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Abstract

Cyber Physical Systems (CPSs) consist of hardware and software components. To verify that the whole
(i.e., software + hardware) system meets the given specifications, ezhaustive simulation-based approaches
(Hardware In the Loop Simulation, HILS) can be effectively used by first generating all relevant simulation
scenarios (i.e., sequences of disturbances) and then actually simulating all of them (verification phase). When
considering the whole verification activity, we see that the above mentioned verification phase is repeated
until no error is found. Accordingly, in order to minimise the time taken by the whole verification activity, in
each verification phase we should, ideally, start by simulating scenarios witnessing errors (counterezamples).
Of course, to know beforehand the set of such scenarios is not feasible. In this paper we show how to select

scenarios so as to minimise the Worst Case Expected Verification Time.
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1. Introduction

A CPS consists of hardware (e.g., engines, electri-
cal circuits, etc.) and software components. Thus,
in order to verify a CPS design, we need methods
and tools that can model and effectively support
analysis of hardware as well as software compo-
nents.

From a formal point of view, CPSs can be mod-
elled as hybrid systems (see, e.g., [8, 32, 31] and
citations thereof). Many Model-Based Design soft-
ware tools offer support for modelling and simula-
tion of CPSs. Well known examples are Simulink,
VisSim, Open Modelica, JModelica, Dymola. All
such tools take as input a (mathematical) model of
the behaviour of the CPS along with a simulation
scenario and provide as output the time evolution
(trace or simulation run) of the system.

System Level Verification of CPSs aims at ver-
ifying that the whole (i.e., software + hardware)
system meets the given specifications. System Level
Formal Verification (SLFV) has the goal of exhaus-
tively verifying that the above holds for all possible
operational scenarios.

For digital circuits, formal verification is usually
carried out using symbolic model checking tech-
niques (see, e.g., [13, 12]). Unfortunately, model
checkers for hybrid systems cannot handle SLFV of
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real world CPSs because of state explosion. Thus,
HILS is currently the main workhorse for system-
level verification of CPSs, and is supported by
model-based design tools.

In HILS, the control software (see, e.g., [30, 4, 5])
reads/sends values from/to mathematical models
(simulation) of the physical systems (e.g., mechani-
cal or electrical systems) it will be interacting with.
Simulation can be very time consuming. Accord-
ingly, in order to reduce system design time, there
are tools providing modelling and simulation soft-
ware along with FPGA-based hardware to support
real-time simulation. Examples are Opal-RT and
dSpace.

Finally, model-based design of CPSs often refers
to the activity of synthesising control software from
system requirements (see, e.g., [7, 6] and citations
thereof). Here, instead, we assume that a model for
the whole system (software + hardware) is given,
and we are only interested in CPS SLFV.

1.1. Motivations

Simulation-based approaches to the analysis of
hybrid systems have been proven very effective
in application domains as diverse as CPSs (see,
e.g., [24, 28, 17, 11, 41, 1, 42], smart grids (see,
e.g., [40, 29, 20]) and biological systems (see, e.g.,
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[22, 38]). The goal of all such approaches is to show
that, notwithstanding the possible presence of dis-
turbances (i.e., uncontrollable events such as faults,
variations in system parameters, etc.) from the en-
vironment, the system meets its requirements. This
is done by using HILS to show that for all simula-
tion scenarios (i.e., time sequences of disturbances)
in a given set, the system meets its requirements.
HILS, in turn, is carried out using a simulator (e.g.,
Simulink, Open Modelica, JModelica, Dymola) able
to model and simulate both hardware (e.g., me-
chanical or electrical systems) as well as software
components. Simulation-based verification can be
carried out using two approaches: online and of-
fline. The online approach typically selects the
next disturbance to be simulated using a Monte
Carlo strategy. The verification activity then con-
sists of a sequence of disturbance generation and
simulation steps. The offline approach first gener-
ates the whole (ordered) set of scenarios to be sim-
ulated (scenario generation phase) and then simu-
lates all of them (verification phase).

The verification activity simulates the System
Under Verification (SUV) until either a scenario
(counterexample) whose simulation returns FAIL is
found, or all scenarios have been simulated and sim-
ulation returns PASS. If the verification activity re-
turns FAIL, then the SUV design is revised, by ex-
ploiting the counterexample, and a new verification
activity is performed. We note the following points.

First, with an offline approach to CPS verifi-
cation, more than 99% of the overall verification
time is spent in the verification phase (see, e.g.,
[24]). Namely, for CPSs, simulating a single sce-
nario may take from several seconds to several min-
utes (see, e.g., [24, 26, 28]) depending on the com-
plexity of the system model (since typically a sys-
tem of ordinary differential equations has to be
solved in order to simulate the SUV dynamics).
For example, for the SUV considered in [24], we
see that generating a simulation scenario takes on
average 0.45 ms (thus generating 4 million simu-
lation scenarios takes about 30 minutes), whereas
the Simulink simulation of a single scenario takes
on average about 16.8 seconds (and the sequential
simulation of all scenarios would take more than
700 days!). This is in contrast with, e.g., digi-
tal hardware simulation, where the time needed to
generate a scenario and to simulate it are compa-
rable. Accordingly, within an offfine framework,
we can afford to increase (e.g., doubling) the time
spent in the generation phase if that can decrease

(even slightly) the expected time for the verifica-
tion phase. Note however that the offline approach
makes sense only for CPSs, whereas the online ap-
proach can always be used and is indeed the ap-
proach always used in digital hardware as well as in
software verification.

Second, whenever an error is found (and the SUV
revised accordingly), the verification activity needs
to simulate again all scenarios, including those al-
ready been simulated in previous verification ac-
tivities (since revising the SUV design may have
introduced new errors).

