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Abstract

Most query languages for graph databases rely on exploring the topological properties of the data by using
paths. However, many applications require more complex patterns to be matched against the graph to
obtain desired results. For this reason a version of the standard XML query language XPath has been
adapted to work over graphs. In this paper we study static analysis aspects of this language, concentrating
on problems such as containment, equivalence and satisfiability. We show that for the full language all of
the problems are undecidable. By restricting the language we then obtain several natural fragments whose
complexity ranges from PSpace-complete to ExpTime-complete.
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1. Introduction

In recent years we have witnessed a proliferation
of applications that require functionalities not pro-
vided by the relational database model. A vast ma-
jority of them, such as social networks, biological
databases, or the Semantic Web, have one thing
in common—their underlying model is that of a
graph. Because of this, managing and maintain-
ing graph-structured data is currently one of the
most active topics in the database community, and
there are many big commercial vendors, such as
IBM [17], Oracle [21] and Facebook [12], offering
graph database products.

The most basic task for every data model, includ-
ing graph databases, is query evaluation. Hence,
when designing a query language one is primarily
concerned with striking a good balance between ex-
pressivity and efficiency: the language should be
capable of describing a wide variety of relevant
queries, while at the same time having a low com-
plexity of query answering.

To query graph-structured data one can, of
course, use traditional languages and treat the

model as a relational database. However, modern
applications require to pose intricate navigational
queries to obtain non-trivial information about the
topology of the stored data—a feature that is un-
supported by traditional relational databases. For
these reasons several languages for querying graphs,
such as regular path queries (RPQs) [11] and con-
junctive regular path queries (CRPQs) [8, 10], have
been proposed and extensively studied. By now we
understand very well their evaluation performance,
static analysis and expressive power, as well as
how their extensions with backward navigation [8],
nesting [3], or rational relations [2] behave. What
all of these languages (with the sole exception of
nested regular expressions [3]) have in common is
that they rely on exploring the graph topology us-
ing paths. However, as witnessed in, for instance,
XML [26], doing navigation using paths alone is of-
ten not sufficient, as more complex patterns have
to be matched against a graph to obtain desired re-
sults. For this reason a graph-based adaptation of
the well-studied XML language XPath has recently
been proposed [19]. This language, called graph
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Figure 1: Example of a graph database

XPath, or GXPath for short, enriches the usual path
queries with the ability to define more intricate pat-
terns that can occur between two data points.

Evaluation properties of GXPath have been re-
cently studied in [19, 25], and for now we can con-
clude that it has a good expressivity-evaluation bal-
ance for querying graph data. However, very lit-
tle is known about the properties of static analysis
tasks, which are important for query optimisation
and building efficient execution plans. Looking to
fill this gap, we provide in this paper a detailed
complexity analysis of these tasks for GXPath. In
what follows we will mainly focus on query contain-
ment, which asks to determine, given two queries,
if the answer set of the first one is always contained
in the answer set of the second one. However, we
also show how query equivalence and satisfiability
can be solved in a similar manner.

We start by showing that all three problems are
undecidable for the full language of GXPath. The
reason for undecidability is the presence of negation
in node and path formulas, which allows to simulate
powerful operations such as the complementation
of binary relations. As expected, we show that the
decidability of all three problems is restored (it is
ExpTime-complete) once we disallow negation on
path formulas. Note that this is one of the usual
syntactic restrictions of the XPath language [13].
Following the design logic of XPath, our last result
shows that the containment and equivalence of for-
mulas without any form of negation is even lower
(PSpace-complete).

Plan of the Paper. We formally define the data
model, the query language and the static analysis
problems we study in Section 2. In Section 3 we
show that for the full language the problems are
undecidable. In Section 4 we show how decidability
can be restored using several syntactic restrictions.
We conclude in Section 5.

