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Relaxed Leverage Sampling for Low-rank Matrix Completion

Abhisek Kundu ∗

Abstract

We consider exact recovery of any m × n matrix of rank ̺ from a small number of ob-
served entries via the nuclear norm minimization in (1). Such matrices have degrees of
freedom (m + n)̺ − ̺2. We show that any low-rank matrix can be recovered exactly from
Θ
(

((m+ n)̺− ̺2)log2(m+ n)
)

randomly sampled entries, thus matching the lower bound
on the required number of entries (in degrees of freedom), with an additional factor of
O(log2(m + n)). To achieve this bound we observe each entry with probabilities propor-
tional to the sum of corresponding row and column leverage scores, minus their product (see
(3)). We show that this relaxation in sampling probabilities (as opposed to sum of leverage
scores in [5]) can give us O(̺2log2(m + n)) improvement on the (best known) sample size
obtained by [5] for the problem in (1). Experiments on real data corroborate the theoretical
improvement on sample size.

Further, exact recovery of (a) incoherent matrices (with restricted leverage scores), and (b)
matrices with only one of the row or column spaces to be incoherent, can be performed using
our relaxed leverage score sampling, via (1), without knowing the leverage scores a priori. In
such settings also we can achieve improvement on sample size.

1 Introduction

Suppose we have a data matrix M ∈ R
m×n with incomplete/missing entries, say, we have informa-

tion about only a small number elements of M. The matrix completion problem ([2]) is to predict
those missing entries as accurately as possible based on the observed entries. Such partially-
observed data may appear in many application domains. For example, in a user-recommendation
system (a.k.a collaborative filtering) we have incomplete user ratings for various products, and
the goal is to make predictions about a user’s preferences for all the products (e.g., the Netflix
problem). Also, the incomplete data could represent partial distance matrix in a sensor network,
or missing pixels in digital images because of occlusion or tracking failures in a video surveillance
system ([3]).

More mathematically, we have information about the entries Mij, (i, j) ∈ Ω, where Ω ⊂
[m] × [n] is a sampled subset of all entries, and [n] denotes the list {1, ..., n}. The problem is to
recover the unknown matrix M in a computationally tractable way from as few observed entries
as possible. However, without further assumption on M it is impossible to predict the unobserved
elements from a limited number of known entries. One popular assumption is that M has low-
rank, say rank ̺. Such matrices have degrees of freedom (m+n)̺−̺2, i.e., this many parameters
control all other entries. This implies, if the number of observed entries s = |Ω| < (m+n)̺− ̺2,
there can be infinitely many matrices of rank at most ̺ with exactly the same entries in Ω;
therefore, exact recovery of unobserved entries is impossible. So, in general, we need at least
(m + n)̺ − ̺2 many observed entries for exact matrix completion. The matrix M, with the
observed entries, can be interpreted as an element in mn-dimensional linear space, with available
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information about O((m+n)̺−̺2) coordinates. The set of matrices compatible with the observed
entries forms a large affine space. Then, exact matrix completion problem is to specify an efficient
algorithm which uniquely picks M from this high-dimensional affine space ([9]). Since our target
matrix M is low-rank, a natural optimization problem for finding M would be to find a matrix
with minimum rank complying with the observed entries. However, minimizing rank over an
affine space is known to be NP-hard ([12]). [2] proposed to solve the heuristic optimization in (1)
(surrogate for rank minimization, [7]) to recover the low-rank matrix M.

min
X∈Rm×n

‖X‖∗ s.t. Xij = Mij (i, j) ∈ Ω, (1)

where the nuclear norm ‖X‖∗ of a matrix X is defined as the sum of its singular values,
‖X‖∗ =

∑

i σi(X). (1) is a convex optimization problem that is efficiently solvable via semi-
definite programming. Exact matrix completion thus becomes proving that the nuclear norm
restricted to the affine space has a strict and global minima at M. That is, if M + Z 6= M is a
matrix in the affine space in (1), we need to show ‖M+ Z‖∗ > ‖M‖∗ . [2], [9], [13], [1] developed
the sufficient conditions and probabilistic tools to recover M as a unique solution to (1).

One natural question is: which elements of M should we observe in (1), i.e., how should we
construct the sample set Ω? We want to define some probabilities on the entries of M. Most of
the existing work focused on the case when Ω in (1) is constructed by observing the entries of
M uniformly randomly ([2, 9, 13, 1]). However, this data-oblivious sampling scheme has a cost.
If the matrix is very sparse, it cannot be recovered using uniform sampling of its entries, unless
we observe almost all the entries. This is because by observing only zeros it is impossible to
predict non-zeros of a matrix. This suggests that M cannot be in the null space of the sampling
operator (to be defined later) extracting the values of a subset of the entries. Matrices similar to
the above example can be characterized by the structure of their singular vectors. The singular
vectors are (closely) ‘aligned’ with the standard basis. Therefore, the components of singular
vectors should be sufficiently spread to reduce the number of observations needed to recover a
low-rank matrix ([13]). Such restrictions on the row and column spaces of a low-rank matrix are
called the incoherence assumptions (to be defined later). [9, 13] showed that such restricted class
of n×n matrices of rank ̺ can be recovered exactly, with high probability, by observing as small
as O(n̺ log2n) entries sampled uniformly. Very recently, [5] proposed non-uniform probabilities
proportional to the sum of row and column leverage scores of M to observe its entries (leveraged
sampling). They eliminated the need for those ‘incoherence’ assumptions, and showed that any
arbitrary n × n matrix of rank ̺ can be recovered exactly, with high probability, from as few as
O(n̺ log2n) observed elements.