Third, in the offline approach, the scenario gen-
eration phase is performed only once, at the be-
ginning of the verification activity. This is possi-
ble because the scenario generation phase depends
only on the environment the SUV will be interact-
ing with, and not on the SUV model itself. Thus,
revising the SUV design, after an error has been
found, does not change the set of simulation sce-
narios to be considered in the verification phase.

From the above points, it follows that simulating
scenarios preceding a counterexample is indeed a
waste of time, since those scenarios will have to be
simulated again anyway. In order to minimise such
a waste of time, one would like to order the simula-
tion scenarios in such a way that those witnessing
errors (counterexamples) are simulated at the very
beginning in each verification phase. Of course, to
know beforehand the set of counterexamples is not
feasible (it is indeed the purpose of the verification
activity). Furthermore, while reordering of the set
of scenarios to be simulated can be effectively done
within an offfine framework (and has been done
indeed in [25, 28]), this is not possible within an
online framework where SUV simulation starts be-
fore the whole set of scenarios is known. Indeed,
from [10] we see that no strategy to select the next
disturbance in an online strategy can be optimal
for all SUVs.

The above considerations motivate investigation
on effective algorithms that can order the set of sim-
ulation scenarios so as to minimise the worst case
expected time for the verification activity within an
offtine CPS verification approach.

Of course our techniques could be applied to
simulation-based verification of any system (be it
software or hardware) with a finite set of scenarios.
However, from a practical point of view, it only
makes sense when scenario generation takes much
less than scenario simulation (see discussion above).
Presently, to the best of our knowledge, this is only



the case for CPSs and this is why we focus on them.

1.2. Main Contributions

From the previous discussion we see that the com-
putation time (defined as the number of scenarios
to be simulated before hitting a counterexample, if
any) of a verification phase (off-line approach) de-
pends on the order in which scenarios are simulated
and on where in such an order counterexamples are.

Accordingly, the generic verification phase (also
simply called verification in the following) can be
modelled as a two-player zero-sum game as follows.
First, player 1 (verifier) chooses the (possibly prob-
abilistic) ordering strategy in which scenarios will
be simulated. Second, player 2 (adversary) chooses
which scenarios will be counterexamples (that is,
will witness an error). Finally, the verifier simu-
lates the scenarios in the chosen order.

The goal for the verifier is to minimise the ver-
ification time, whilst the adversary aims at max-
imising it. In order to achieve such a goal, the ad-
versary must place counterexamples in such a way
that they will be the last scenarios to be simulated
by the verifier. On the contrary, the verifier must
order scenarios so that counterexamples are among
the first scenarios to be simulated.

In our game-theoretical setting, this may be mod-
elled by defining the payoff for the adversary as the
verification time. This entails that the verifier aims
at minimising verification time.

We take a non-deterministic model for the ad-
versary and a probabilistic model for the verifier.
Accordingly the Worst Case Expected Verification
Time (WCEVT) is the maximum (among all possi-
ble choices of the adversary) of the expected num-
ber of scenarios to be simulated before hitting a
counterexample. The objective for the verifier (re-
spectively, adversary) is to minimise (respectively,
maximise) the WCEVT. We note that the verifica-
tion activity stops as soon as a counterexample is
found. Thus, without loss of generality, we focus
on the case in which the adversary places just one
counterexample, since placing more than one would
decrease the Expected Verification Time (EVT).

Our main contributions are as follows.

First, we show that the minimum WCEVT is
’%1, where n is the number of simulation scenarios.

Second, we show that there is an infinite set
(forming a bounded convex polytope) of optimal
simulation strategies, i.e., strategies for which the

verifier attains the %*1 optimal payoff.

Third, we show that ordering simulation scenar-
t0s in a uniformly random way yields an optimal
simulation strategy.

Fourth, within an online (Monte Carlo-based)
simulation setting, we show how to select probabil-
ity distribution on disturbances so that the resulting
simulation strategy is optimal.

1.3. Paper Overview

This paper is organised as follows. Section 2
compares the paper contributions with the exist-
ing literature. Section 3 provides basic definitions
on simulation scenarios. Section 4 characterises op-
timal offfine simulation strategies. Section 5 char-
acterises optimal online (Monte Carlo) simulation
strategies. Section 6 gives proofs and, finally, Sec-
tion 7 provides conclusions.

2. Related Work

In this section we compare our contributions with
related research work.

2.1. Monte Carlo—based Simulation

Within an online setting (see Section 1.1), the
performance of Monte Carlo—based exploration has
been extensively studied. See, e.g., [10] for a survey
evaluating many strategies to select the next ac-
tion (disturbance in our setting) so as to minimise
the expected time to attain the goal (error state
in our context). The crucial difference of a Monte
Carlo—based approach with respect to ours is that
our strategy selects scenarios (i.e., sequences of dis-
turbances) rather than single disturbances. The ra-
tionale behind [10] is that the set of scenarios is not
known beforehand, but is rather discovered during
the simulation process. This is indeed the typical
case for digital hardware simulation and software
simulation where the time to generate a simula-
tion scenario is comparable to that of simulating
it. However, in our setting (verification of CPSs)
the time needed to generate a simulation scenario
(e.g., from a finite state model of the environment
as in [24]) is negligible (see Section 1.1) with respect
to the time needed to simulate it. Accordingly, by
exploiting full knowledge of the set of simulation
scenarios, we can devise optimal strategies whereas,
as shown in [10], this is not possible in the typical
setting where such set is not known beforehand. In
particular, [10] shows, with counterexamples, that
selecting disturbances uniformly at random is not



always an optimal strategy, whereas we show that
selecting scenarios uniformly at random is always
an optimal strategy (independently of the SUV).