J>KG = {v | v ∈ V }
J¬ϕKG = V − JϕKG

Jϕ ∧ ψKG = JϕKG ∩ JψKG
Jϕ ∨ ψKG = JϕKG ∪ JψKG

J〈α〉KG = {v | ∃v′ (v, v′) ∈ JαKG}

JεKG = {(v, v) | v ∈ V }
JaKG = {(v, v′) | (v, a, v′) ∈ E}

Ja−KG = {(v′, v) | (v, a, v′) ∈ E}
J[ϕ]KG = {(v, v) | v ∈ JϕKG}

Jα ∪ βKG = JαKG ∪ JβKG
Jα · βKG = JαKG ◦ JβKG

JαKG = V × V − JαKG
Jα∗KG is reflexive transitive closure of JαKG

Table 1: Semantics of GXPath formulas over a graph
database G = 〈V,E〉 (‘−’ stands for set-theoretic difference
and ‘◦’ for composition of binary relations)

The results on containment were previously pre-
sented, without proofs, in a conference paper [18].
This paper additionally contains results on satisfi-
ability, as well as full proofs of all the statements.

2. Preliminaries

Graph Databases

Let Σ be a finite alphabet of labels. A graph
database (or data graph) is a Σ-labelled graph G =
〈V,E〉, where

– V is a finite set of nodes,
– E ⊆ V × Σ× V is a set of labelled edges.

A graphical representation of an example graph
database is shown in Figure 1, where nodes
v1, . . . , v6 are connected by edges labelled by
a, b, c, d.

Query Language

As in XPath, formulas of GXPath are divided into
node formulas, returning nodes, and path formulas,
returning pairs of nodes, which are mutually de-
pendent on each other. We first define the general
language and then restrict it to two other flavours
that forbid different types of negation.

Definition 2.1. Node formulas ϕ,ψ and path for-
mulas α, β of (navigational) GXPath are expres-
sions satisfying the grammar

ϕ,ψ := > | ¬ϕ | ϕ ∧ ψ |ϕ ∨ ψ | 〈α〉,
α, β := ε | a | a− | [ϕ] | α ∪ β | α · β | α | α∗,

where a ranges over labels Σ.
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Note that besides the operators in Definition 2.1
the original proposal of GXPath includes data value
comparisons [19]. In this paper we are primarily
concerned with navigational aspects of graphs, so
we did not include this feature of the language in
our analysis.

The formal semantics of GXPath with respect to
a graph database G = 〈V,E〉 is given in Table 1: a
node formula ϕ defines a set JϕKG of nodes, and a
path formula α defines a set JαKG of pairs of nodes.

To gain some intuition of the operators allowed in
the language, we briefly compare it with the well-
known language of regular path queries. Besides
usual regular expressions underlying regular path
queries, GXPath path formulas allow for the inverse
a−, which traverses edges in the opposite direction,
binary negation α, which complements the eval-
uation of α, and tests [ϕ], which check that the
condition given by a node formula ϕ is satisfied.
Node formulas are Boolean combinations of tests
〈α〉, which check for existence of a path satisfying
α that starts from this node.

Example 2.2. As an example of a GXPath for-
mula we consider the path formula a[b−∧ a∗c]d. On
the graph in Figure 1 it retrieves the pair of nodes
(v1, v4), because there is an ad-labelled path be-
tween them such that after traversing the a-edge
we get to a node that has an incoming b-edge and
an outgoing ac-labelled path. However, the pair
(v6, v3) is not in the answer, because the intermedi-
ate node in the only ad-labelled path between them
does not satisfy the condition in the brackets.

We also define two different fragments of GXPath,
obtained by restricting the use of negation in formu-
las. These fragments are inspired by well-studied
fragments of XPath over XML trees [13].

Definition 2.3. The path-positive GXPath, de-
noted GXPathpath-pos, restricts GXPath by forbid-
ding negation of the form α in path formulas.
The positive GXPath, denoted GXPathpos, further
restricts the path-positive fragment by disallowing
unary negation ¬ϕ in node formulas.