Similar to [5], we also incorporate the row and column leverage scores of the recovering matrix
M into our proposed probability of observing an entry. However, we use a relaxed notion of
leverage score sampling. Specifically, we propose to observe an entry with probability proportional
to the sum of the corresponding row and column leverage scores, minus their product. Theorem
1 shows that observing entries according to this relaxed leverage score sampling in (3), we can
recover any arbitrary m×n matrix of rank-̺ exactly, with high probability, from Θ(((m+ n)̺−
̺2)log2(m + n)) observed entries, via (1). This bound on the sample size is optimal (up to
log2(m + n) factor) in the number of degrees of freedom of a rank-̺ matrix. Also, this can give
us O(̺2log2(n)) improvement on the sample size in [5] for n× n case.

For an n×n matrix M of rank-̺ whose column space is incoherent and row space is arbitrarily
coherent, [5] gives a provable sampling scheme (using leveraged sampling) which requires no prior
knowledge of the leverage scores of M. They show that such M can be recovered exactly, with
high probability, using sample size Θ(n̺ log2n). We can incorporate our relaxed leverage scores
in such setting, with no prior knowledge of leverage scores, to achieve improvement on the sample
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Table 1: Summary of bound on sample size s for exact recovery of matrix M ∈ R
m×n of rank ̺

matrix type probabilities bound on s citation

incoherent uniform s ≥ O(τ · (m ∧ n)̺log(m ∧ n)) [2]

incoherent uniform s ≥ O(max{µ2
1, µ0}(λ+ ̺2)log2(2n)) [13]

any leveraged E[s] ≥ O((λ+ ̺2)log2(m+ n)) [5]

any relaxed leverage E[s] ≤ O(λ · log2(m+ n)) Theorem 1

λ = (m+ n− ̺)̺, m ∧ n = max{m,n}, τ = max{µ2
1, µ

1/2
0 µ1, µ0(m ∧ n)1/4}

size obtained by [5] while recovering M ∈ R
m×n exactly with high probability. Finally, our notion

of relaxation in sampling probabilities can also achieve an improvement on the sample size of [5]
even in case of uniform sampling for incoherent matrices. Table 1 summarizes some of the recent
results in the literature.

1.1 Notations and preliminaries

[n] denotes natural number {1, ..., n}. Natural logarithm of x is denoted by log(x). Matrices
are bold uppercase, vectors are bold lowercase, and scalars are not bold. We denote the (i, j)-th
entry of a matrix X by Xij . ei denotes the i-th standard basis vector whose dimension should be
clear from the context. XT and xT denote the transpose of matrix X and vector x, respectively.
Tr(X) denotes the trace of a square matrix X.

Spectral norm of X is denoted by ‖X‖2. The inner product between two matrices is 〈X,Y〉 =
Tr(XTY). Frobenius norm X is denoted by ‖X‖F , and ‖X‖F =

√

〈X,X〉. The maximum entry
of X is denoted by ‖X‖∞ = maxi,j |Xij |. For vectors Euclidean ℓ2 norm is denoted by ‖x‖2.

Linear operators acting on matrices are denoted by calligraphic letters. The spectral norm
(largest singular value) of such operator A will be denoted by ‖A‖op = supX ‖A(X)‖F / ‖X‖F .
Also, we denote f(n) = Θ(g(n)) when α1 · g(n) ≤ f(n) ≤ α2 · g(n), for some positive universal
constants α1, α2.

2 Main Results

Our focus is to define a probabilities on the entries of M (i.e., to construct the sample set Ω in
(1)) to reduce the sample size, such that M becomes the unique optimal solution to (1). Here
we use the Bernoulli sampling model ([1]), where each entry (i, j) is observed independently with
some probability pij . Before we state our main result and the distribution, we first need to define
the normalized leverage scores ([2, 13, 5]).

Definition 1 Let M ∈ R
m×n be of rank ̺ with SVD M = UΣVT , where U and V are the

left and right singular matrices, respectively, and Σ is the diagonal matrix of singular values.
Normalized leverage scores for i-th row (denoted by µi) and j-th column (denoted by νj) are
defined as follows:

µi = (m/̺)‖UTei‖22, ∀i ∈ [m],

νj = (n/̺)‖VTej‖22, ∀j ∈ [n] (2)

3



Normalized leverage scores 1 are non-negative, and they depend on the structure of row and
column spaces of the matrix. Also, we have

∑

i
µi̺
m =

∑

j
νj̺
n = ̺, because U and V have

orthonormal columns. We state our main result.

Theorem 1 Let M ∈ R
m×n of rank ̺. Suppose, we have a subset of observed entries Ω ⊂

[m]× [n], where each entry (i, j) is observed independently with probability pij, such that,

pij = max
{

min
{

c1Lijlog
2(m+ n), 1

}

, (mn)−5
}

(3)

where Lij =
µi̺
m +

νj̺
n − µi̺

m · νj̺n and c1 > 0 is some universal constant. Then, M is the unique opti-
mal solution to (1) with probability at least 1−33 log(m+n)(m+n)3−c, for sufficiently large c > 3.
Moreover, if the number of observed entries, according to (3), is Θ

(

((m+ n)̺− ̺2)log2(m+ n)
)

,
then, M is the unique optimal solution to (1) with probability at least 1−66 log(m+n)(m+n)3−c,
for sufficiently large c > 3.

Row and column leverage scores measure the contribution of a row or column to the low-rank
subspace ([6, 11]). Probabilities in (3) are biased towards the leverage score structure of the
recovering matrix. This suggests that the elements in important rows and columns, indicated by
high leverage scores {µi} and {νj}, of a matrix should be observed more frequently in order to
reduce the number of observations needed for exact matrix completion. [5] also noticed this, and
they proposed to sum up µi̺

m and
νj̺
n in the sampling probabilities. However, our probabilities

in (3) reduce this bias by subtracting the term µi̺
m · νj̺

n while maintaining the leverage score
pattern in pij. This relaxation in probabilities can help us to reduce the number of observations
comparing to [5], in additive sense, to recover the low-rank matrix exactly, via (1).