The fact that test scenarios should be uniformly
distributed is widely accepted to be valid (though
not formally proved as it is in this paper) in many
application domains, such as: generation of “well-
distributed” random test programs for functional
processors verification (see, e.g., [3]), generation of
solutions to a constraint satisfaction problem uni-
formly at random (see, e.g., [14]). However, such
uniform selection of scenarios cannot be achieved
without full knowledge of the set of simulation sce-
narios, that is our setting. Furthermore, our for-
mal approach goes beyond conventional wisdom, by
showing that there is indeed an infinite convex set
of optimal simulation strategies. This opens the
door to methods that may be able to select an op-
timal test strategy (not necessarily a uniform one)
even without full knowledge of the set of simulation
scenarios.

2.2. Offtine Generation of Simulation Scenarios

Knowledge of the full set of scenarios to be sim-
ulated (offline approach, Section 1.1) can be ex-
ploited to speed up HILS based (formal) verifica-
tion of CPSs. For example, [39, 24, 26, 27] present
offline strategies where simulation scenarios are or-
dered with respect to a Depth-First Search (DFS)
on the finite state automaton describing the set of
admissible disturbance sequences. We note however
that none of the above papers aims at reducing the
WCEVT. Random reordering of simulation scenar-
ios is considered in [25, 28| with the goal of sup-
porting graceful degradation (of exhaustiveness), by
estimating the omission probability (i.e., the prob-
ability that an error is present in a yet-to-be simu-
lated scenario) during the verification activity. The
present paper further explores the benefits of ran-
dom ordering of simulation scenarios by showing
how this can be used to minimise the WCEVT, an
issue not addressed in any of the above papers.

2.83. CPS Verification

Of course, CPS wverification techniques have been
widely investigated within the online verification
setting (Section 1.1). For example [17, 42] present
online approaches using deterministic strategies to
select the next disturbance to the SUV, whereas
[11, 41, 1, 42, 16, 33, 2, 23, 18] present online
approaches using probabilistic strategies (Monte

Carlo simulation) to select the next disturbance to
the SUV.

Monte Carlo Model Checking of finite state de-
terministic systems (see, e.g., [19, 37, 35]) is a for-
mal (online) verification approach closely related to
our setting (which however can also handle infinite
state systems). Monte Carlo model checkers gener-
ate simulation scenarios using a Monte Carlo-based
approach randomly selecting disturbances (rather
than scenarios as in our offline setting).

Probabilistic model checking (see, e.g., [15, 21]
and citations thereof) consists of checking if a prob-
abilistic property holds for a probabilistic system
(modelled as a Markov Chain). We differ from such
online (Section 1.1) approaches because here we
consider deterministic systems and select scenarios
rather than disturbances. Moreover, our approach
is black bozx, that is we do not require a model for the
system to be available, since we only require avail-
ability of a simulator. Thus the above mentioned
approach cannot be used in our setting.

2.4. Summing up

From the above, we see that none of the above on-
line approaches (i.e., Sections 2.1 and 2.3) addresses
the problem of minimising the WCEVT, which is
the focus of our offline approach. In fact, all such
papers present (online) methods to search for re-
quirement violations in the given system. On the
contrary, our paper focuses on understanding what
is the simulation strategy that minimises the (ex-
pected worst case) time to find an error. In this re-
spect, our paper shows that an offline approach can
provide infinitely many optimal simulation strate-
gies (Section 4), whereas online selection strategies
are, in general (see [10]), not optimal when consid-
ering the WCEVT (Section 5).

3. Background

In this section we give the definitions of simula-
tion scenario and simulation campaign, as well as
other preliminary notions.

In the following, unless otherwise stated, D de-
notes a non-empty finite set whose elements are
called uncontrollable inputs or disturbances. Set D
models the set of disturbances (e.g., faults, delays,
etc.), including the null disturbance (i.e., nominal
case), our SUV is supposed to withstand.

A simulation scenario is obtained by using distur-
bances in D according to the following definition.



Definition 1 (Simulation Scenario). A simula-
tion scenario § (or just scenario) is a finite se-
quence of elements of D, that is § = (dy,da, ..., dy,)
with d; € D for all i € [1,n]. Given a sim-
ulation scenario 0 = (dy,ds,...,d,), we write
0(i) for d;, and we call n the length (or time
horizon) of §. Given two scenarios 61 =
(dn, d12, ceey d1n> and 0y = <d217 d22, ce. 7d27n>7
their concatenation is defined by 01 - 0o = 0109 =
<d11, d12, ey dln; d21, dgg7 [N ,d2m>. We denote D+
the set of all possible simulation scenarios on D.

Example 1 (Simulation Scenario). Let us con-
sider the Fuel Control System (FCS) model in
the Simulink distribution, whose formal verification
has been discussed in [24, 26, 28]. The model is
equipped with four semsors: throttle angle, speed,
Ozygen in Erhaust Gas (EGO) and Manifold Ab-
solute Pressure (MAP). Let us assume that only
sensors EGO and MAP can fail, giving rise to dis-
turbances dy and ds, respectively. Moreover, let us
assume that the minimum time between faults is one
second and all faults are transient and are repaired
within one second. Hence disturbance di models a
fault on sensor EGO, followed by a repair within
one second, and disturbance do models a fault on
sensor MAP, followed by a repair within one sec-
ond too. We also consider the no-fault event, which
we model with disturbance dz. Then, the set of dis-
turbances D is {di,da,ds}. The following are ex-
amples of simulation scenarios: 61 = (dy,d3, da,ds3)
(of length 4) and 02 = (d2,ds,d2) (of length 3).

Remark 1 (Scenario Simulation Time). We as-
sume that all scenarios take basically the same time
to simulate regardless the disturbance sequence be-
ing simulated. This holds for many real world sys-
tems. For example, considering again the FCS in
Ezample 1, we have that simulating (on an Intel(R)
Xeon(R) @ 2.66GHz Linux machine) a scenario of
length 100 seconds takes on average (over about
75000 randomly selected scenarios) 16.80 seconds
with a standard deviation of 2.99 seconds (i.e., 18%
of the average time).

