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Abstract

Universal hash functions, discovered by Carter and Wegman in 1979, are of great

importance in computer science with many applications. MMH∗ is a well-known △-

universal hash function family, based on the evaluation of a dot product modulo a

prime. In this paper, we introduce a generalization of MMH∗, that we call GMMH∗,

using the same construction as MMH∗ but with an arbitrary integer modulus n > 1,

and show that GMMH∗ is 1

p
-almost-△-universal, where p is the smallest prime divisor

of n. This bound is tight.

1 MMH∗

Universal hashing, introduced by Carter and Wegman [3], is of great importance in computer
science with many applications. Cryptography, information security, complexity theory,
randomized algorithms, and data structures are just a few areas that universal hash functions
and their variants have been used as a fundamental tool. In [5], definitions of various kinds
of universal hash functions gathered from the literature are presented; we mention some of
them here.

Definition 1.1. Let H be a family of functions from a domain D to a range R. Let ε be
a constant such that 1

|R|
≤ ε < 1. The probabilities below are taken over the random choice

of hash function h from the set H .
(i) The family H is a universal family of hash functions if for any two distinct x, y ∈ D,
we have Prh←H[h(x) = h(y)] ≤ 1

|R|
. Also, H is an ε-almost-universal (ε-AU) family of hash

functions if for any two distinct x, y ∈ D, we have Prh←H [h(x) = h(y)] ≤ ε.
(ii) Suppose R is an Abelian group. The family H is a △-universal family of hash functions
if for any two distinct x, y ∈ D, and all b ∈ R, we have Prh←H[h(x) − h(y) = b] = 1

|R|
,

where ‘ − ’ denotes the group subtraction operation. Also, H is an ε-almost-△-universal
(ε-A△U) family of hash functions if for any two distinct x, y ∈ D, and all b ∈ R, we have
Prh←H [h(x)− h(y) = b] ≤ ε.
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It is worth mentioning that ε-A△U families have also important applications in computer
science, in particular, in cryptography. For example, these families can be used in message
authentication. Informally, it is possible to design a message authentication scheme using ε-
A△U families such that two parties can exchange signed messages over an unreliable channel
and the probability that an adversary can forge a valid signed message to be sent across the
channel is at most ε ([5]).

The following family, named MMH∗ by Halevi and Krawczyk [5] in 1997, is a well-known
△-universal hash function family.

Definition 1.2. Let p be a prime and k be a positive integer. The family MMH∗ is defined
as follows:

MMH∗ := {gx : Zk
p → Zp | x ∈ Zk

p}, (1.1)

where

gx(m) := m · x (mod p) =

k∑

i=1

mixi (mod p), (1.2)

for any x = 〈x1, . . . , xk〉 ∈ Zk
p, and any m = 〈m1, . . . , mk〉 ∈ Zk

p.

It appears that Gilbert, MacWilliams, and Sloane [4] first discovered MMH∗ (but in the
finite geometry setting). However, many resources attribute MMH∗ to Carter and Wegman
[3]. Halevi and Krawczyk [5] proved that MMH∗ is a △-universal family of hash functions.
We also remark that, recently, Leiserson et al. [7] rediscovered MMH∗ (called it “DOTMIX
compression function family”) and using the same method as Halevi and Krawczyk, proved
that DOTMIX is △-universal. They then apply this result to the problem of determin-
istic parallel random-number generation for dynamic multithreading platforms in parallel
computing.

Theorem 1.3. The family MMH∗ is a △-universal family of hash functions.

2 GMMH∗

Given that, in the definition of MMH∗, the modulus is a prime, it is natural to ask what
happens if the modulus is an arbitrary integer n > 1. Is the resulting family still△-universal?
If not, what can we say about ε-almost-universality or ε-almost-△-universality of this new
family? This is an interesting and natural problem, and while it has a simple solution (see,
Theorem 2.3 below), to the best of our knowledge there are no results regarding this problem
in the literature.

First, we define a generalization of MMH∗, namely, GMMH∗, with the same construction
as MMH∗ except that we use an arbitrary integer n > 1 instead of prime p.

Definition 2.1. Let n and k be positive integers (n > 1). The family GMMH∗ is defined
as follows:

GMMH∗ := {hx : Zk
n → Zn | x ∈ Zk

n}, (2.1)
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where

hx(m) := m · x (mod n) =

k∑

i=1

mixi (mod n), (2.2)

for any x = 〈x1, . . . , xk〉 ∈ Zk
n, and any m = 〈m1, . . . , mk〉 ∈ Zk

n.

MMH∗ has found important applications, however, in applications that, for some reasons,
we have to work in the ring Zn, the family GMMH∗ may be used.