One simple intuition behind this relaxation comes from basic set theory. Let {ui} and {vj} be
the indicators of row and column leverage scores of the recovering matrix, respectively, where the
probabilities are p(ui) =

µi̺
m and p(vj) =

νj̺
n . Then, we want to sample indices (i, j) according to

row or column leverage scores, i.e., sampling probabilities pij to be proportional to p(ui ∨ vj) =
p(ui) + p(vj)− p(ui ∧ vj). Now, ui and vj are independent quantities (an element with high row
leverage may or may not have high column leverage, and vice versa). Thus, p(ui∧vj) = p(ui)·p(vj)
and pij ∝ Lij in (3).

A practical implication of such relaxation could be as follows. pij ∝ Lij =
νj̺
n + (1− νj̺

n )µi̺
m .

Note that, 0 ≤ µi̺
m ,

νj̺
n ≤ 1. When j-th column is important, i.e.,

νj̺
n is high (say close to 1) we

want to observe all the elements along that column as Lij ≈ νj̺
n . This eliminates the need for

row leverage information of the elements of a column with high leverage score (and vice versa).
This reduction of information for exact completion can lead to a smaller sample set in (1).

As discussed earlier, we need a minimum of Θ((m + n)̺ − ̺2) elements to recover a matrix
exactly, regardless of the choice of probabilities. Theorem 1 proves that if we observe elements
according to our relaxed leverage scores, we match this lower bound, up to a factor of O(log2(m+
n)). Here is a comparison of our bound with that of [5]. 1) We provide a proof for general m×n
matrix of rank-̺ (as opposed to n×n case of [5]), 2) our form of probabilities establishes an upper
bound on the expected sample size E[s]. To see this, note that

∑

i,j Lij = (m + n)̺ − ̺2, and

E[s] =
∑

i,j pij ≤ O(((m+n)̺−̺2)log2(m+n)), comparing to E[s] ≥ O(2max{m,n}̺log2(m+n))
in [5], 3) our sample size to solve (1) can give an improvement on that of [5] in terms of degrees
of freedom (note that (m+ n)̺− ̺2 < (m+ n)̺ ≤ 2max{m,n}̺).

Also, using the relaxed leverage scores we can observe improvement on sample size even in
case of uniform sampling for matrices with incoherence restrictions. Let M ∈ R

n×n be the rank-̺
reconstructing matrix with SVD UΣVT . [2, 3, 13, 9] use two incoherence parameters, µ0 and

1Leverage scores were introduced by [4].‖UT
ei‖

2

2 and ‖VT
ej‖

2

2 are called row and column leverage scores,
respectively, by [6, 11]
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Algorithm 1 Column-Space-Incoherent MC

1: Input: M ∈ R
m×n, with maxi µi ≤ µ0, ∀i ∈ [m], s.t. 1 ≤ µ0 ≤ m/̺.

2: Observe all the entries of a row of M picked with probability p = min {(c2µ0̺ log m)/m, 1} ,
where c2 is a constant.

3: Compute the leverage scores, {ν̃j} ∀j ∈ [n], of the space spanned by these rows, and use them
as estimates for true {νj},∀j ∈ [n] of M.

4: Construct a sample set Ω of entries (i, j) of M observed with probabilities

pij = min
{

c1L̃ijlog
2(m+ n), 1

}

, ∀i, j, (4)

where L̃ij =
µ0̺
m +

ν̃j̺
n − µ0̺

m · ν̃j̺
n .

5: Solve (1) using sample set Ω, and let X∗ be the unique optimal solution.
6: Output: X∗.

µ1, for exact matrix completion using uniform sampling, where, (a) maxi,j{µi, νj} ≤ µ0, and
(b) ‖UVT ‖∞ = µ1

√

̺/n2. A meaningful range of µ0 is 1 ≤ µ0 ≤ min{m,n}/̺. [13] showed
that if the sampling probability is uniform, such that, pij ≡ p ≥ cumax{µ0, µ

2
1}̺ log2n/n,∀i, j,

where cu is a constant, then M is the unique optimal solution of (1) with high probability.
The lower bound achieved on the sample size in [13] (sample-with-replacement model) was
O(max{µ0, µ

2
1}n̺ log2n). Above, µ1 ≤ µ0

√
̺, and it could create a suboptimal dependence of

sample size on ̺, in the worst case. Theorem 2 of [5] implies that observing entries with uniform
probability satisfying, p ≥ c0 (2µ0̺/n) log

2n,∀i, j, for some constant c0, would recover the matrix
exactly, with high probability. In this case, the lower bound on sample size is O(2µ0n̺ log2n).
[5] eliminated the need for the parameter µ1, and consequently the suboptimal dependence on ̺.
It follows from Theorem 1 that we can recover the matrix exactly, with high probability, if each
entry is sampled uniformly with probability

p = max
{

min
{

c1L0log
2(m+ n), 1

}

, (mn)−5
}

,∀i, j,

where L0 = µ0̺
m + µ0̺

n − µ2

0
̺2

mn , c1 is a constant. This can improve O(µ2
0̺

2log2(n)) on the sample
size of [5].

2.1 Column-Space-Incoherent Matrix Completion

Here we discuss exact completion of a low-rank matrix whose column space is incoherent, and
we have control over the sampling of matrix entries. This setting is interesting in application
domains like recommendation systems and gene expression data analysis ([10]).