In the following, starting from the set of sim-
ulation scenarios, we define the notion of simula-
tion campaign, which defines how each verification
phase is actually performed. To this end, we first
define the Admissible System Environment, which
restricts the set of possible simulation scenarios to
a more useful subset for our objective.

Definition 2 (Admissible System Environment).
An Admissible System Environment (ASE) is a
nonempty finite set of simulation scenarios A C
DT, such that no scenario in A is a prefir of an-
other one. Formally, for each 6,0 € A, if 6 # 0
then there exists no o € DT such that: § = fo.

Example 2 (Admissible System Environment).
Let us consider the FCS model and the set of dis-
turbances D = {dy,da,ds} of Ezample 1. Typically,
one is interested in verifying the SUV when at most
one fault can occur. Thus, if we only consider sim-
ulation scenarios of length 3, we obtain the simu-
lation scenarios set A = {d1,...,97} consisting of
61 = (d1,ds,d3), 02 = (da,d3,d3), 63 = (d3,d1,d3),
04 = (d3,d2,d3), 05 = (d3,d3,d1), 66 = (d3,d3,dz),
d; = (ds,ds,ds). A is an ASE, in fact no scenario
in A is the prefiz of another one.

Given an ASE A, we may now define the notion
of simulation campaign.

Definition 3 (Simulation Campaign). A simula-
tion campaign o for an ASE A = {61,...,0,} is
a permutation (8;,,...,8;. ) of the elements of A.
We denote with Sim(.A) the set of all n! simulation
campaigns for A.

The j-th scenario in a simulation campaign o,

i.e., 0;,, is denoted with o(j). The position of a
simulation scenario « in the simulation campaign
o is x(o,a), that is, x(o,a) = j if and only if 6;; =
o(j) = a.
Example 3 (Simulation Campaign). Let us con-
sider the ASE A = {01,62,05}. Then the set
of simulation campaigns consists of 3! = 6 ele-
ments. Namely, Sim(A) = {01, 02,03,04,05,06},
where o1 = <51,52,53>, 02 = <51,53,52>, g3 =
<($2,(51,53>, g4 = <62,53,51>, 05 — <(53,51,62> and
o6 = (03, 02,01). The position where the simulation
scenario 03 occurs in the simulation campaign oy
is x(o4,03) = 2, whereas the position of 03 in the
simulation campaign o1 is x(o1,03) = 3.

4. Minimising Verification Time

In this section we show the main results of our
paper. To this aim, we first define the notions of er-
ror injection strategy and simulation strategy. This
allows us to model the verification activity as a two-
player zero-sum game. Namely, the error injection
strategy is the (probabilistic) strategy of the adver-
sary player, whilst the simulation strategy is the
strategy for the verifier player.



Definition 4 (Error Injection Strategy and Simu-
lation Strategy). An error injection strategy x for
an ASE A is a real-valued function  : A — [0,1]
such that ) . 4 v(a) = 1.

A pure error injection strategy, denoted xj, for
k=1,...,|A| is a strategy defined as: x}(0;) =1
if k =j and 0 otherwise.

A simulation strategy y for an ASE A is a real-
valued function y : Sim(A) — [0,1] such that
> oesim(a) Y(o) =1.

pure simulation strategy, denoted vy for
E=1,...,|Sim(A)| = 1,...,|Al!, is defined as:
yi(o;) =1 if k=3 and 0 otherwise.

We denote with X the set of all error injection
strategies, with Y the set of all simulation strate-
gies, with X* C X the set of pure error injection
strategies, and with Y* CY the set of pure simula-
tion strategies.

Example 4 (Error Injection Strategy and Simu-
lation Strategy). Let us consider the ASE A =
{61,02,03}. FExamples of error injection strate-
gies are the functions x1, xo € X defined as:
Xl) ml(dl) = %, 1 E [1,3],‘ X2) $2(51) = 1‘2((53) = O,
x9(02) = 1. Informally, strategy xo consists in de-
terministically choosing 0o as the failing scenario,
whilst ©1 consists in picking the failing scenario at
random among the three in A. Note that z2 is a
pure strategy, whilst 1 is not.

The set of simulation campaigns for A is
Sim(A) = {o1,...,06}, where each o; is defined as
in Example 8. Examples of simulation strategies are
the functions yy, y2 € Y defined as: y1) y1(0;) = ¢,
i € [1,6]; y2) y2(02) = y2(04) = 3, y2(0) = 0,
1=1,3,5,6. Informally, strategy y1 chooses at ran-
dom any of the siz available simulation campaigns
whereas strateqy yo chooses at random between the
simulation campaigns oo and 4. Note that none of
the above two strategies is pure.

We may now define the expected and the worst
case expected verification times defining the payoff
for our game.

Definition 5 (Expected Verification Time). Given
an error injection strategy x for an ASE A and
a simulation strategy y for the set of simulation
campaigns Sim(A), the Expected Verification Time
(EVT) for the verification flow is defined as the ex-
pected number of simulation scenarios to be simu-
lated before hitting the one that witnesses the error:

EVT(z,y) =Y > =(8)x(o,6)y(o)

d€eA ceSim(A)

The Worst Case Expected Verification Time
(WCEVT) is the maximum EVT after any adver-
sary choice:

WCEVT(y) = max,ex EVT(z,y).

Example 5 (Expected Verification Time). Let us
consider the ASE A, the error injection strategy x
and the simulation strategy yo of Example 4. Then
EVT($1, yg) = 2.