Note that the languages we study have close con-
nections with (various variants of) propositional dy-
namic logic (PDL) [16]. We will use these connec-
tions in the proofs throughout the paper, giving
precise explanations and references in each partic-
ular case.

Static Analysis Problems

The problems we study in this paper are query
containment, equivalence and satisfiability. These
problems are at the core of many static analysis
tasks, such as query optimisation. Next we formally
define these problems.

A (node or path) GXPath formula e1 is contained
in a formula e2, written e1 ⊆ e2, if and only if for
each graph database G we have that

Je1KG ⊆ Je2KG.

The formulas e1 and e2 are equivalent (written e1 ≡
e2) if and only if Je1KG = Je2KG for every G. A
formula e is satisfiable if and only if there is a graph
G such that JeKG 6= ∅.

All the classes of formulas considered in this pa-
per are closed under union, so the first two of these
problems are easily inter-reducible: e1 ≡ e2 if and
only if e1 and e2 contain each other, and e1 ⊆ e2 if
and only if e1∪e2 ≡ e2. That is why we concentrate
on containment and obtain results for equivalence
as immediate corollaries. Sometimes satisfiability is
also reducible to one of these problems; for exam-
ple, a node formula ϕ is satisfiable if and only if the
containment ϕ ⊆ ¬> does not hold. However, this
is not necessarily the case for all of the languages
studied in this paper, and moreover the reduction in
the other direction is usually not available. Hence,
we study satisfiability separately.

Formally, we consider the following decision prob-
lems, parameterized by a class of formulas Q.

Containment (Q)
Input: Formulas e1 and e2 from Q.
Question: Is e1 contained in e2?

Satisfiability (Q)
Input: A formula e from Q.
Question: Is e satisfiable?

Note that the problems for node formulas are re-
ducible to the corresponding problems for path for-
mulas; for example, ϕ is satisfiable if and only if
[ϕ] is satisfiable. Since our results for these two
types of formulas are the same, in what follows we
concentrate on node formulas when showing lower
bounds and undecidability, and on path formulas in
case of upper bounds.

In the rest of the paper we perform a formal com-
plexity analysis of satisfiability and containment for
the three classes of GXPath introduced above.
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3. Tackling the Full Language

In this section we show that both containment
and satisfiability are undecidable for full GXPath.
We concentrate on satisfiability; containment fol-
lows by the simple reduction given in the previous
section.

Theorem 3.1. The problem Satisfiability
(GXPath) is undecidable.

Proof. The proof mainly follows the lines of the un-
decidability proof for satisfiability in PDL with ex-
tras that is given in [14]. In particular, we prove
undecidability by a reduction from a variant of the
tiling problem, which is shown to be undecidable
in [7] and [15]. We start by introducing the nota-
tion used throughout the proof.

A tiling instance T is a collection {T1, . . . , Tp}
of tile types together with two edge relations ∼h

and∼v (note that these relations are not necessarily
symmetric). Intuitively, Tk ∼h T` means that a tile
of type T` can be placed to the right of a tile of type
Tk in a horizontal row, while Tk ∼v T` means that
T` can be placed above Tk in a vertical column.

A tiling of the positive plane N × N with T , for
natural numbers N, is a function t : N × N → T
such that for all i, j ∈ N
– t(i, j) ∼h t(i+ 1, j), and
– t(i, j) ∼v t(i, j + 1).

Tiling t is periodic if there exist positive numbers n
and m such that t(i, j) = t(n+ i, j) = t(i,m+j) for
all i, j ∈ N. A periodic tiling can be seen as a tiling
of a torus, since column n + 1 and row m + 1 can
be “glued” with the left-most column and bottom
row, respectively.

Let Stiling denote the set of all tiling instances
that allow for tilings of the positive plane, and
Speriod denote the set of all tiling instances that
allow for periodic tilings. To prove undecidability
we will use the following fact.