Algorithm 1, adopted from [5], performs exact completion of a matrix M with incoherent
column space, without a priori knowledge of leverage scores of M. Step 3 of Algorithm 1 computes
the column leverage scores of M exactly, from only a small number of (uniformly) observed rows.
We construct an additional sample set Ω of observed entries using our relaxed leverage scores in
Step 4. Step 5 solves the nuclear norm minimization problem in (1) with Ω to recover M exactly.
Theorem 2 proves the correctness of Algorithm 1.

Theorem 2 Algorithm 1 computes the column leverage scores of M exactly (step 3), i.e., ν̃j =
νj ,∀j ∈ [n]. Using the sample set Ω, Algorithm 1 recovers M as the unique optimal solution of
(1). The total number of samples required by Algorithm 1 is Θ(µ0((m+ 2n)̺− ̺2)log2(m+ n)).
The results hold with probability at least, 1−66 log(m+n)(m+n)3−c, for sufficiently large c > 3.

5



We compare the bound on sample size in Theorem 2 with a couple of existing results. Let
us assume m = n for simplicity. Theorem 2 can achieve an additive improvement O(̺2log2n)
on the sample size of [5] while recovering M exactly, via (1). [10] proposed an adaptive sam-
pling algorithm that recovers M exactly, with probability at least 1 − O(̺δ), and a sample size
Θ(µ0n̺

3/2log(̺/δ)). Assuming comparable failure probabilities, sample size in Theorem 2 is
better when ̺ is not too small.

2.2 Coherent Matrix Completion using Two-Phase-Sampling

In reality, we do not have knowledge about the leverage scores of M, i.e., {µi} and {νj}, even
when we have control over how to choose entries. [5] proposed a heuristic two-phase sampling
procedure (Algorithm 1 of [5]) for exact matrix completion with no a priori knowledge about the
leverage scores. Here is an informal description of it.

Let, the total budget of samples be s, and β ∈ [0, 1] be a parameter. First, construct an initial
set Ω1 by sampling entries uniformly (without replacement), such that, |Ω1| = βs. Let M̃ be the
matrix with M̃ij = Mij if (i, j) ∈ Ω1, and M̃ij = 0 if (i, j) /∈ Ω1. Let the rank-̺ SVD of M̃
be ŨΣ̃ṼT . Compute the leverage scores of M̃ and use them as estimates for the leverage scores
of M, i.e., use µ̃i =

m
̺ ‖ŨTei‖22 as µi for i ∈ [m], and ν̃j = n

̺ ‖ṼTej‖22 as νj for j ∈ [n]. In the
second phase, use these estimates to sample (without replacement) remaining (1− β)s entries of
M with probabilities proportional to (µ̃i̺/m + ν̃j̺/n) log

2(m + n), to form the sample set Ω2.
Then perform matrix completion using sample set Ω = Ω1 ∪ Ω2 in (1).

This heuristic is shown to work well on synthetic data that are less coherent ([5]). For highly
coherent data, e.g., only few entries are non-zeros and others are zeros, it works poorly, as ex-
pected. We can incorporate our notion of relaxed leverage scores into the second phase of the
above procedure by observing (without replacement) the remaining (1 − β)s entries of M with

probabilities pij ∝ ( µ̃i̺
m +

ν̃j̺
n − µ̃i̺

m · ν̃j̺
n )log2(m+ n) to form sample set Ω̂2, and perform nuclear

norm minimization in (1) using Ω = Ω1 ∪ Ω̂2. We expect our relaxed leverage score sampling to
follow similar trend as above, although we do not evaluate this heuristic numerically.

Section 3 shows experimental results on real datasets to support the theoretical gain on the
sample size using relaxed leverage score sampling. We give proof sketch of Theorem 1 and
Theorem 2 in Section 4 and Section 5, respectively, closely following the proof outline of [5]. We
highlighted the main technical differences between our result and [5] in Section 4.

3 Experiments

We show experimental performance of the exact recovery of real data matrices via nuclear norm
minimization in (1) using our relaxed leverage score sampling. We use the software ‘TFOCS’
v1.2, written by Stephen Becker, Emmanuel Candes, and Michael Grant, to solve (1).

Let M be the rank-̺ data matrix. We form the sample set Ωrelax by observing (i, j)-th entry
of M according to the relaxed leverage score probabilities in (5):

p
[relax]
ij = min {cr · Lij , 1} ,∀i, j (5)

where Lij =
µi̺
m +

νj̺
n − µi̺

m · νj̺n and cr is a universal constant. Similarly, we form the sample set
Ωlev by observing Mij according to the leverage score probabilities in (6):

p
[lev]
ij = min

{

cl ·
(µi̺

m
+

νj̺

n

)

, 1
}

, ∀i, j (6)
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where cl is a universal constant. We use Ωrelax and Ωlev in the optimization problem (1), sepa-
rately, to recover M. Let X∗ be the optimal solution to (1) using a sample set Ω. We say X∗

recovers M exactly if ‖M−X∗‖F < ε, where ε is a tiny fraction. We set ε = 0.001. We perform
10 independent trials (sampling and recovery) and declare success if M is recovered exactly at
least 9 times. Let sr and sl be the average sample size for successful recovery of M using Ωrelax

and Ωlev, respectively. We expect cr ≈ cl, and our gain in sample size (sl − sr) to be strictly
positive, as suggested by the theory. Further, we investigate how (sl − sr) behaves with respect
to the rank ̺. For this, we define

Normalized Gain (∆s) =
√

(sl − sr)/cr. (7)

We expect ∆s to be close to ̺ as the theory suggests (sl−sr) ∝ O(̺2). For fairness of comparison,
we use the same random seed for both the sampling methods in (5) and (6).