The following Lemma 1 points out a property of
the EVT useful in proving our results. In Lemma 1
we consider the simulation strategy associating uni-
form probability to simulation campaigns and we
denote it as §, namely (o) = - for all ¢ € Sim(A).
We refer to  as the uniform simulation strategy.
Lemma 1. Let x € X be an error injection strat-
eqy, ¥ € X* a pure error injection strategy and
y € Y be the uniform simulation strateqy. Then

max,ex EVT(z, ) = max,«cx- EVT(z*, ).

Proof. From game theory (see, e.g., [36]), we
have that, for all z € X, z* € X* and for
J € Y. YieaXoesima t0)x(0,0)g(0) <
D oseA 2oesima) L (0)x(0,0)9(0), that is
EVT(z,9) < EVT(2*,9). This implies that
maxzex EVT(z, ) < max,«cx~ EVT(2*,§). Since
X* C X, we also have that max,cx EVT(z,9) >
max,+cx+ EVT(z*, 9). O

Lemma 1 states that, when we consider the uni-
form simulation strategy ¢, taking the maximum on
set X is equivalent to taking the maximum on the
subset of pure strategies X ™.

Note that the goal of the wverifier player
is to minimise WCEVT, ie., to find § =
argmin, ., WCEVT(y). Thus, g is the strategy for
which the WCEVT takes the minimum value, de-
fined as:

MiniMaxEVT = min max Z Z x(8)x(o,6)y(o).
d€A oeSim(A)

Our main result consists in providing a value for
MiniMaxEVT, thus providing a lower bound for the
verifier payoff, and the conditions for a simulation
strategy to be optimal. This is stated in Theorem 1
(proof in Sections 6.1 to 6.3), which is inspired by
the Minimax Theorem of Von Neumann [36].

Theorem 1 (Minimum WCEVT). Let A =
{61,...,0n} be an ASE. Then the following state-
ments hold:



1. The value for the minimum WCEVT is:

MiniMaxEVT = minycy max,ex EVT(z,y) = "T‘H

2. A simulation strategy y € Y is optimal if and
only if it satisfies the following constraints:

D1 t 2 (o5t Y(O) = 2l fori € [1,n).

8. A simulation strategy attaining the optimal
payoff MiniMaxEVT is the uniform simulation

strategy §(c) = %

Remark 2 (Set of Optimal Simulation Strategies).
There is an infinite number of optimal simulation
strategies. Namely, any solution to the (feasibility)
LP problem:

Z?:l tZX(U,(Si):t y(g) = nT-H fO’f"l: € [1,71]
Y oesima) Y(0) =1
0<y(o) <1 for o € Sim(A).

Note that the set of solutions to the above equations
is a closed bounded convex polytope (see, e.qg., [34]).

Example 6 (Set of Optimal Simulation Strate-
gies). Let us consider the ASE A = {d1,02,03} and
the siz simulation campaigns in Sim(A) in Ezam-
ple 3. From Theorem 1 (statement 1) we have that
MiniMaxEVT = "TH = 3—42'1 = 2. Furthermore,
any simulation strateqy y satisfying the constraints
in item 2 of Theorem 1 will be optimal. It is easy
to see that both simulation strategies y1 and yo in
Example 4 satisfy the constraints in statement 2 of

Theorem 1 and are therefore optimal.

5. Monte Carlo—like Simulation

Theorem 1 characterises optimal off-line (i.e., se-
lecting scenarios before starting the simulation ac-
tivity) simulation strategies. In this section we
show how the results in Theorem 1 can be used to
characterise optimal on-line (i.e., selecting distur-
bances while the simulation advances) simulation
strategies. We will focus on Monte Carlo-based
approaches (see Section 2.1) since typically on-line
scenario generation rests on them.

First, we note that we may represent an ASE
A with a directed (prefix) tree T4, which we call
disturbance tree. The set of vertices of T 4 is the set
prefix(T4) of prefixes of the scenarios in A, with
the empty prefix being the root of T 4. Each edge
(u,v) of T4 is labelled with a disturbance d € D

such that (u,d) = v. Accordingly, we will usually
denote edges with pairs (u, d) where u is a node and
d a disturbance.

A probability matrixz for T 4 is a map from edges of
T 4 to real values in [0, 1] such that for each node wu,
2 {d-(u,dyeprefix(Ta)} P(U: @) = 1. Intuitively, p(u, d)
can be regarded as the probability of injecting dis-
turbance d after having injected the sequence of dis-
turbances u.

In the above setting we can easily compute the
probability P(u) of injecting a given sequence of
disturbances as follows: P({)) = 1, P({u,d)) =
P(u)p(u,d). Hence, given an ASE A, the corre-
sponding disturbance tree T 4, and the probability
p of injecting disturbances, we obtain the simula-
tion strategy y for (A, p). Namely, the simulation
strategy y such that, for each (d1,...d,) € Sim(A),

n P(d;
on)) =I1izy ﬁ
Note that since the simulation scenarios in A are
the leafs of T4, this definition is well posed. That

I8, 2 g esim(a) Yalo) = 1.
Remark 3. Theorem 1 provides optimality condi-
tions for an (A,p) simulation strategy.

is obtained as y4 ({01, ...

Note that the (A, p) simulation strategy y is with-
out replacement, whereas Monte Carlo simulation
strategies are usually implemented with replace-
ment. This eases the implementation, since there
is no need to store the already simulated scenarios,
without sacrificing performance, since the probabil-
ity of hitting the same scenario twice is negligible.
Of course, from a theoretical point of view, a Monte
Carlo sampling with replacement is always worse
than a sampling approach without replacements.
For example, our Monte Carlo-like (A, p) simula-
tion strategy y is guaranteed to hit the error trace
(if any) after at most |.A4| simulations, whereas a
Monte Carlo simulation strategy with replacement
never offers such a guarantee within a finite number
of simulations (Coupon Collector’s Problem [9]).

