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Abstract
O

«— Considern mobile sensors placed independently at random with theoumiflistribution on a barrier represented as the unit
- line segment [01]. The sensors have identical sensing radius,rsay¢hen a sensor is displaced on the line a distance equal to
(\l d it consumes energy (in movement) which is proportional tmedgfixed) powera > 0 of the distanceal traveled. The energy

consumption of a system afsensors thus displaced is defined as the sum of the energyraoptiens for the displacement of the
— ‘individual sensors.
— ' We focus on the problem of energy efficient displacement efsinsors so that in their final placement the sensor system
o\ ensures coverage of the barrier and the energy consumdukfdigplacement of the sensors to these final positions ismzied

in expectation. In particular, we analyze the problem opldising the sensors from their initial positions so as taiattoverage

of the unit interval and derive trade-offs for this displamt as a function of the sensor range. We obtain severald@inds in
—this setting thus generalizing several of the results of {a@ny powera > 0.

a) Keywords: barrier, displacement, distance, random, sensors,

n
1. Introduction if the ith sensor is displaced a distandtefori = 1,2,...,n,

&)
e

. ) _then the energy consumed by the whole system s#nsors is
One of the most important problems in sensor networks ISon ga
C;) i=1 07"

minimizing battery consumption when accomplishing vasiou

tasks SUCh as monltorlqg an enwronment, tracking evgottgal consumption (in expectation) in the movement of the sersmrs
(A 2 t_>arr|er ar_1d commun!catmg. I_n this study, the _enV|ror_1men([le to attain coverage of the unit segment when the energy con-
®). b_emg_ c_on_S|dered con5|st_s_of aline segme_nt barrier (whach f sumed per sensor is proportional to some (fixed) power of the
OO simplicity is set to the unit interval [@]), while the accompa- igiance traveled. The present study generalizes somerknow
O nying monitoring problem investigated is ensuring coveraj  oq s (see [10]) on the sensor displacemengfer1 to arbi-

the barrier in the sense that every point in the line segnsent Itrarya > 0. Motivation for the extended model being proposed

within the range of a sensor. is that the energy consumption induced by individual sensor

LO W_ed_cons_lderl the case where thef;gnsqrslare equlphped Wilflsplacement may not be linear in this displacement, baerat
«— omnidirectional sensing antennas of identical ranged; thus o jenendent on some power of the distance traversed. Eurthe

S @ s:ensordplaced at Iocaﬂong the u?]'t |Intfetrval .ca;]n sznﬁ_ehany the parameteain the exponent may well represent various con-
'~ point at distance at mosteither to the left or right ok. The i ns of the surface of the barrier, e.g., friction, ludation,

o initial pl_acement of the sensors does not gga_lr_ante_e bawier etc, which may affect the overall energy consumption of the
G erage since the sensors have been placed initially indepdyd sensor system

at random with the uniform distribution on a barrier. To &tta
coverage of the line segment it is required to displace the se
sors from their original locations to new positions on theeli
while at the same time taking into account their sensingeang There is extensive literature about area and barrier (also
r. Further, for some fixed constaat- O if a sensor is displaced known as perimeter) coverage by a set of sensors (e.g., see
a distanced the energy consumed by this sensor is considerefll, |3,/15, 12| 14,15]). The coverage problem for planar dosain
to be proportional tal®. More generally, for a set of sensors,  with pre-existing anchor (or destination) points was idtroed
in [4]. The deterministic version of the sensor displacetmen
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the sensors may have different ranges but is in polynonmied ti is defined for all complex numbecsd such ask(c) > 0 and
when all the sensor ranges are identical [7]. The problem ofR(d) > 0. Moreover, for positive integer numbergd we have
minimizing the maximum is NP-complete if the region corsist

of two intervals|[6] but is polynomial time for a single intet B(c,d)™! = (C +d- 1)(; (2)
even when the sensors may have different ranges [5]. Related ¢

work on deterministic algorithms for minimizing the totaldd | ot s define a functiogeq(x) = x*-1(1 — X)L on the interval

maximum movement of sensors for barrier coverage of a plan% 1]. We say that a random variabl¢ 4 concentrated on the
region may be found in [4]. interval [Q 1] has the B¢, d) distribution with parameters d if

More importantly, our work is closely related to the work ;i o< the probability density functioi(x) = (B(c, d))~1x¢-1(1—
of [10] where the authors consider the expected minimum tOS()d—l. Hence

tal displacement for establishing full coverage of a urtitival
for n sensors placed uniformly at random. Our analysis and
problem statement generalizes some of the work of [10] from
a= 1 to all exponent_a > 0. A com_prehgns_lve _study Of SENSOT \ve will use the following notations for the rising and fatiin
displacement to arbitrary probability distributions gpitech- . . .