3.1 Datasets

We use the following two datasets.
MovieLens: This collaborative filtering dataset contains 100,000 ratings in the range 1

and 5 by 943 users on 1682 movies. Each user has rated at least 20 movies. This dataset is
numerically not low-rank. We perform rank truncation to create an explicit low-rank matrix to
apply the theory in (1). We observe the singular value spectrum of this data to heuristically
choose two values for rank: ̺ = 10 and ̺ = 20.

TechTC: We use a dataset from the Technion Repository of Text Categorization Database
(TechTC) ([8]). Here each row is a document describing a topic, and words (columns) are the
features for the topics. The (i, j)-th entry of this matrix is the frequency of j-th word appearing
in i-th document. We choose a dataset containing the topics with IDs 11346 ans 22294. We
preprocessed the data by removing all words of length four or less. Then, each row is normalized
to have unit norm. Also, we observe the singular value spectrum of this preprocessed 125×14392
data to heuristically choose two values for rank: ̺ = 10 and ̺ = 20, to make the data explicitly
low-rank.

3.2 Results

Figures 1 and 2 plot the singular values and the normalized leverage scores for rank-10 approx-
imation for MovieLens and TechTC data, respectively. Normalized leverage scores are close to
1 when they are incoherent in nature. MovieLens is reasonably coherent, and TechTC has ex-
tremely high coherence. Table 2 shows the constants cl and cr, and the normalized gain ∆s for
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Figure 1: [MovieLens] Singular values and the leverage scores for ̺ = 10.

exact recovery of MovieLens data. We see cl = cr and ∆s ≈ ̺, as expected. We observe similar
results for TechTC data in Table 3. Overall, these results support the accuracy of the theoretical
analysis on the gain in sample size using the relaxed leverage score sampling for exact recovery
of a low-rank matrix via (1).

7



20 40 60 80 100 120
0

1

2

3

4

S
in

gu
la

r 
V

al
ue

s

20 40 60 80 100 120
0

1

2

3

4

5

Rows

N
or

m
al

iz
ed

 le
ve

ra
ge

 s
co

re
s

4000 8000 12000
0

500

1000

Columns

N
or

m
al

iz
ed

 le
ve

ra
ge

 s
co

re
s

Figure 2: [TechTC] Singular values, and the leverage scores for ̺ = 10.

cl/cr ∆s

̺ = 10 11/11 9.7

̺ = 20 7/7 18.4

Table 2: [MovieLens] Gain in sample size for
exact recovery using relaxed leverage score
sampling.

cl/cr ∆s

̺ = 10 4/4 6.6

̺ = 20 3/3 15.2

Table 3: [TechTC] Gain in sample size for
exact recovery using relaxed leverage score
sampling.

4 Proof of Theorem 1

The main proof strategy was outlined by [2, 13, 9]: it is sufficient to construct a dual certificate Y

obeying specific sub-gradient inequalities in order to show that M is the unique optimal solution
to (1) (see Section 6 for more detail). We give a proof of Theorem 1 closely following the proof
strategy of [13, 5]. Before stating the optimality conditions we need additional notations.

Recall, U and V are the left and right singular matrices of M, respectively. Let uk (respec-
tively vk) denote the k-th column of U (respectively V). Let T be a linear space spanned by
elements of the form uky

T and xvT
k , 1 ≤ k ≤ ̺, for arbitrary x,y, and T⊥ be its orthogonal

complement, i.e., T⊥ is spanned by the family (xyT ), where x (respectively y) is any vector
orthogonal to the space spanned by the left singular vectors (respectively right singular vectors).
Then, orthogonal projection onto T is given by the linear operator PT : Rm×n → R

m×n, defined
as

PT (X) = UUTX+XVVT −UUTXVVT .

Similarly, orthogonal projection onto T⊥ is

PT⊥(X) = X− PT (X) = U⊥U
T
⊥XV⊥V

T
⊥.

Note that any m× n matrix X can be expressed as a sum of rank-one matrices as follows:

X =

m,n
∑

i,j=1

〈

eie
T
j ,X

〉

eie
T
j . (8)

We define the sampling operator RΩ : Rm×n → R
m×n as,

RΩ(X) =

m,n
∑

i,j=1

1

pij
δij
〈

eie
T
j ,X

〉

eie
T
j (9)

where, δij = I((i, j) ∈ Ω), I(·) being the indicator function. That is, RΩ extracts the terms,
corresponding to the indices (i, j) ∈ Ω, from (8) to form a partial sum in (9). Let PΩ(X) be the
matrix with (PΩ(X))ij = Xij if (i, j) ∈ Ω, and zero otherwise.
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4.1 Optimality Conditions

Following the proof road map of [13, 5], we restate the sufficient conditions for M to be the unique
optimal solution to (1) (Section 6 contains a proof of sufficiency).

Proposition 1 The rank-̺ matrix M ∈ R
m×n with SVD M = UΣVT is the unique optimal

solution to (1) if the following conditions hold:

1. ‖PTRΩPT − PT ‖op ≤ 1/2.

2. There exists a dual certificate Y which satisfies PΩ(Y) = Y, and

(a)
∥

∥PT (Y)−UVT
∥

∥

F
≤
√

̺(m+ n)−15,

(b) ‖PT⊥(Y)‖2 ≤ 1/2.

Condition 1 of Proposition 1 suggests RΩ should be nearly the identity operator on the subspace
T . Next we discuss the construction of a dual certificate Y.