Proposition 1 provides a sufficient condition un-
der which a probability matrix yields an optimal
simulation strategy (proof is in Section 6.4).

Proposition 1 (Optimal Monte Carlo Simulation
Strategies). Let A be an ASE, T4 be the disturbance
tree associated to A and p be a probability matrix
forTya. If foralldo € A, P(§) = \%ll’ then the Monte

Carlo simulation strategy y for (A,p) is optimal.

Example 7 (Optimal Monte Carlo Simula-
tion Strategy). Let us consider the ASE A =



dy ds

d; dy dy

o 133 s

Figure 1: Disturbance tree T4 for A = {é1, 2,03}, where
61 = (d1,dr), 02 = (d2,d1), 63 = (d2,d2) (Examples 7
and 8).

{51,(52,53}, where (51 = <d1,d1>, 52 = <d2,d1>,
03 = (da,da). The disturbance tree T'x associated
to A is shown in Figure 1. Let p be the probabz'lz'ty
matrixz for TA defined as follows: p({),d;) = 1,
p((),do) = 3, p((d),dr) = 1, p({d2),dr) =
p({d2), d2) = % Then, P(61) = P(02) = P(3)
. Thus, by Proposition 1, the corresponding sim-
lation strategy y is optimal.

’

SIS

1
3
U

Note that the (optimal) probability matrix in
Example 7 does not select disturbances uniformly
at random. However, many HILS-based verifi-
cation techniques simulate the SUV by selecting
disturbances uniformly at random. That is, by
choosing the probability matrix p for T4 so that
for each node u and disturbance d, p(u,d) =
‘{T|<u’r>ep1reﬁx(TA)}|. This may not yield an optimal

simulation strategy (Remark 4).

Remark 4 (A Non-Optimal Monte Carlo Simu-
lation Strategy). Let D be a set of disturbances
with |D| > 2. Then there exists an ASE A C D
such that selecting disturbances uniformly at ran-

dom does not yield an optimal simulation strategy
y (Example 8).

Example 8 (Non-Optimal Monte Carlo Simula-
tion Strategy). Without loss of generality, let D =
{d1,d2}. Let A C D be the ASE shown in Ez-
ample 7 with n|A| = 3, whose disturbance tree is
shown in Figure 1. Let p be the probability matriz
for Tx such that p(u,d) = ﬁ, where k(u) is the
out-degree of node u. In other words, at each step,
p selects disturbances uniformly at random. Then,
P(61) = 1, P(62) = P(63) = . By Theorem 1, an
optimal strategy y* consists in selecting uniformly
at random the simulation campaigns in Sim(A).
This yields a payoff MiniMaxEVT = "TH =2. The
Monte Carlo simulation strategy y for (A,p) is such
that WCEVT(y) > 2, thus y is not optimal. By
definition of (A, p), simulation strategy and Exam-

ple 3, we have: y(ol) =1, yloz) = % y(os) = &,
_ 1 L
y(os) = 127 y(os) = 6’ and y(og) = 12
We  can  compute ~ WCEVT(y) =
max,+cx+ EVT(2*,y) by considering only pure er-
ror injection strategies x* (Lemma 1). In this case,
X* = {af, x5, x5} (see Definition 4), and the values
for EVT(:UQZy) fori € [1,3] are: EVT(a:l, y) = 3,
EVT(z3,y) = 22, and EVT(x3, y)
Thus WCEVT( )= max{ , ?3

_3€
T=
6. Proof of Results

In this section we provide the proofs of the main
results of this paper.

6.1. Theorem 1: Optimal Value of MiniMaxEVT

In order to prove that MiniMaxEVT = ”TH, we
use the following two properties of MiniMaxEVT.

i) For any two-player zero-sum game, by the
Minimax Theorem (see, e.g., [36]), we have:
MiniMaxEVT = max,ex mingey EVT(z,y) =
miny,ecy max,ex EVT(z,y).

i) maxgex mingey EVT(z,y) =
maxgex mingcy~ EVT(z, y*). In fact,
since the minimum is reachable for at
least one pure strategy, we can write:
min,ey EVT(x,y) > min,-cy~ EVT(x, y*).
On the other hand, since Y* C Y, we have
mingcy EVT(z,y) < mingcy«- EVI(z,y*), and
consequently the property.

To prove the theorem it is sufficient to show that
Vi = maxzex mingey EVT(2,y) > "74'1 and that
Vo = minyey max,ex EVT(z,y) < ”TH Since
MiniMaxEVT = V; = V5, we may then conclude
that MiniMaxEVT = %,

We start by showing that Vi> "7“

From property i) we can write:

Vi = maxgex mingey EVT(z,y) =
maxye x ming-cy~ EVT(x, y*) =
maXgecx minaESim(.A) ZéeA 1‘(5 X(U’ 6) =
max,ecx miny<;j<n Yy 2(6;)x(0;, ;).

By choosing the uniform error injection strategy
£(8) = 1 (uniform strategy over set A), we have:

Vi > maxgex mini<j<n Y #(0i)x(05,0i) =
. n 1
miny<j<nt ;g 5y X(05,0;) =

1 . . n 1 n .
NI < Y 8= 5D 0

which implies V; > 241



In order to show that V5 < "+1

uniform simulation strategy ¢(o )
Lemma 1. Then we have:

, we consider the
= L and also use

n!