: . ; . factorial respectively [9]
niques from queueing theory can be found in the forthcoming -

[21]. )1 fork=0
“In(n+1)...(n+k-1) fork>1,

t
Pr{Xea < 1] =ﬁ fo Gea()dx 3)

1.2. Outline and results of the paper
Our work generalizes some of the work bf[10] to the more (1 fork=0
eneral setting when the cost of movement is proportional to n= =
ﬁxed power ofgthe distance displacement. Prop {n(n —1...(n=(k-1)) fork=>1
~ The overall organization of the paper is as follows. In Secq et [E] {“} be the Stirling numbers of the first and second kind
tion[2 we provide several basic combinatorial facts thatél  respectively, which are defined for all integer numbers shah
used in the sequel. In Sectibh 3 we prove combinatorially hovp < k < n. The following two equations for Stirling numbers of

to obtain tight bounds when the range of the sensorsds;;.  the first and second kind are well known (see [9, identity B.10
We show that the expected sum of displacement to the pawerand [9, identity 6.13]):

IS
a

a)| m
S0 o) <= 2 {Tjoo @
2:(1+aynz1t n2 [

whena is an even positive number, and in

002 = [V ©

1 I
@ a_ 9 . .
(nil) Assume thab is a constant independentmf Then the follow-

whena is an odd natural number. In Sectioh 4 we prove the"d Stirling numbers
m m+b
Aot T} ®
are polynomials in the variabla and of degreel2(seel[9]).

occurrence of threshold whereby the expected minimum sum m
of displacements to the powarn(a is positive natural number) [m— b

and f(n) = o(n"%?). In Sectior we study the more general | et ((E» be the Eulerian numbers, which are defined for all
version of the sensors movement to the poaerherea > 0 integer numbers such that0k < n. The following three iden-
andr > 5. If r > 2 we first present the Algorithfd 1 that uses tities for Euler numbers are well known (see identitiegt23
expected (6.43) and (644) in [9]):

{5 (%)) S-mEs e

total movement to powea, wherea > 0. Finally, Sectior{ 6

provides the conclusions. m | b\\(m+b-1-1
S )] (e I

- )

In this section we recall some known facts about speciaHfunc

tions and special numbers which will be useful in the analysi | et d, f be non-negative integers. Notice that (ee [9, identity
in the next sections. The Euler Beta function (see [13]) 5.41])

1 d i\ (-1) (d)!(d)!
B(c.d) = fo X“H1 - tdx @ ; (| )d 141 (2d+1) (10)

m+b
m

b}

remains in@(;;q) provided thar = £ + & wheref(n) > 0




Observe that

)m

(i-19 il (-2¢ (-1
f+d+1

(1)—|

Applying this formula fori = 1 ton we easily derive

(i—1)4. it ( —1). nfl (12)
Z

We will also use Euler's Finite Difference Theorem (see [8,

identity 10.1]). Assume that is a natural number. Léeft(j) =
j™andme N. Then

Za:( )( 1)1 £(j) —{( 1yal

=0

ifm<a

ifm=a (12)

3. Tight bounds for total displacement to the powera when
r==%
2n

In this section we extend Theorem 1 from[10] for the dis-

placement to the powex wherea is a positive natural number.
Assume thah sensors with rangé; are thrown uniformly and

Xx=n, m= I, + 1 we deduce that

1 i-1 (n+ 1)T

L R )
WX (B )
DS Gl

(2Bl e )

L 13
n i — _)a i il
Z (n+1)i

i=1

Il heatil

|2+1

_1 |2+l—|3
L |eD

Hence
a+l

_an kna+1 k

k=0

independently at random in the unit interval and move from Now we prove thaCa, 1« is the polynomial of variable - j

their current location to the anchor locatign= ﬁ - =, for

i=1...,

for the sensors to occupy the positiandori = 1,...,n. We

prove that the expected sum of displacement to the pevier
(G 1

23 (1+a) n2 ™t

0 (;%1—1) whena is an odd natural number. We begin with the

following lemma which will be helpful in the proof of Theorem

[2. It is worth pointing out that the proof of Lemrha 1 is techni-
cally complicated. Our proof of Lemnid 1 proceeds along the

. . . !l—l !a L
following steps. Firstly, we reduce the inner s(ifi | o
. 5.7
to the sumz{‘zl% which is known (see equatiof (11)).