4.1.1 Constructing the Dual Certificate

We follow the so-called golfing scheme [9, 1, 5] to construct a matrix Y (the dual certificate) that
satisfies Condition 2 in Proposition 1. Recall, we assume that the set of observed elements Ω
follows the Bernoulli model with parameter pij, i.e., each index (i, j) is observed independently
with P [(i, j) ∈ Ω] = pij (pij in eqn (3)). We denote this by Ω ∼ Bernoulli(pij). Further, we

assume that Ω is generated from Ω = ∪k0
k=1Ωk, where for each k, Ωk ∼ Bernoulli(qij), and we

set qij = 1− (1− pij)
1/k0 . Clearly, this implies P [(i, j) ∈ Ω] = pij which is the original Bernoulli

model for Ω. Note that, qij ≥ pij/k0 because of overlapping of Ωk’s. We set k0 = 11 · log(m+ n).
Then,

qij ≥ min
{

c0 · log(m+ n) ·
(µi̺

m
+

νj̺

n
− µi̺

m
· νj̺

n

)

, 1
}

, (10)

where c0 = c1/11. Starting with W0 = 0 and for each k = 1, ..., k0, we recursively define

Wk = Wk−1 +RΩk
PT (UVT − PT (Wk−1)) (11)

where the sampling operator RΩk
: Rm×n → R

m×n is defined as

RΩk
(X) =

∑

i,j

1

qij
I((i, j) ∈ Ωk)

〈

eie
T
j ,X

〉

eie
T
j .

We set Y = Wk0 . This Y is supported on Ω, i.e., PΩ(Y) = Y.
Let the sample set Ω̃ be such that

Ω̃ ∈ {Ωk : Ω = ∪k0
k=1Ωk,Ωk ∼ Bernoulli(qij)}. (12)

Since Ωk ∼ Bernoulli(qij) implies Ω ∼ Bernoulli(pij), for each k = 1, ..., k0, we prove (in Lemma
1) Condition 1 of Proposition 1 using sample set Ω̃ in (12).

Lemma 1 Let Ω̃ be a sample set in (12). Then, for any universal constant c > 1, we have

∥

∥PTRΩ̃PT − PT

∥

∥

op
≤ 1

2
(13)

holding with probability at least
1− (m+ n)1−c.

9



Before we validate Condition 2 in Proposition 1 using the Y constructed above, we claim the
following results to hold with high probability. First, we borrow the following definitions of
weighted infinity norms for a matrix Z ∈ R

m×n from [5].

‖Z‖µ(∞,2) := max

{

max
i

√

m

µi̺
‖Zi,∗‖2 ,max

j

√

n

νj̺
‖Z∗,j‖2

}

‖Z‖µ(∞) := max
i,j

|Zij|
√

m

µi̺

√

n

νj̺

where Zi,∗ and Z∗,j denote the i-th row and j-th column of Z, respectively.

Lemma 2 bounds the spectral norm of the matrix (RΩ̃ − I)(Z) using the sample set Ω̃.

Lemma 2 Let Z ∈ R
m×n be a fixed matrix. Let Ω̃ be a sample set in (12). Then, for any

universal constant c > 1, we have

∥

∥

(

RΩ̃ − I
)

Z
∥

∥

2
≤ 2

√

c

c0
‖Z‖µ(∞,2) +

c

c0
‖Z‖µ(∞)

holding with probability at least
1− (m+ n)1−c.

Next two results control the µ(∞, 2) and µ(∞) norms of the projection of a matrix after random
sampling.

Lemma 3 Let Z ∈ R
m×n be a fixed matrix. Let Ω̃ be a sample set in (12). Then, for any

universal constant c > 2, we have

∥

∥(PTRΩ̃ − PT )Z
∥

∥

µ(∞,2)
≤ 1

2

(

‖Z‖µ(∞,2) + ‖Z‖µ(∞)

)

holding with probability at least
1− (m+ n)2−c.

Lemma 4 Let Z ∈ R
m×n be a fixed matrix. Let Ω̃ be a sample set in (12). Then, for any

universal constant c > 3, we have

∥

∥(PTRΩ̃ − PT )Z
∥

∥

µ(∞)
≤ 1

2
‖Z‖µ(∞)

holding with probability at least
1− (m+ n)3−c.

We now validate Condition 2 in Proposition 1 using the Y constructed above.

Bounding
∥

∥UVT − PT (Y)
∥

∥

F

We set ∆k = UVT − PT (Wk), for k = 1, ..., k0. Then, from definition of Wk we have

∆k = (PT − PTRΩk
PT )∆k−1.

We used PT (UVT ) = UVT and PTPT (X) = PT (X). Using the independence of ∆k−1 and Ωk,

‖∆k‖F = ‖(PT − PTRΩk
PT )∆k−1‖F ≤ ‖PT − PTRΩk

PT ‖op ‖∆k−1‖F .

10



We can bound this by recursively applying Lemma 1 with Ωk, for all k. Thus,

∥

∥PT (Y)−UVT
∥

∥

F
= ‖∆k0‖F =

(

1

2

)k0
∥

∥UVT
∥

∥

F
≤
√

̺

(m+ n)15

The above result fails with probability at most (m+ n)1−c for each k; thus, total probability of
failure is at most 11(m+ n)1−c log(m+ n).

Bounding ‖PT⊥(Y)‖2

By definition, Y can be written as

Y =

k0
∑

k=1

RΩk
PT

(

UVT − PT (Wk−1)
)

=

k0
∑

k=1

RΩk
PT (∆k−1)

It follows that,

‖PT⊥(Y)‖2 =
∥

∥

∥

∥

∥

PT⊥

k0
∑

k=1

(RΩk
PT − PT ) (∆k−1)

∥

∥

∥

∥

∥

2

≤
k0
∑

k=1

‖(RΩk
− I)(∆k−1)‖2

We use
PT (∆k) = PT (UVT − PT (Wk)) = UVT − PT (Wk) = ∆k, for all k.