Vs min, ey maxzex EVT(z,y) <

maxgex EVT(x ) = maxg-cx~ EVT(z*
maxij<i<n Z] 1 X(UJ75 )y(o’j) =

1, maxi<i<n E; 1 X(U]75 ) =

1 maxycien Sy (n— Dlh =

(n%ll)! Yherh= nTH

n+1

Hence "%’1 <V=W<

6.2. Theorem 1: Optimality of Simulation Strate-
gies

Without loss of generality, we focus on the case in
which the adversary places just one counterexample
(see Section 1.1), say in scenario §;. The probability
that §; is in position ¢ in a simulation campaign
o € Sim(A) is EX(U,(Si):t y(o). Multiplying by ¢
and summing out we have the expected value for the
verification time. Then a simulation strategy y €
Y is optimal if and only if it satisfies statement 1
of Theorem 1, namely: > 7, t3° (, 5= Y(0) =
2l for i € [1,n].

6.3. Theorem 1: Optimality of Uniform Simulation
Strategy

In order to prove that the uniform simula-
tion strategy g is an optimal one for
the verifier player, it is sufficient to rewrite the
expression for EVT by using g. We have:
Z?:ltZX(U,tsi):ty(o-) Et ltz (0,95) tn' Ob-
serving that the number of sunulatlon campaigns
having §; in position ¢ is (n — 1),

Iyt (n— 1) = 205 = e,

we have

1
n

6.4. Proposition 1: Sufficient Condition for Opti-
mality of Monte Carlo Simulation Strategy

From the hypothesis it follows that, for all
<51, ey 5n> S Slm(A)
_ 1" P(d:) —
ZJA((51, . ,61 >) - Hi:l 1_2%;11 P(or)
[T FI S I, sy I, ﬁ?-&-l =

By Theorem 1 this is an optimal simulation strat-
egy.

) =

7. Conclusions

In the framework of simulation-based verification
we addressed the problem of identifying an order-
ing on the scenarios (i.e., sequences of disturbances)
to be simulated so as to minimise the maximum ex-
pected time to find an error (WCEVT). Our results
can be summarised as follows.

First, the minimum WCEVT is 3=, where n is
the number of scenarios to be simulated.

Second, there is an infinite set of optimal simu-
lation strategies, i.e., strategies for which the min-
imum WCEVT is attained. Furthermore, we show
that such a set forms a bounded convex polytope.

Third, ordering simulation scenarios uniformly
at random yields an optimal simulation strategy.

Fourth, within an online Monte Carlo—based sim-
ulation setting, we show how to select probability
distribution on disturbances so that the resulting
simulation strategy is optimal.

n+1

Acknowledgments. This research has been partially
supported by FP7 projects SmartHG (317761) and
PAEON (600773).

References
[1] H. Abbas, G. Fainekos, S. Sankaranarayanan,
F. Ivanc¢i¢, and A. Gupta. Probabilistic temporal

logic falsification of cyber-physical systems. ACM
TECS, 12(2s), 2013.
[2] H. Abbas, B. Hoxha, G. Fainekos, and K. Ueda.

Robustness-guided temporal logic testing and verifica-
tion for stochastic cyber-physical systems. In Proc.
IEEE CYBER 2014. IEEE, 2014.

A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon,
M. Vinov, and A. Ziv. Genesys-Pro: Innovations in
test program generation for functional processor verifi-
cation. IEEE Des.&Test Comp., 21(2), 2004.

V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and
E. Tronci. Automatic control software synthesis for
quantized discrete time hybrid systems. In Proc.
CDC 2012. IEEE, 2012.

V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and
E. Tronci. On model based synthesis of embedded con-
trol software. In Proc. EMSOFT 2012. ACM, 2012.
V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and
E. Tronci. A map-reduce parallel approach to automatic
synthesis of control software. In Proc. SPIN 2013, vol-
ume 7976 of LNCS. Springer, 2013.

V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and
E. Tronci. On-the-fly control software synthesis. In
Proc. SPIN 2013, volume 7976 of LNCS. Springer,
2013.

R. Alur. Formal verification of hybrid systems. In Proc.
EMSOFT 2011. ACM, 2011.

A. Arcuri, M. Igbal, and L. Briand. Random testing:
Theoretical results and practical implications. [IEEE
TSE, 38(2), 2012.

(3]

(4]

(5]

(6]

(7]

(8]
[9]



[10]

11]

[12]
(13]

[14]

[15]

[16]

(17]

(18]

(19]

20]

21]

[22]

23]

[24]

[25]

[26]

27]

(28]

C. Browne, E. Powley, D. Whitehouse, S. Lucas,
P. Cowling, P. Rohlfshagen, S. Tavener, D. Liebana,
S. Samothrakis, and S. Colton. A survey of Monte Carlo
tree search methods. IEEE T-CIAIG, 4(1), 2012.

E. Clarke, A. Donzé, and A. Legay. On simulation-
based probabilistic model checking of mixed-analog cir-
cuits. Form. Meth. Sys. Des., 36(2), 2010.

E. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT, 1999.

E. Clarke, T. Henzinger, and H. Veith. Handbook of
Model Checking. Springer, 2016.

R. Dechter, K. Kask, E. Bin, and R. Emek. Generating
random solutions for constraint satisfaction problems.
In Proc. AAAI 2002. AAAI, 2002.

G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, and
M. Venturini Zilli. Finite horizon analysis of Markov
chains with the Murphi verifier. STTT, 8(4-5), 2006.
A. Dokhanchi, A. Zutshi, R. Sriniva, S. Sankara-
narayanan, and G. Fainekos. Requirements driven falsi-
fication with coverage metrics. In Proc. EMSOFT 2015.
IEEE, 2015.

P. Duggirala, S. Mitra, M. Viswanathan, and M. Potok.
C2E2: A verification tool for stateflow models. In Proc.
TACAS 2015, volume 9035 of LNCS. Springer, 2015.
C. Grimm and C. Radojicic. Verification and validation
of AMS systems: Towards coverage of uncertainties. In
Proc. IMSTW 2015. IEEE, 2015.

