compute the number of balanced functions from edges and vertices of a directed
graph to a finite non-Abelian group.
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1 Introduction

Let G be a finite group with the group operation denoted by · and the identity element denoted
by 1. Let Γ be a graph. Roughly speaking, a G-valued function f on vertices and/or edges of
Γ is called balanced if the product of its values along any cycle of Γ is 1.

The study of balanced functions can be conducted in three cases:

1. The graph Γ is directed with the set of vertices V and the set of directed edges E. When
traveling between the vertices, we are allowed to travel with or against the direction
of the edges. The value of a function f on ē, which represents traveling the edge e
against its direction, is equal to (f(e))−1. In this context, when the function is defined
on edges only, the pair (Γ, f) is called a network or a directed network. In this paper
we shall call this the flexible case, meaning that the direction of an edge does not forbid
us to walk against it. In the case when the group G is Abelian (in particular Z or
R) the notion of balanced functions on edges for the flexible case, for functions taking
values only on the edges, is introduced in the literature under different names. Thus,
for example, in [1] the set of such functions is exactly Im(d), and in [12], in somewhat
different language, that set is referred to as the set of consistent graphs. In [14] such
functions have been introduced under the name “color-coboundaries”. Also they appear
in literature under the name “tensions”. They have been extensively studied, recent
examples include [3], [4], [6], [15], [11]. In [5] balanced C-valued functions on edges appear
in a certain connection with geometric representations of the Coxeter group associated
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with a graph. When the group G is Abelian, the set of balanced functions forms a group
in a natural way, the structure of this group was studied in [8]. In a rather common
terminology introduced by Zaslavsky, [16], a pair of a graph and such a function on edges
of a graph is called a gain graph.

2. The graph Γ is directed with the set of vertices V and the set of directed edges E, but
we are only allowed to travel with the direction of the edges. In this paper we shall
call this the rigid case. When f takes values only on the edges then in some literature,
following Serre, [13], the flexible case is described as a particular instance of the rigid
case by introducing the set E as the new set of directed edges of G (the cardinality of E is
twice that of E), denoting by ē ∈ E the inverse of the directed edge e ∈ E and requiring
f(ē) = (f(e))−1, [1], [13].

3. The graph Γ is undirected. The value of a function f on an edge e does not depend on
the direction of the travel on e. The case of balanced functions f : E → R is studied
in [2], where these functions are called “cycle-vanishing edge valuations”. For an Abelian
group A, the case of balanced functions f : V

⋃

E → A is first introduced and studied
in [10]. The group structure of the groups of balanced functions on edges, and balanced
functions on vertices and edges of an undirected graph with values in an Abelian group
is studied in [7].

Notice that if we take functions with values in a non-Abelian group then the sets of the
balanced function on edges and balanced functions on vertices and edges do not inherit any
natural group structure. However, to find the number of these functions for directed graphs
when the non-Abelian group is finite is possible, and we do it in the present paper.

In what follows we say that a directed graph is weakly connected if its underlying undirected
graph is connected.

For the basics of Graph Theory we refer to [9].

2 The flexible case

Let Γ = (V,E) be a weakly connected directed graph, possibly with loops and multiple edges.
Let v,w ∈ V be two vertices connected by an edge e; v is the origin of e and w is the endpoint
of e. For e ∈ E denote by ē the same edge as e but taken in the opposite direction. Thus ē
goes from w to v. Let E = {e, ē | e ∈ E}.

Definition 2.1. A path P from a vertex x to a vertex y is an alternating sequence v1, e1,
v2, e2,...,vn, en of vertices from V and different edges from E such that v1 = x and each ej ,
for j = 1, ..., n − 1, goes from vj to vj+1 and en goes from vn to y. We permit the same edge
e to appear in a path twice - one time along and one time against its direction, since this is
regarded as using two different edges from E.

We require our graphs to be weakly connected. Namely, any two different vertices of our
graph Γ can be connected by a path.

Definition 2.2. A path P from a vertex x to itself is called a cycle.

We permit the trivial cycle, which is the empty sequence containing no vertices and no edges.

Definition 2.3. The length of a cycle is the number of its edges.
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Definition 2.4. A function f : E → G such that f(ē) = (f(e))−1 is called balanced if the
product f(e1) · f(e2) · · · f(en) of the values of f over all the edges of any cycle of Γ is equal to
1.

Definition 2.5. The set of all the balanced functions f : E → G is denoted by FE(E, G).

Definition 2.6. A function h : V
⋃

E → G, which takes both vertices and edges of Γ to some
elements of G, is called balanced if h(ē) = (h(e))−1 and the product of its values h(v1) · h(e1) ·
h(v2) · h(e2) · · · h(vn) · h(en) along any cycle of Γ is 1.