Then we have the following sum

a
1
=

=0

a+l

(f.i)(—l)j > Cavra #K,
J k=0

whereC,.1-« is the polynomial of variabla — j of degree less
than or equal R Finally, the asymptotic follows from Euler’s
Finite Difference Theorem (see equatidn{ 12)).

Lemma 1. Assume that a is an even positive number. Then

iiaWthﬁHl () 1 o(2)

== (n+1)  28(1+anit

Proof. As a first step, we evaluate the inner sum. liet
{0,...,a). Applying equation[() fox =i -1, m=a— j—Iq,
and equation(11) fod = l,, f = j, as well equatior(5) for

3

n. Notice that the only way to attain the coverage is

+O(i%) , whenais an even positive number, and in
n

of degree less than or equdd Dbserve that

Ca+ 1-k

-SLEL)E

(2

=;(afl j_—jll)(%)h

DRt e

Slnce(a i ) is the polynomial of variabla — j of degred,

{2751 } is the polynomial of variable - j -1 of degree Z(—
l;—14) and ;i:l"‘kk*ll is the polynomial of variabla+1—- j -
of degree (see[fB) we obtain tha€,, 1« is the polynomlal
of variablea — j of degree less than or equ.2

Now we give the coefficient of the terji* in the polynomi-
alsCyi1-«. Applying identity [8) form=a- j,b=k-14and
identity () form=a- j+Il4—k+ 1, b = I, we observe that the
coefficient of the ternj? in the polynomialsC,,1_« equals

e

Ia j1
(-1)

X[,Z«E» (zio!] a+1-k+ly

|2+1
a+1-k-

T
_1\l2—atk+]
et 1]

a-j+ls—-k+1
a+1l-k-—j




Therefore, from equation(7) we have forje{0,1,...,a}andi € {1,2,...,n}. Observe that

k I
1 k (1)« @ _ @
stk = = S e A Df Df
LK™ ki IZ_;)(I4)a+ 1-k+l4 Z
=
Using identity [Z0) we deduce that From the definition of Beta function and identiky (2) we get
a)| &l i
Opsp e = ii D@ — ( )J l(#.
2 (1+a)l 25 b mal (n+ 1)]
We now apply equation((12)) in order to get Hence applying Lemnid 1 we conclude that
a 0 if 2k < a n a a n
a ; 1 1
Z(')(_l)lca”"‘ B {—(g)!‘”a if2k=a 2.2,09=22.0%= o gt 0(—g)-
=0 \] 2% (1+a) - i-1 j=0 j=0 i=1 2i(1+a)n? n
Putting everything together, we finally obtain This finishes the proof of Theordm 2. O

Za:z”: 1( ) _1yin ](i - —)a J il 3.2. Tight bound for total displacement to the power a when

L4 2 (n+ 1) r = 5 and ais an odd natural number
ar L a Theorem 3. Let a be an odd natural number. Assume that n
Z Z (f_i)(_l)j Carik mobile sensors are thrown uniformly and independently at ra
pry =0 dom in the unit interval. The expected sum of displacements t

a the power a of all sensors to move from their current location
(5) 1 1 to anchor locationit= L — X fori = 1,...,n, respectively i
- +0l= it=5 - 2> , respectively is
23(1+a)nit n? 1
© (n?‘l)
This completes the proof of Lemra 1. O

Proof. Leta be an odd natural number. Firstly, observe that the

result fora = 1 follows from [[10], Theorem 1]. Therefore,
3.1. Tlght bound for total displacement to the power a when Wwe may assume that > 3. Let D % be the expected distance

r = = and a is an even positive number
2 P to the powera betweenX; and thelth target anchor location,