The following result, proved by D. N. Lehmer [6], is the main ingredient in the proof of
Theorem 2.3.

Proposition 2.2. Let a1, . . . , ak, b, n ∈ Z, n ≥ 1. The linear congruence a1x1+· · ·+akxk ≡ b

(mod n) has a solution 〈x1, . . . , xk〉 ∈ Zk
n if and only if ℓ | b, where ℓ = gcd(a1, . . . , ak, n).

Furthermore, if this condition is satisfied, then there are ℓnk−1 solutions.

Now, we are ready to state and prove the following result about ε-almost-△-universality
of GMMH∗.

Theorem 2.3. Let n and k be positive integers (n > 1). The family GMMH∗ is 1

p
-A△U,

where p is the smallest prime divisor of n. This bound is tight.

Proof. Suppose that n has the prime factorization n = pr11 . . . prss , where p1 < · · · < ps
are primes and r1, . . . , rs are positive integers. Let m = 〈m1, . . . , mk〉 ∈ Zk

n and m′ =
〈m′1, . . . , m

′
k〉 ∈ Zk

n be any two distinct messages. Put a = 〈a1, . . . , ak〉 = m−m′. For every
b ∈ Zn we have

hx(m)− hx(m
′) = b ⇐⇒

k∑

i=1

mixi −
k∑

i=1

m′ixi ≡ b (mod n) ⇐⇒
k∑

i=1

aixi ≡ b (mod n).

Note that since 〈x1, . . . , xk〉 ∈ Zk
n, we have nk ordered k-tuples 〈x1, . . . , xk〉. Also, since

m 6= m′, there exists some i0 such that ai0 6= 0. Now, we need to find the maximum number
of solutions of the above linear congruence over all choices of a = 〈a1, . . . , ak〉 ∈ Zk

n \ {0}
and b ∈ Zn. By Proposition 2.2, if ℓ = gcd(a1, . . . , ak, n) ∤ b then the linear congruence
a1x1+ · · ·+akxk ≡ b (mod n) has no solution, and if ℓ = gcd(a1, . . . , ak, n) | b then the linear
congruence has ℓnk−1 solutions. Thus, we need to find the maximum of ℓ = gcd(a1, . . . , ak, n)
over all choices of a = 〈a1, . . . , ak〉 ∈ Zk

n \ {0}. Clearly,

max
a=〈a1,...,ak〉∈Zk

n\{0}
gcd(a1, . . . , ak, n)

is achieved when ai0 = pr1−1
1

pr2
2
. . . prss = n

p1
, and ai = 0 (i 6= i0). So, we get

max
a=〈a1,...,ak〉∈Zk

n\{0}
gcd(a1, . . . , ak, n) = pr1−1

1
pr2
2
. . . prss =

n

p1
.

Therefore, for any two distinct messages m,m′ ∈ Zk
n, and all b ∈ Zn, we have

Prhx←GMMH
∗ [hx(m)− hx(m

′) = b] ≤ max
a=〈a1,...,ak〉∈Zk

n\{0}

nk−1 gcd(a1, . . . , ak, n)

nk
=

1

p1
.

This means that GMMH∗ is 1

p1
-A△U. Clearly, this bound is tight; take, for example, a1 =

n
p1

and a2 = · · · = ak = 0.
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Corollary 2.4. If in Theorem 2.3 we let n be a prime then we obtain Theorem 1.3.

Proof. When n is prime, gcd
a=〈a1,...,ak〉∈Zk

n\{0}
(a1, . . . , ak, n) = 1, so we get △-universality.

We remark that if in the family GMMH∗ we let the keys x = 〈x1, . . . , xk〉 ∈ Zk
n satisfy

the general conditions gcd(xi, n) = ti (1 ≤ i ≤ k), where t1, . . . , tk are given positive divisors
of n, then the resulting family, which was called GRDH in [2], is no longer ‘always’ ε-A△U.
In fact, it was shown in [2] that the family GRDH is ε-A△U for some ε < 1 if and only if n
is odd and gcd(xi, n) = ti = 1 (that is, xi ∈ Z∗n) for all i. Furthermore, if these conditions
are satisfied then GRDH is 1

p−1
-A△U, where p is the smallest prime divisor of n (this bound

is also tight). This result is then applied in giving a generalization of a recent authentication
code with secrecy. A key ingredient in the proofs in [2] is an explicit formula for the number
of solutions of restricted linear congruences (a restricted version of Proposition 2.2), recently
obtained by Bibak et al. [1], using properties of Ramanujan sums and of the finite Fourier
transform of arithmetic functions.
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