Definition 2.7. The set of all the balanced functions h : V
⋃

E → G is denoted by FU(Γ, G).

Definition 2.8. The set of all involutions of G is denoted G2. I.e., G2 =
{

a ∈ G | a2 = 1
}

.

The set FE(E, G) is well understood and the following fact is well known.

Proposition 2.9. For a finite group G, the cardinality of the set FE(E, G) is equal to |G||V |−1.

Proof. Select a vertex v and notice that the number of all functions g : V → G such that
g(v) = 1 is equal to |G||V |−1. Consider the following bijection between the set of all G-valued
functions g on V with g(v) = 1 and the set FE(E, G). For any such g, since each edge e ∈ E

goes from some vertex x to some vertex y, we define f(e) = (g(x))−1 · g(y). A straightforward
calculation shows that f ∈ FE(E, G). In the other direction of the bijection, for f ∈ FE(E, G)
we inductively construct the function g as follows: we set g(v) = 1; if g(u) has been defined for
a vertex u then for every vertex w, for which there exists some edge e from u to w, we define
g(w) = g(u) · f(e). Since f ∈ FE(E, G), any two calculations of the value of g on any vertex u
will produce the same result. The weak connectivity implies that every vertex indeed receives
a value, and thus, our g is well-defined.

Our main result is the following.

Theorem 2.10. Let Γ = (V,E) be a weakly connected directed graph and Γ′ be its underlying

undirected graph. Then:

1. If Γ′ is bipartite, then |FU(V
⋃

E, G)| = |G||V |.

2. If Γ′ is not bipartite, then |FU(V
⋃

E, G)| = |G2| · |G||V |−1.

Proof. If Γ consists only of one vertex then part (1) of our theorem is trivial. Otherwise, let
us look at any one non-loop edge of Γ as it is depicted in Fig. 1:

a b
p //

Figure 1: An edge with values on it and on its origin and end.

The letters on the edge and the vertices denote the values of a function h : V
⋃

E →
G. Assume that h is balanced, i.e., h ∈ FU(V

⋃

E, G). Then for the cycle obtained by
walking along this edge and returning back along it we have the equation apbp−1 = 1, which
immediately implies that apb = p.
(1) Let Γ′ be bipartite. Then Γ does not have cycles of odd length.
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Let us construct a bijection between the sets FU(V
⋃

E, G) and {(a, f) | a ∈ G , f ∈ FE(E, G)}.
Such a bijection will imply |FU(V

⋃

E, G)| = |{(a, f) | a ∈ G , f ∈ FE(E, G)}| = |G| ·
|G||V |−1 = |G||V |. Let v1, e1, v2, e2 . . . , v2k, e2k be a cycle in Γ. Take h ∈ FU(V

⋃

E, G). Then
h(v1)·h(e1)·h(v2)·h(e2) · · · h(v2k)·h(e2k) = 1. As we noticed above, h(vj)·h(ej)·h(vj+1) = h(ej),
therefore, h(e1) · h(e2) · · · h(e2k) = 1. So, define f ∈ FE(E, G) as a restriction of h on
E, i.e., f(e) = h(e) for every e ∈ E. Now fix a certain vertex v, and correspond to our
h ∈ FU(V

⋃

E, G) the pair (h(v), f). Obviously, this correspondence is a bijection between
the sets FU(V

⋃

E, G) and {(a, f) | a ∈ G , f ∈ FE(E, G)}. Indeed, take a pair (a, f), where
a ∈ G and f ∈ FE(E, G) and define h(e) = f(e) for every e ∈ E and h(v) = a. Let e ∈ E be
an edge which goes from the chosen vertex v to a vertex w, put h(w) = h(e)−1a−1h(e). Since
Γ′ is connected, we can continue this way, and every vertex will receive a value, which depends
only on values of f on edges and on the element a ∈ G that we started with.
(2) Now assume that Γ′ is not bipartite. Then Γ has a cycle of odd length.

Let us construct a bijection between the sets FU(V
⋃

E, G) and {(a, f) | a ∈ G2 , f ∈
FE(E, G)}. Such a bijection will imply |FU(V

⋃

E, G)| = |{(a, f) | a ∈ G , f ∈ FE(E, G)}| =
|G2| · |G||V |−1. Let v1, e1, v2, e2 . . . , v2k+1, e2k+1 be a cycle of odd length in Γ. Take h ∈
FU(V