Fact 3.2 ([7, 15]). Sets Stiling and Speriod are re-
cursively inseparable, that is, there is no recursive
set S such that Speriod ⊆ S ⊆ Stiling.

In what follows we first construct a formula γT
for each tiling instance T and then show that the
set

Φ = {ϕ | ∃G such that JϕKG 6= ∅} (1)

contains the set Γperiod = {γT | T ∈ Speriod}, and
is contained in Γtiling = {γT | T ∈ Stiling}, which
will imply, by Fact 3.2, that Φ cannot be recursive.

To define γT , fix an alphabet of edge labels Σ =
{R,L,U,D, s, a, e}. The intended meaning of the
labels is as follows: R represents “right”, L “left”,
U “up” and D “down”, while sequences of the form
sake code the tile types. Note that we could work
only with labels R, U , s, a and e, since it is possible
to use R− instead of L and U− instead of D, but
we opted for the extended alphabet to make the
translation easier to understand.

In the reduction below we will use the following
node formulas. First, for any path formula β let

loop(β) = 〈β ∩ ε〉 ∧ ¬〈β ∩ ε〉

(here and in the remainder of the proof we use
α1 ∩ α2 as a shorthand for α1 ∪ α2). This formula
extracts all nodes v from the graph that have an
outgoing β-path with every such path ending at v
itself; formally, for any graph database G,

Jloop(β)KG =
{v ∈ G | ∃v′ such that (v, v′) ∈ JβKG, and

∀v′ if (v, v′) ∈ JβKG then v = v′}.

Second, for every path formula β and every node
formula ϕ let

when(β, ϕ) = ¬〈β[¬ϕ]〉.

The intended meaning of this node formula is to
extract all nodes v from a graph such that every
β-path starting in v ends with a node belonging to
JϕKG; formally, for any graph database G,

Jwhen(β, ϕ)KG =
{v ∈ G | ∀v′ if (v, v′) ∈ JβKG then v′ ∈ JϕKG}.

Consider now a tile instance T with types
{T1, . . . , Tp}, and edge relations ∼h and ∼v. Based
on this instance we construct a node formula γT
that is a conjunction of two parts, γ1 and γ2.

We start with the definition of γ1. This for-
mula does not depend on the tile instance, but
merely guarantees the grid structure for any graph
database satisfying γT . In particular, it enforces
a “square” at any position in a database, both in
clockwise and in anticlockwise direction. This is
done by means of formula square that is defined as
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the conjunction of the following two formulas:

clockwise =
loop(U ·D) ∧
when(U, loop(R · L)) ∧
when(U ·R, loop(D · U)) ∧
when(U ·R ·D, loop(L ·R)) ∧
loop(U ·R ·D · L),

anticlockwise =
loop(R · L) ∧
when(R, loop(U ·D)) ∧
when(R · U, loop(L ·R)) ∧
when(R · U · L, loop(D · U)) ∧
loop(R · U · L ·D).

Intuitively, clockwise allows us to define a square
starting at some point in our graph, and from there
going “up”, then “right”, then “down” and finally
“left”, finishing at the same point where we started.
It also forces the point to be able to complete the
square whenever it has an outgoing “up” arrow U .
Similarly, anticlockwise forces a square starting
with “right” and completing it in the corresponding
way.

Now, γ1 simply states that we can make a square
at any point:

γ1 = when(U∗, when(R∗, square)).

Formula γ2 is responsible for forcing the adja-
cent elements on the grid to agree with the edge
relations. It makes use of the following node sub-
formulas, each of which is meant to denote the
placement of a tile of a type Tk at some position in
the grid: for any 1 ≤ k ≤ p let αk = 〈(s ·ak · e)∩ ε〉,
where ak is the concatenation of k copies of a. On
the basis of these formulas, let

α =

 ∨
1≤k≤p

αk

 ∧
 ∧

1≤k≤p

αk →
∧
6̀=k

¬α`


(here and in the remainder of the proof we use ϕ→
ψ as a shorthand for ¬ϕ ∨ ψ). This node formula
simply states that precisely one of the αk is true.