We apply Lemma 2 to each summand in the above inequality, with corresponding Ωk, to obtain

‖PT⊥(Y)‖2 ≤ 2

√

c

c0

k0
∑

k=1

‖∆k−1‖µ(∞,2) +
c

c0

k0
∑

k=1

‖∆k−1‖µ(∞) (14)

We can derive the following, applying Lemma 4 k times, with Ωk,

‖∆k‖µ(∞) = ‖(PT −PTRΩk
)∆k−1‖µ(∞) ≤

(

1

2

)i

‖∆k−i‖µ(∞) ≤
(

1

2

)k
∥

∥UVT
∥

∥

µ(∞)
(15)

holding with failure probability at most k · (m+ n)3−c, for all k.
Similarly, applying Lemma 3 and Lemma 4 recursively, with Ωk, we can derive,

‖∆k‖µ(∞,2) = ‖(PT − PTRΩk
PT )∆k−1‖µ(∞,2) ≤

1

2
‖∆k−1‖µ(∞) +

1

2
‖∆k−1‖µ(∞,2)

(step j) ≤
j
∑

i=1

(

1

2

)i

‖∆k−i‖µ(∞) +

(

1

2

)j

‖∆k−j‖µ(∞,2)

≤
j
∑

i=1

(

1

2

)i(1

2

)k−i
∥

∥UVT
∥

∥

µ(∞)
+

(

1

2

)j

‖∆k−j‖µ(∞,2)

≤ j

(

1

2

)k
∥

∥UVT
∥

∥

µ(∞)
+

(

1

2

)j

‖∆k−j‖µ(∞,2)

(step k) ≤ k

(

1

2

)k
∥

∥UVT
∥

∥

µ(∞)
+

(

1

2

)k
∥

∥UVT
∥

∥

µ(∞,2)
(16)
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holding with failure probability at most k · (m+ n)2−c, for all k. Using (15) and (16), it follows
from (14),

‖PT⊥(Y)‖2 ≤ 2

√

c

c0

k0
∑

k=1

(k − 1)

(

1

2

)k−1
∥

∥UVT
∥

∥

µ(∞)
+ 2

√

c

c0

k0
∑

k=1

(

1

2

)k−1
∥

∥UVT
∥

∥

µ(∞,2)

+
c

c0

k0
∑

k=1

(

1

2

)k−1
∥

∥UVT
∥

∥

µ(∞,2)

We note that, for all (i, j),

∣

∣(UVT )ij
∣

∣ =
∣

∣eTi UVTej
∣

∣ ≤
√

µi̺

m

√

νj̺

n
≤ 1,

∥

∥(UVT )i,∗
∥

∥

2
=
∥

∥eTi UVT
∥

∥

2
=

√

µi̺

m
,

∥

∥(UVT )∗,j
∥

∥

2
=
∥

∥UVTej
∥

∥

2
=

√

νj̺

n

Thus,

∥

∥UVT
∥

∥

µ(∞,2)
= max

{

max
i

√

m

µi̺

∥

∥(UVT )i,∗
∥

∥

2
,max

j

√

n

νj̺

∥

∥(UVT )∗,j
∥

∥

2

}

= 1

Therefore,

‖PT⊥(Y)‖2 ≤ 2

√

c

c0

k0
∑

k=1

(

(k − 1)

(

1

2

)k−1

+

(

1

2

)k−1
)

+
c

c0

k0
∑

k=1

(

1

2

)k−1

< 2

√

c

c0

∞
∑

k=1

k

(

1

2

)k−1

+
c

c0

∞
∑

k=1

(

1

2

)k−1

= 8

√

c

c0
+

2c

c0
≤ 1

2
,

by setting c0 ≥ 264c.
Let, the total number of sampled entries be s. Expected number of observed entries required to

solve (1) is E(s) =
∑

i,j pij = O(((m+ n)̺− ̺2)log2(m+ n)). Summing up the individual failure

probabilities of Proposition 1 the total failure probability never exceeds 33 · log(m+n)(m+n)3−c,
for sufficiently large c > 3.

Finally, we can apply Hoeffding’s inequality to show that s is sharply concentrated around
its expectation, i.e., s = Θ(((m+ n)̺− ̺2)log2(m+ n)) with probability at least 1− 66 log(m+
n)(m+ n)3−c, for sufficiently large c > 3.

This completes the proof of Theorem 1.

5 Proof of Theorem 2

We closely follow the proof given by [5]. We pick each row of M with some probability p and
observe all the entries of this sampled row. Let Γ ⊆ [m] be the set of indices of the row picked,
and SΓ(X) be a matrix obtained from X by zeroing out the rows outside Γ. Recall, SVD of M
is UΣVT . We use the following lemma (Lemma 14 of [5]).

Lemma 5 Let µi ≤ maxi
m
ρ ‖UT ei‖22 ≤ µ0, ∀i ∈ [m], and p ≥ c2

µ0̺
m logm for some universal

constant c2. Then, for any universal constant c > 1, and c2 ≥ 20c,
∥

∥UTSΓ(U)− I̺
∥

∥

2
≤ 1/2,

holds with probability at least 1− (m+ n)1−c, where I̺ is the identity matrix in R
̺×̺.
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Now,
∥

∥UTSΓ(U)− I̺
∥

∥

2
≤ 1/2 implies that UTSΓ(U) is invertible and SΓ(U) ∈ R

m×̺ has

rank-̺. Using SVD of M, we can write SΓ(M) = SΓ(U)ΣVT , and this has full rank-̺. Therefore,
SΓ(M) and M have the same row space, and we conclude that ν̃j = νj , ∀j ∈ [n]. Thus, using
the sample set Ω in Algorithm 1 we can recover M exactly via nuclear norm minimization in (1),
with high probability. Expected number of entries observed in Algorithm 1 is

pmn+

m,n
∑

i,j

pij = O(µ0((m+ 2n)̺− ̺2)log2(m+ n)),

where, pij as in (4). We apply standard Hoeffding inequality to bound the actual sample size,
and Theorem 2 follows as a corollary of Theorem 1.