Theorem 2. Let a be an even positive number. Assume that, = - — 5-, on the unit interval, hence given by:
n mobile sensors are thrown uniformly and independently at
random in the unit interval. The expected sum of displacésnen @ _
to the power a of all sensors to move from their current lomati Di ( )f [ti = X Gin-i+1(Xx)dx
to the anchor location t= & 21n» fori =1,...,n, respectively
is First we prove the upper bound. We use discrete Holder in-

&)y 1 1 equality with parameter&t, a + 1 and get

25(1+a)n3‘1Jr (n%) N
n n ar1 )+l n arl
Proof. LetX; be theith order statistic, i.e., the position of thh Z D@ < [Z (Di(a)) : ] (Z 1]
sensor in interval [01]. We know that the random variablg i=1 i=1 i=1
has the Bi; n—i+ 1) distribution. ForexamPIe see [2]. Assume n 2 & N
thata is an even positive number. L&® be the expected =[ (Di ) : ] nat. (13)
i=1

distance to the powea betweenX; and thelth sensor anchor

location,t = £ - ﬁ, on the unit interval, hence given by:

Dl - ( )f IX = tiPgin i1 (X)dX 1 |
= i(i)fo (ti = X)®Gin-is2(X)dx fo - Xﬁgi:niﬂ(x)l(?)dx N

1 arl n a+l
< [ti — X*) 2 Gisnoisa(X i(.)dx) ,
Now we define (fo (1 ) Giniea(X) |

o = ([ ()2 [ Hgniaiaa " (D®)* <@ (14

Next we use Holder inequality for integrals with paramster
&l a+1and get



Putting together Theorefn 2 far:= a+ 1 and equation$(13), Proof. Leta be a natural number. Assume that % + f(n),
(I4) we deduce that wheref(n) > 0 andf(n) = o(n~¥/?). Throughout the proof we

use the fact thag®@ ( ) c ®( )

al 1
ZD(a)<( ( &1_1)) n= =®(ﬁ)' 1 ) This is
easy because We can dlsplace the sensors to the anchor loca-
Next we prove the lower bound. We use discrete Holder intionst; = 'ﬁ - 2n' fori = 1,2,...,n at a total displacement
equality with parameterg?;, aand get cost ofO(—;q). This suffices ifr > £ since in this case the
n n ETRRY contiguoug coverage is assured.
Z D@D < [Z (D(a‘l))a_] ( 1] Next we prove the lower bour#d(r) € Q (nTll) We would
i=1 i=1 i=1

like to know how much we can reduce the sum of displacements

a-1

e 1) ale if we change the radius frog to £ + & wheref(n) > 0 and
Z D ne ( f(n) = o(n"¥?). Let by be the sequence such thatOb; <
=1 b, <...bp<1 by<r, 1-b, <randb,; —b <, for
Next we use Holder inequality for integrals with paramster | = 1.-...n— 1. Let X be the position of the ith sensor in the
2. aand get mterval [Q 1]. Itis sufficient to show that
. 1
! (n E[IX —bilfl e Q[ —].
f It — X|algi:n—i+1(x)|(i)dx .le 1% =bi] ns-1
o -
1 al i 1 . .
a-1\al 4 N a Let us recall that; = - — 5, fori = 1,2,...,n. Using the
= (j(; ('t' - ) g.;n_.+1(x)|(i)dx) ’ inequality (fora € N*) ) "
S0 . X — ti[* < 2271 (X — bi* + [by — t[?)
D)= < p@ 16
( : ) : (16) we get
Putting together Theorel 2 far:= a— 1 and equation$ (15), .
(18) we obtain SE[X - b > z-a”Z E[1% — ] - Z b -t (17)
n n Pact i=1
-1 =t
Z D > (Z D )] n=: By Theoreni2, Theorefd 3 we know
=) i-1
a n
a1l 1
_ ®(—a.11 )) ! DEIX -t € @(g—_l) (18)
nz-1 = nz
1
= ®(n%‘1)' Assume thab; = mln((| - 1)(l + f(n)) +4 4+ 10 1) fori =

1,2,...,n Letm+ 1 be the smallest posmvesuch that
This finishes the proof of the lower bound and completes the 1
proof of TheoremBB. O (i - 1)( + f(n)) — 4 %