Next, for each tile type Tk, define βk to be the
disjunction of all the α` such that Tk ∼h T`, that is,
the disjunction of representations of the tile types
that can be placed to the right of Tk. Similarly,
define βk to be the disjunction of all α` such that
Tk ∼v T`.

Now let tile be the formula denoting that a tile
is placed correctly in the grid; that is, formally,

tile =

α ∧

( ∧
1≤k≤p

(
αk →

(
when(R, βk) ∧ when(U, βk)

)))
.

Finally, let

γ2 = when(U∗, when(R∗, tile)).

Having the formula γT at hand, we proceed to
show that, for Φ defined in (1), Γperiod ⊆ Φ and Φ ⊆
Γtiling, starting with the second of these inclusions.

We need to show that if JγT KG 6= ∅ for some
graph G, then T can tile the positive plane N× N.
Take any node v11 ∈ JγT KG. By γ1 the for-
mula square is true at v11; hence, clockwise and
loop(U ·D) are true. Therefore, there exists a node
v12 that can be reached from v11 by an U -labelled
edge. (Note that there also exists a D-labelled edge
from v12 to v11.) Since when(U, loop(R ·L)) is also
true at v11, there must be a node v22 with an R-
labelled edge from v12 (and with a corresponding L-
labelled edge in the opposite direction). Again, this
time using the fact that when(U ·R, loop(D ·U)) is
true at v11, we get a node labelled v21, connected to
v22 by an D-labelled edge (and with an U -labelled
edge connecting the latter back with v22). Next,
we use the fact that when(U · R · D, loop(L · R))
is true at v11 to get a node v′11 to the left of v21.
Finally, since loop(U · R ·D · L) is true at v11, we
have v′11 = v11.

Similarly since square is true at v22 (as we can
reach it from v11 by traversing an U - and then an
R-labelled edge), we can find nodes v23, v33 and v32

that also form a square, as shown in Fig. 2 (note
that we do not claim that the nodes vij are neces-
sarily distinct).

v11

v12

v21

v22

v32

v33v23

U

U

R

R

D

D

L

L

Figure 2: Squares generated from v11 and v22 by clockwise

Note now that since square is also true at v12,
this node must satisfy anticlockwise. In partic-
ular, since following an R-labelled edge and then

5



U -labelled one from v12 leads to v23 and since
when(R · U, loop(L · R)) is true at v12, there is a
node v13 with an L-labelled edge from v23 (this also
implies that there is an R-labelled edge from v13 to
v23). Again, since when(R · U · L, loop(D · U)) is
true at v12, and v13 can be reached by R · U · L
from v12, there is a node v′12 connected with v13

by an D-labelled edge (and in the other direction
by an U -labelled one). But now, since v12 satisfies
loop(R ·U ·L ·D) and v′12 is reached from v12 by a
path labelled R · U · L ·D, we have that v′12 = v12.
Thus there exists a square starting at v12 and go-
ing in an anticlockwise direction, as illustrated in
Fig. 3.

v11

v12

v21

v22

v32

v33v23v13

U

U

R

R

D

D

L

L

L
D

Figure 3: Extension with anticlockwise from v12

As already noted, each edge in the construction
has a corresponding edge in the opposite direction
with the “dual” label (e.g., D is “dual” to U and
vice versa). In particular, there is an R-edge from
v11 to v21, and, by γ1, we can also complete a clock-
wise square starting at v21, going through v22, v32

and some node v31, and finishing again at v21.
It is straightforward to see that this process can

be continued for any number of steps, starting
from the main diagonal and completing the squares
above it in the anticlockwise direction, while com-
pleting the ones below the diagonal in the clock-
wise direction. Thus we showed that γ1 guarantees
any satisfying graph database to have a square grid
starting from v11.