⋃

E, G). Then h(v1) ·h(e1) ·h(v2) ·h(e2) · · · h(v2k+1) ·h(e2k+1) = 1. Again, as we noticed
above, h(vj) · h(ej) · h(vj+1) = h(ej), therefore, h(e1) · h(e2) · · · h(e2k) · h(v2k+1) · h(e2k+1) = 1.
Since h(v2k+1) · h(e2k+1) · h(v1) = h(e2k+1), we get h(e1) · h(e2) · · · h(e2k) · h(e2k+1) = h(v1).
In the same way walking along this cycle in the opposite direction we get (h(e2k+1))

−1 ·
(h(e2k))

−1 · · · (h(e2))
−1 · (h(e1))

−1 = h(v1). Thus, h(v1) = (h(v1))
−1, i.e., h(v1) ∈ G2. To

obtain from h ∈ FU(V
⋃

E, G) a balanced function f on edges we do the following: define
f(e) = h(v)h(e) where the vertex v is the origin of the edge e. Since h is balanced on V

⋃

E it
is easy to see that f on E. So, to h ∈ FU(V

⋃

E, G) we correspond the pair (h(v1), f), where
h(v1) ∈ G2 and f ∈ FE(E, G).

Conversely, take a pair (a, f) where a ∈ G2 and f ∈ FE(E, G), and construct h ∈ FU(V
⋃

E, G)
as follows. Choose a vertex v put h(v) = a. For any edge e ∈ E which starts at the ver-
tex v put h(e) = h(v)f(e). Let w be the end of an edge e ∈ E whose origin is v. Put
h(w) = (h(e))−1h(v)h(e) = (f(e))−1af(e). Since Γ′ is connected, we can continue this way,
and thus we define values of h on all vertices and edges. By direct calculation it can be easily
seen that h is balanced. Let us look at the example depicted in Fig. 2 which illustrates our
argument.

• •

•

a x−1ax

y−1x−1axy

x
//

y

__❄❄❄❄❄❄❄❄❄❄❄❄❄❄

z

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

ax
//

x−1axy

__❄❄❄❄❄❄❄❄❄❄❄❄

y−1x−1axyz

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

Figure 2: Constructing h from (a, f).

In this picture x, y, z are values of a balanced function on edges, i.e., xyz = 1, and a ∈ G2,
i.e., a2 = 1. The right triangle represents a balanced function on vertices and edges as described
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above:
a · ax · x−1ax · x−1axy · y−1x−1axy · y−1x−1axyz = 1 ,

a · ax · x−1ax · (ax)−1 = 1 ,

x−1ax · x−1axy · y−1x−1axy · (x−1axy)−1 = 1 ,

y−1x−1axy · y−1x−1axyz · a · (y−1x−1axyz)−1 = 1 .

It is easy to see that two constructed mappings, h 7→ (a, f) and (a, f) 7→ h are inverse to each
other.

3 The rigid case

Let Γ = (V,E) be a weakly connected directed graph. Recall that in the rigid case we are
allowed to walk only in the direction of an edge but not against it. It naturally changes the
notion of a path and of a cycle in comparison with the flexible case.

Definition 3.1. A path P from a vertex x to a vertex y is an alternating sequence v1, e1, v2,
e2,...,vn, en of vertices from V and different edges from E (and not E) such that v1 = x and
each ej, for j = 1, ..., n − 1, goes from vj to vj+1 and en goes from vn to y.

Obviously, not every flexible cycle is a rigid cycle.
Similarly to the flexible case denote by RE(E,G) and RU(V

⋃

E,G) the sets of balanced
G-valued functions on edges and balanced functions of the entire graph Γ (vertices and edges),
respectively.

Definition 3.2. Two vertices x and y of Γ are called strongly connected if exists a path P1

from x to y and a path P2 from y to x. We also say that every vertex is strongly connected to
itself.

Note: We did not require that P1 and P2 do not have common edges.

Definition 3.3. A cycle is a path P from a vertex x to itself.

Note: Since the above-mentioned P1 and P2 paths might have common edges, P1 followed
by P2 might not be a cycle. There could even not exist any cycle, containing both x and y.
Consider the following example:

Example 3.4. Consider the graph Γ depicted in Fig. 3 with V (Γ) = {x, v, w, y} and E(Γ) =
{e1, e2, e3, e4, e5}.The path P1 = x, e1, v, e5, w, e4 is the only path which goes from x to y and
the path P2 = y, e2, v, e5, w, e3 is the only path which goes from y to x. They have a common
edge e5. Thus, according to Definitions 3.1 and 3.3, there exists no cycle, containing both x
and y.

Strong connectivity defines an equivalence relation on the vertices of Γ. The equivalence
classes of strongly connected vertices, together with all the edges between the vertices of each
class, are called the strongly connected components of Γ. We denote the number of strongly
connected components of Γ by k̄(Γ). Recall that GS usually denotes the set of all G-valued
functions on the set S.