2n
Clearly, if theith sensor occupies positibn fori = 1,2,...,m,
then the distance between consecutive sensors is equal to 2
In this section we prove the occurrence of threshold whereb{Pserve thabi —t < bi.q —aj.q, fori =1,2,....m and
the expected minimum sum of displacements to payetere ’ Tzax by =t < rA(f ()2,
1=1z,...,n

4. A Threshold on the minimum displacement

ais posmve natural number, remams@‘( ) provided that

r=2+ 1 wheref(n) > 0 andf(n) = o(n"%?). Hence,
" .|1a a+1 a
Definition 4. Given ar we denote by B(r) the expected min- Z by — 6% < ¥ (f ()"
imum sum of displacement to the power a (where a is positive -
by <b,<...by<1 by<r, 1-b,<randby;—b <r,for
Theorem 5. Assume that a is a natural number. LetrObe i=1,...,n-1,
the range of the sensors. If+ 2—1n + @ where f(n) > 0 and N
1
f(n) = o(n~%/2), then BA(r) € ®(n?11) Z b — [® < n**(f(n))? = O(W) (19)
i=1



Putting togethelL(17)[(18) anld {19) we get Putting together Theorefd 2, Theoréin 3 and equatibns (20),

(21) we deduce that
$ 1 1 1
ZE[|X| —bila] > 2a+l®(§—_l)—0(§—_l) = ®(§_—l) n 1 % e 1
= nz nz nz Z Di(a) < (G(T)) nma = ®(a_1)
i-1 nz-t n=-
This is sufficient to complete the proof of Theorem 5. O
This finishes the proof of Theordm 6. O
5. Upper bounds for total displacement wherr > - Now we give a lemma which indicates how to scale the re-

, sults of Theorernl6 to intervals of arbitrary length.
Now we study a more general version of the sensor move-

ment to powera, wherea > 0. Suppose thah sensors with  Lemma 7. Leta> 0. Assume that m mobile sensors are thrown
radiusr = »- are thrown randomly and independently with uniformly and independently at random in the interval ofjén
the uniform distribution in the unit interval. The questian  x. The sensors are to be moved to equidistant positions (within
how to estimate the total expected movementto the pad@r the interval) at distance sm from each other. Then the total

f > 1? If f > 6 we present Algorithrill that uses expectedexpected movement to the power a of the sensor{@@).
m2~

o(n?l1 ('”T”)Z) total movement to powes, wherea > 0. The

correctness of the algorithm is derived from Theofém 8. Proof. Assume thatn sensors are in the interval,[. Then
We begin with a theorem which indicates how to apply themultiply their coordinates by /. From Theoreni6 the total
results of Theorerhl2 and Theorén 3 to displacements to theovement to the powea in the unit interval is ino(—%lTl .
m

fractional power. Now by multiplying their coordinates by we get the desired

Theorem 6. Leta > 0. Assume that n mobile sensors are "€SUlt 0

thrown uniformly and independently at random in the unit in-
terval. The expected sum of displacements to the power & of eg
sensors to move from their current location to anchor lomati

Our upper bound on the total sensor movement to pavier
ased on the Algorithi 1.

ti =~ fori=1,....n, respectively is (énz_ll) Algorithm 1 Displacement to the powerwhena > 0, p =
2(2+a), q=2(2+a), X is the real solution of the equation
Proof. By Theoreni2 and Theoreih 3 we may assumedhat __x __ _ 3 gch thatk, > 3
0 anda ¢ N*. Let D be the expected distance to the poaer 12+3"nx _ I _
betweenX; and theit" anchor locationt; = Ln _ 2_1n on the unit Requ_lre: n zf [Xo] mobile sensors with |der_1t|cal sensing ra-
interval, hence given by: diusr = 5=, f > 6 placed uniformly and independently at
random on the interval [ ]
p@ _ (" ! a Ensure: The final positions of sensors to attain coverage of the
i = I(I)\L‘ [ti — X gi:nfi+l(x)dx- interval [Q ]_]