According to γ2, every node of the grid satisfies
tile. Hence, on the one hand, there exists a unique
αk that holds at the node. On the other hand,
tile also guarantees that the function t, defined as
t(i, j) = Tk for each node vij of the grid with αk

true, is a proper tiling. That is, the types of adja-
cent tiles agree with the edge relations ∼h and ∼v.

Thus we have shown that if the formula γT is
satisfiable, then T can tile the positive plane N×N.
This implies the inclusion Φ ⊆ Γtiling.

To complete the proof we need to show the inclu-
sion Γperiod ⊆ Φ. To this end, consider a periodi-

cal tiling t with a tiling instance T = {T1, . . . , Tp},
which can tile a torus with n columns and m rows.
We construct a graph database G = 〈V,E〉, with
n×m+ p+ 1 nodes, that satisfy γT as follows.

First let

V =
{vij | 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {u0, . . . , up}.

The following edges in E form an n×m grid with
“glued” sides:

– an R-labelled edge between vij and v(i+1)j , and
an L-labelled one in the opposite direction for
1 ≤ i < n and 1 ≤ j ≤ m;

– an R-labelled edge between vnj and v1j , and an
L-labelled one in the opposite direction for 1 ≤
j ≤ m;

– a U -labelled edge between vij and vi(j+1), and a
D-labelled one in the opposite direction for 1 ≤
i ≤ n and 1 ≤ j < m;

– a U -labelled edge between vim and vi1, and a D-
labelled one in the opposite direction for 1 ≤ i ≤
n.

To satisfy γ2, which is responsible for edge rela-
tions, we make use of nodes {u0, . . . , up} as follows.
First, let u0, u1, . . . , up form an a-labelled chain,
that is, formally, there is an a-edge between uk and
uk+1 in E, for 0 ≤ k < p. Second, for each vij with
t(i, j) = Tk the graph contains an s-labelled edge
from vij to u0 and an e-labelled edge from uk to
vij , as illustrated in Fig. 4.

u0 u1 · · ·
uk · · ·

up

vij

a a a a a

s e

Figure 4: Representation of tile t(i, j) of type Tk

The node v11 in the constructed graph database
G satisfies γT . Indeed, it satisfies γ1, because all
nodes reachable by U - and R-labelled edges from
v11 (that is, all of the vij ’s) clearly satisfy square by
the construction. On the other hand, v11 satisfies
γ2, because t is a periodic tiling. In particular, at
any node vij of G precisely one αk is true, since
by construction there is only one s-labelled edge
leaving vi,j , and only one e-labelled edge entering
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vi,j . Therefore, to satisfy αk = 〈(s · ak · e) ∩ ε〉 we
must traverse this unique s-edge leaving vi,j and
finish with the e-edge entering vi,j . Moreover, since
t is a tiling, any node with an R-labelled edge from
vij satisfies βk, and the same for a U -labelled edge
and βk.

We conclude that Γperiod ⊆ Φ, which together
with the previously proved inclusion Φ ⊆ Γtiling and
Fact 3.2 implies that the set of all satisfiable GXPath
node formulas Φ is not recursive, that is, the prob-
lem Satisfiability(GXPath) is undecidable.

As already mentioned, a node formula ϕ in full
GXPath is satisfiable if and only if the containment
ϕ ⊆ ¬> does not hold. Hence, Theorem 3.1 has the
following immediate corollary.

Corollary 3.3. The problem Containment
(GXPath) is undecidable.

As a final remark we note that in our proof the
alphabet Σ of labels does not depend on the input.
Hence, the undecidability results hold even for for-
mulas over a fixed alphabet.