R. Grosu and S. Smolka. Monte Carlo model checking.
In Proc. TACAS 2005, volume 3440 of LNCS. Springer,
2005.

B. Hayes, I. Melatti, T. Mancini, M. Prodanovic, and
E. Tronci. Residential demand management using in-
dividualised demand aware price policies. IEEE Trans.
Smart Grid, 2016. To appear.

D. Jansen, J. Katoen, M. Oldenkamp, M. Stoelinga, and
1. Zapreev. How fast and fat is your probabilistic model
checker? An experimental performance comparison. In
Proc. HVC 2007, volume 4899 of LNCS. Springer, 2008.
S. Jha, E. Clarke, C. Langmead, A. Legay, A. Platzer,
and P. Zuliani. A bayesian approach to model checking
biological systems. In Proc. CMSB 2009, volume 5688
of LNCS. Springer, 2009.

K. Kalajdzic, C. Jégourel, A. Lukina, E. Bartocci,
A. Legay, S. Smolka, and R. Grosu. Feedback control
for statistical model checking of cyber-physical systems.
In Proc. ISoLA 2016, volume 9952 of LNCS. Springer,
2016.

T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli,
and E. Tronci. System level formal verification via
model checking driven simulation. In Proc. CAV 2013,
volume 8044 of LNCS. Springer, 2013.

T. Mancini, F. Mari, A. Massini, I. Melatti, and
E. Tronci. Anytime system level verification via ran-
dom exhaustive hardware in the loop simulation. In
Proc. DSD 2014. IEEE, 2014.

T. Mancini, F. Mari, A. Massini, I. Melatti, and
E. Tronci. System level formal verification via dis-
tributed multi-core hardware in the loop simulation. In
Proc. PDP 2014. IEEE, 2014.

T. Mancini, F. Mari, A. Massini, I. Melatti, and
E. Tronci. SyLVaaS: System level formal verification
as a service. In Proc. PDP 2015. IEEE, 2015.

T. Mancini, F. Mari, A. Massini, I. Melatti, and
E. Tronci. Anytime system level verification via paral-
lel random exhaustive hardware in the loop simulation.

10

29]

(30]

31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

MicPro, 41, 2016.

T. Mancini, F. Mari, I. Melatti, I. Salvo, E. Tronci,
J. Gruber, B. Hayes, M. Prodanovic, and L. Elmegaard.
Demand-aware price policy synthesis and verifica-
tion services for smart grids. In Proc. SmartGrid-
Comm 2014. IEEE, 2014.

F. Mari, I. Melatti, I. Salvo, and E. Tronci. Synthesis
of quantized feedback control software for discrete time
linear hybrid systems. In Proc. CAV 2010, volume 6174
of LNCS. Springer, 2010.

F. Mari, I. Melatti, I. Salvo, and E. Tronci. Undecid-
ability of quantized state feedback control for discrete
time linear hybrid systems. In Proc. ICTAC 2012, vol-
ume 7521 of LNCS. Springer, 2012.

F. Mari, I. Melatti, I. Salvo, and E. Tronci. Model based
synthesis of control software from system level formal
specifications. ACM TOSEM, 23(1), 2014.

S. Sankaranarayanan, R. Chang, G. Jiang, and F. Ivan-
cic.  State space exploration using feedback con-
straint generation and Monte-Carlo sampling. In Proc.
ACM SIGSOFT 2007. ACM, 2007.

A. Schrijver. Theory of Linear and Integer Program-
ming. Wiley, 1998.

H. Sivaraj and G. Gopalakrishnan. Random walk based
heuristic algorithms for distributed memory model
checking. ENTCS, 89(1), 2003.

L. Thomas. Games, Theory and Applications. Dover,
1980.

E. Tronci, G. Della Penna, B. Intrigila, and M. Ven-
turini Zilli. A probabilistic approach to automatic ver-
ification of concurrent systems. In Proc. APSEC 2001.
IEEE, 2001.

E. Tronci, T. Mancini, I. Salvo, S. Sinisi, F. Mari,
I. Melatti, A. Massini, F. Davi, T. Dierkes, R. Ehrig,
S. Roblitz, B. Leeners, T. H. C. Kriiger, M. Egli, and
F. Ille. Patient-specific models from inter-patient bio-
logical models and clinical records. In Proc. FMCAD
2014. IEEE, 2014.

G. Verzino, F. Cavaliere, F. Mari, I. Melatti, G. Minei,
I. Salvo, Y. Yushtein, and E. Tronci. Model checking
driven simulation of sat procedures. In SpaceOps 2012,
2012.

C.-H. Yang, G. Zhabelova, C.-W. Yang, and V. Vyatkin.
Cosimulation environment for event-driven distributed
controls of smart grid. IEEE Trans. Ind. Inf., 9(3),
2013.

P. Zuliani, A. Platzer, and E. Clarke. Bayesian
statistical model checking with application to State-
flow/Simulink verification. Form. Meth. Sys. Des.,
43(2), 2013.

A. Zutshi, S. Sankaranarayanan, J. Deshmukh, and

X. Jin.  Symbolic-numeric reachability analysis of
closed-loop control software. In Proc. HSCC 2016.
ACM, 2016.



	Introduction
	Motivations
	Main Contributions
	Paper Overview

	Related Work
	Monte Carlo–based Simulation
	Offline Generation of Simulation Scenarios
	CPS Verification
	Summing up

	Background
	Minimising Verification Time
	Monte Carlo–like Simulation
	Proof of Results
	thm:MiniMax: Optimal Value of `39`42`"613A``45`47`"603AMiniMaxEVT
	thm:MiniMax: Optimality of Simulation Strategies
	thm:MiniMax: Optimality of Uniform Simulation Strategy
	thm:mcopt: Sufficient Condition for Optimality of Monte Carlo Simulation Strategy

	Conclusions