=

: Divide the interval into subintervals of |e”9fhfj;

plnn

if there is a subinterval with fewer th%n’n‘— sensorshen
pinn

moves alln sensors to positions that are equidistant;
else
S @ (e @) (o, ) in each subinterval choosgIn nj sensors at random and
> 0@ <| > (0®) 1 g '
_ i _ i = move the chosen sensors to equidistant position so as to
A cover the subinterval;

n @ fal aj-a N i
_ ( (D_(a)) a ) nis (20) 6: end if
|

Then we use discrete Holder inequality with parameiglrs

[a]
AT and get

[=
]
5

Next we use Holder inequality for integrals with parametgy, ~ Theorem 8. Leta > 0, f > 6 and n> [x], where ¥ is the
rg]ala and get solution of the equatlorgm = 3 such that ¥ > 3. Assume
that n sensors of radius & % are thrown randomly and in-
! a .(n dependently with uniform distribution on a unit intervahén
L It =X g“”‘”l(x)'(i )dx the total expected movement to power a of sensors required to

1 (a1 no @ cover the interval is in (égg{—l('%“)%),
= (f (|ti - X|a)3 gi;ni+1(X)i(i)dX) s
0 Proof. Assume thaa > 0. Let p = 2(2+ a) andq = 3(2+ a),

o) . Xo is the solution of the equatiom = 3 such thatg > 3.
(Di(a)) = <pla (21)  First of all, observe thaji > 3 for n > [xo1. We will prove



that the total expected movement to powef Algorithm[lis  Hence,

. 1 a
inO(4:(51)%). % n . n__ [@ranin (24)
There are two cases to consider. I_plnnJ I_plnnJ I_plnnJ

. ; ; ; n
Case 1: There exists a subinterval with fewer t ™7  The number of sensors falling in a subinterval is a Bernoulli

pinn

sensors. In this case the total expected movement to poiser process with probability of succe S By Chernoff bounds,

Inn
O(;%{—l) by Theoreni b. the probability that a given subinterval has fewer than
. H H n
Case 2: All subintervals contain at Iea%; =] Sensors. n @+ aninn
From the inequality x| < x we deduce thatqginn] < % o LLJ LLJ
lmJ plnn plnn

Hence itis possible to chooggln n] sensors at random in each

subinterval with more thaéﬁ sensors. Let us consider the sensors is less tha(1+3)nn < nTlg Specifically we use the

n

pinn

sequence Chernoff bound

- ~62m/2
an = [qlnn] g {LJ for n>[xo]. PriX < (1-o)m] <e® ™,

pinn
= n T § = /&ahn [%J As there aretpl’;nj subinter-
I . ~ o
Applying inequality| x| > x — 1 we see that vals, the event that one has fewer than
an>2(1- —1_|(1- PInn (22) n @+aninn
e En R
plnn plnn
Observe that
plnn 1 1 1 sensors occurs with probability less th%f@—J. This and Equa-
n = 3’ glnn < 4 for n2xl (23) tion (24) completes the proof of Clainh 9. O

Putting together Equatioh(P2) and Equation (23) we get Using Clain{® we can upper bound the total expected move-
ment to powea as follows:

f n

qunmﬁ{plnngan>l' [ﬁj 1 (Inn\? L%J 1
1- =10 == (=] |+ = [O| =

, nt+2 n=t\ n ni+3 ns-t

Therefore|qlInn] chosen sensors are enough to attain the cov- )

erage. By the independence of the sensors positiongj thae| ~ O[ 1 (In n)z]

chosen sensors in any given subinterval are distributed ran
domly and independently with uniform distribution over the
subinterval of Iengthﬁ. By LemmalTY the total expected which proves Theoref 8. O

pinn

movement to powea inside each subinterval is

n:-1\ n

6. Conclusion

1 1 (Inn)? , , N
O[ —n gl] = ( = (n n)). In this paper we studied the expected minimum total (or sum)
[ J Lginn]® energy consumption in the movement of sensors with identi-
cal range when the energy consumed per sensor is propdrtiona
Since, there are{pl’;nJ subintervals, the total expected to some (fixed) power of the distance traveled. We obtained
movement to powera over all subintervals must be in pounds on the expected minimum energy consumed depending
O(L (In_n)?). on the range of the sensors.

nzt\n
It remains to consider the probability with which each of
these cases occurs. The proof of the theorem will be a corReferences

sequence of the following Claim.

pinn
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