4. Restoring Decidability

From the point of view of containment negation
is of the most problematic features in query lan-
guages, and in GXPath this is not an exception. In
this section we show how the decidability of con-
tainment is restored when we limit the negation
used in formulas. We concentrate on GXPathpath-pos

and GXPathpos, the two fragments of GXPath out-
lined in Section 2. We begin with GXPathpath-pos,
which forbids negation over path formulas.

Proposition 4.1. The problem Satisfiability
(GXPathpath-pos) is ExpTime-complete.

Proof. Since GXPathpath-pos is the same as PDL
without variables, we can use the ExpTime deci-
sion procedure for satisfiability of PDL formulas,
developed in [16, Theorem 8.4], to solve satisfia-
bility of GXPathpath-pos node formulas. The same
bound holds for path formulas, because α is satis-
fiable if and only if 〈α〉 is satisfiable.

The lower bound follows from a straightforward
adaptation of the known ExpTime-completeness
results on satisfiability of PDL versions close to
XPath. For instance, both [1, Section 4.4] and [16,
Theorem 8.4] provide a reduction from the accep-
tance problem for deterministic Turing machines

that decide a language in ExpTime to a version
of PDL satisfiability. In order to adapt these tech-
niques to our setting we need to show how to carry
out the reduction using a finite alphabet. This can
be done by encoding the symbols of the unrestricted
alphabet as binary strings (of unbounded length):
e.g., a 4-character alphabet can be encoded as a set
of strings 00, 01, 10 and 11. For a detailed descrip-
tion of this technique see the ExpSpace-hardness
proof in [5].

The next theorem shows that the same complex-
ity bounds hold for the containment problem as
well.

Theorem 4.2. The problem Containment
(GXPathpath-pos) is ExpTime-complete.

Proof. Since GXPathpath-pos allows for unary nega-
tion, the ExpTime-hardness follows from Proposi-
tion 4.1. Thus in the rest of the proof we concen-
trate on the upper bound on the complexity. To
this end, we show that the problem of containment
for GXPathpath-pos path formulas can be polynomi-
ally reduced to satisfiability of GXPathpath-pos node
formulas. The idea of the reduction is similar to
the one used in [24], where it is shown that these
two problems are inter-reducible for XPath queries
on trees.

Let α and β be GXPathpath-pos path formulas and
let Γ be the alphabet of all symbols occurring in
α and β plus one additional symbol b. Let now
Γ′ = Γ × {0, 1}, that is, Γ′ contains two copies of
each label decorated with either 0 or 1. Let α′ and
β′ be formulas obtained from α and β, respectively,
by replacing each occurrence of a label a in Γ by
(a, 0) ∪ (a, 1). Finally, let out be the path formula⋃

a∈Γ(a, 1). We show that α is contained in β if and
only if the formula

ϕ := 〈α′[out]〉 ∧ ¬〈β′[out]〉

is not satisfiable. (To reduce notational clutter, we
write [γ] instead of [〈γ〉] for a path formula γ when
checking that a node has an outgoing γ-path.)

Assume first that α 6⊆ β. Then, in particular,
there is a graph database G with nodes v and v′

such that (v, v′) ∈ JαKG but (v, v′) /∈ JβKG. Fur-
thermore, one can always find such a graph G that
only uses labels from Γ: indeed, only the labels that
appear in α and β are relevant, and all the other
ones can be replaced by b. Let G′ be a Γ′-labelled
graph database obtained from G by replacing each
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label a by (a, 0) and adding a loop at v′ labelled
(b, 1). Since v′ is the only node in G′ with an out-
going edge whose label has 1 as the second compo-
nent, we get that v ∈ JϕKG

′
, as required.

For the other direction, assume that ϕ is satis-
fiable. Then there is a graph database G′ over Γ′

and a node v such that v ∈ JϕKG
′
. Let G be a

graph obtained from G′ by replacing, for any a in
Γ, every edge labelled (a, 0) or (a, 1) by an edge la-
belled a On the one hand, since v ∈ JϕKG

′
, there

is some v′ in G′ such that (v, v′) ∈ Jα′[out]KG
′
.