Lemma 3.5. If k̄(Γ) = 1 then |RE(E,G)| = |G||V |−1 just like in the flexible case.
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x

v y

w

e1

OO

e5

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄

e4

OO

e3
oo

e2oo

Figure 3: The vertices x, y are strongly connected but no cycle contains both of them.

Proof. Let E = {e1, ..., en}. Edge e1 goes from some x to some y. There is a path P which
goes from y to x and does not contain e1, since if P contains e1 we can just delete this e1 and
all the vertices and edges, which come after it, from P . Thus, the product of values of any
f ∈ RE(E,G) along P must be equal to (f(e1))

−1. Hence we can define the graph Γ1 adding
a new edge ē1 to Γ which goes from y to x and we can extend the function f to a balanced
function on edges of the new graph Γ1 setting f(ē1) = (f(e1))

−1. So there is a natural bijection
between the set of the balanced functions on edges of Γ1 after the addition of ē1 and the set
of the balanced functions on edges of original graph Γ before the addition of the edge ē1.
Repeating this process for all the edges of E we reduce the problem to the flexible case, while
not changing the set of the balanced functions on edges of Γ.

Proposition 3.6. Let k̄(Γ) be the number of strongly connected components of Γ, and r(Γ) be
the number of all the edges in Γ which go from a vertex in one strongly connected component

of Γ to a vertex in a different strongly connected component of Γ.
Then |RE(E,G)| = |G||V |−k̄(Γ)+r(Γ).

Proof. Let V1, ..., Vt be the equivalence classes of vertices Γ with respect to the relation of strong
connectivity, and denote the set of edges between the vertices of Vj by Ej. Then, obviously,
RE(E,G) = RE(E1, G) × · · · × RE(Et, G) × GU , where U is the set of all the edges between
the vertices in different strongly connected components of Γ. By Lemma 3.5 we conclude that
|RE(E,G)| = |G||V1|−1+|V2|−1+···+|Vt|−1+r(Γ) = |G||V |−k̄(Γ)+r(Γ).

Proposition 3.7. Notations as above. Then |RU(V
⋃

E,G)| = |G|2|V |−k̄(Γ)+r(Γ).

Proof. To every h ∈ RU(V
⋃

E,G) corresponds the pair (g, f), where g ∈ GV is just the
restriction of h on vertices, and the value of f ∈ RE(E,G) on every edge e is equal to h(v)h(e),
where the vertex v is the origin of the edge e. Such a function f is obviously a balanced
function on edges since its value along any path is equal to the value of h along that path.
This correspondence between the elements of RU(V

⋃

E,G) and the pairs from GV ×RE(E,G)
is a bijection. Indeed, for a given pair (g, f), where g is any function on vertices and f is a
balanced function on edges, we can construct h : V

⋃

E → G as follows: h(v) = g(v) for all
v ∈ V and h(e) = (g(v))−1f(e) for all e ∈ E, where the vertex v is the origin of the edge e. The
constructed bijection implies that |RU(V

⋃

E,G)| = |G||V |·|RE(E,G)| = |G|2|V |−k̄(Γ)+r(Γ).

Thus, the flexible problem for a graph Γ = (V,E) can be regarded as the rigid problem for
the graph Γ′ = (V,E). Vice versa, the rigid problem for a graph Γ can be regarded as a free
product of the rigid problems for the strongly connected components of Γ multiplied by Gr(Γ)

where r(Γ) is the number of edges between different strongly connected components of Γ.
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4 Conclusions and further research

Notice that although the sets of non-Abelian-group-valued balanced function on edges and
balanced functions on vertices and edges do not inherit any natural group structure, their
enumeration for directed graphs is similar to the Abelian case studied in ??. For undirected
graphs the non-Abelian case is much more involved, almost nothing is known for today.

A natural way to extend the findings of the present paper is to consider balanced functions
on a graph Γ = (V,E) with values in a finite semigroup X. Since a semigroup does not
necessarily have an identity element, the requirement of vanishing on cycles can be replaced by
the following: choose an element a ∈ X and require that the products of values of a function
f along any cycle is equal to a. When the semigroup X is commutative, if instead of fixing
a ∈ X we require that the products along all the cycles are equal to each other, then the set of
these functions also form a semigroup, and it is natural to inquire what is the structure of this
semigroup of functions. The last question is not so obvious even for Abelian groups. When
the semigroup X is non-commutative the question of enumeration arises. Also there is another
way to generalize this problem for semigroups: for each directed edge e which goes from a
vertex v to a vertex w require f(v)f(e)f(w) = f(e), and for any cycle v1, e1, v2, e2,...,vn, en
require f(v1)f(e1)f(v2)f(e2) · · · f(vn)f(en)f(v1) = f(v1).
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