Hence (v, v′) ∈ JαKG. On the other hand, by the
same reason the node v′ must have an outgoing
edge with second component equal to 1. Hence,
if we had that (v, v′) ∈ JβKG, then we would also
get that (v, v′) ∈ Jβ′[out]KG

′
, which contradicts the

fact that v ∈ JϕKG
′
. Thus α 6⊆ β, as required.

(Note that it could still be the case that v ∈ J〈α〉KG
and v ∈ J〈β〉KG, but we are interested in binary
containment.)

We have thus shown that containment of
GXPathpath-pos path formulas is polynomially re-
ducible to (un)satisfiability of node formulas in the
same language. Application of this reduction to the
result of Proposition 4.1 completes the proof of the
theorem.

The final fragment we consider is GXPathpos,
which forbids all types of negation from GXPath.
This fragment has in fact been considered in the
literature under the name of nested regular expres-
sions [3, 4], and the complexity of containment for
this language has been recently established in [22].

Fact 4.3 ([22]). The problem Containment
(GXPathpos) is PSpace-complete.

The last problem left to consider is satisfiability
for GXPathpos. But this problem is trivial: since
GXPathpos allows for no negation, any formula is
satisfiable (a witnessing graph can be constructed
by induction on the structure of the formula).

Proposition 4.4. The problem Satisfiability
(GXPathpos) is decidable in constant time.

5. Conclusions

In this paper we have studied static analysis as-
pects of the graph query language GXPath. In par-
ticular we have tackled the containment, equiva-
lence and satisfiability problems for this language
and its fragments. The results are summarised in

GXPathpos GXPathpath-pos GXPath
Satisfiability O(1) ExpTime-c und.
Containment PSpace-c [22] ExpTime-c und.
Equivalence PSpace-c ExpTime-c und.

Table 2: Summary of the complexity results (‘-c’ stands for
‘complete’ and ‘und.’ for ‘undecidable’)

Table 2. We have shown that for the full language
we get undecidability of all three problems, mainly
due to the presence of the powerful negation oper-
ator that applies to binary relations. An interest-
ing consequence of this result is that satisfiability
of PDL queries with negation is undecidable, even
if they do not use propositional variables. This fol-
lows from the close connection between GXPath and
PDL and strengthens the results of [14] in a non-
trivial way. Although the full language is undecid-
able, we have shown that we can restore decidabil-
ity when limiting negation in a natural way. Such
restrictions result in a hierarchy of fragments that
have the potential to be useful in designing practi-
cal graph query languages. Within these fragments
GXPathpath-pos is the most expressive language that
remains decidable. Note, however, that there may
well be other fragments of GXPath that subsume
GXPathpath-pos and remain decidable.

Lastly, we would like to briefly discuss how our
results compare to containment and satisfiability
results for XPath over trees. Note that the two
problems are inter-reducible when node negation is
allowed [24] and that satisfiability of the positive
fragment is again trivial, so we will concentrate on
containment. First, to the best of our knowledge,
the decidability status of GXPath containment over
trees with both node and path negation is still un-
resolved; however, a non-elementary lower bound
was shown in [24]. Second, for the path-positive
fragment the containment over trees is the same as
over graphs (the upper bound follows from [9] and
the lower bound from [6]). Finally, for the posi-
tive fragment the precise complexity of containment
over trees is again not known, as it is usually stud-
ied in the presence of sibling axes or for unidirec-
tional fragments of XPath. However, the problem
is PSpace-hard [23], and in ExpTime [9, 20].
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[3] Barceló, P., Pérez, J., Reutter, J., 2012. Relative ex-
pressiveness of nested regular expressions. In: Proc. of
the 6th Alberto Mendelzon Int. Workshop on Founda-
tions of Data Management (AMW 2012). Vol. 846 of
CEUR-WS. CEUR-WS.org, pp. 180–195.
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