6 Proof of Optimality Conditions in Proposition 1

Let M be the low-rank target matrix with rank-̺ SVD M = UΣVT . We want to show that any
perturbation Z to M, such that, M+ Z is a solution to (1), strictly increases the nuclear norm,
unless Z = 0. Now, M + Z is feasible only if PΩ(M + Z) = PΩ(M), which implies RΩ(Z) = 0,
e.g., Z is in the null space of RΩ operator. We can choose U⊥ and V⊥ such that [U,U⊥] and
[V,V⊥] are unitary matrices for which

〈

U⊥V
T
⊥,PT⊥(Z)

〉

= ‖PT⊥(Z)‖∗. Then it follows from
standard inequality of trace norm, for some Y in the range of RΩ,

‖M+ Z‖∗ ≥
〈

UVT +U⊥V
T
⊥,M+ Z

〉

= ‖M‖∗ +
〈

UVT +U⊥V
T
⊥,Z

〉

= ‖M‖∗ +
〈

UVT − PT (Y),PT (Z)
〉

+
〈

U⊥V
T
⊥ − PT⊥(Y),PT⊥(Z)

〉

(a)

≥ ‖M‖∗ − ‖UVT − PT (Y)‖F · ‖PT (Z)‖F + ‖PT⊥(Z)‖∗ − 〈PT⊥(Y),PT⊥(Z)〉
≥ ‖M‖∗ − ‖UVT − PT (Y)‖F · ‖PT (Z)‖F + (1− ‖PT⊥(Y)‖2) ‖PT⊥(Z)‖∗
(b)

≥ ‖M‖∗ +






1− ‖PT⊥(Y)‖2 −

‖UVT − PT (Y)‖F
(

maxi,j
1√
pij

)

(

1− ‖PTRΩPT − PT ‖op
) 1

2






‖PT⊥(Z)‖∗

> ‖M‖∗

Above, (a) follows from Von-Neumann trace inequality, and (b) follows from Lemma 6. Using
maxi,j

1√
pij

≤ (mn)5/2 ≤ (m + n)5, and the conditions in Proposition 1, we derive the final in-

equality. Note that, Condition 1 in Proposition 1 implies RΩ is the identity operator on the
elements of subspace T , therefore PT⊥(Z) = 0 implies Z = 0.

The following lemma is similar to Lemma 13 of [5].

Lemma 6 For any Z ∈ R
m×n, s.t., PΩ(Z) = 0,

‖PT (Z)‖F ≤
(

1− ‖PTRΩPT − PT ‖op
)− 1

2

(

max
i,j

1
√
pij

)

‖PT⊥Z‖∗

Proof: Let us define the operator R1/2
Ω : Rm×n → R

m×n as

R1/2
Ω (Z) :=

∑

i,j

1
√
pij

δij
〈

eie
T
j ,Z

〉

eie
T
j

13



Note that R1/2
Ω is self-adjoint, and R1/2

Ω R1/2
Ω = RΩ. Therefore, we have

∥

∥

∥R1/2
Ω PT (Z)

∥

∥

∥

2

F
= 〈RΩPT (Z),PT (Z)〉
= 〈PTRΩPT (Z),PT (Z)〉
= 〈PTRΩPT (Z)− PT (Z),PT (Z)〉+ 〈PT (Z),PT (Z)〉
≥ (1− ‖PTRΩPT − PT ‖op) · ‖PT (Z)‖2F (17)

Also, we have
∥

∥

∥
R1/2

Ω (Z)
∥

∥

∥

F
= 0 for any Z s.t. PΩ(Z) = 0. It follows,

0 =
∥

∥

∥R1/2
Ω (Z)

∥

∥

∥

F
≥

∥

∥

∥R1/2
Ω PT (Z)

∥

∥

∥

F
−
∥

∥

∥R1/2
Ω PT⊥(Z)

∥

∥

∥

F
∥

∥

∥
R1/2

Ω PT (Z)
∥

∥

∥

F
≤

∥

∥

∥
R1/2

Ω PT⊥(Z)
∥

∥

∥

F
≤
(

max
i,j

1
√
pij

)

‖PT⊥(Z)‖F , (18)

where we use

∥

∥

∥R1/2
Ω PT⊥(Z)

∥

∥

∥

F
≤ max

i,j

1
√
pij

∥

∥

∥

∥

∥

∥

∑

i,j

δij
〈

eie
T
j ,PT⊥(Z)

〉

eie
T
j

∥

∥

∥

∥

∥

∥

F

≤ max
i,j

1
√
pij

‖PT⊥(Z)‖F

Combining (17) and (18), and using ‖X‖F ≤ ‖X‖∗,
√

(1− ‖PTRΩPT − PT ‖op) · ‖PT (Z)‖F ≤
(

max
i,j

1
√
pij

)

‖PT⊥(Z)‖F ≤
(

max
i,j

1
√
pij

)

‖PT⊥(Z)‖∗

The result follows.
⋄

7 Proof of Technical Lemmas

Here we prove Lemmas 1 through 5 using the matrix Bernstein inequality of Lemma 8 as the
main tool. Also, we frequently use the fact in (20) and the result in Lemma 7. Note that PT is
self-adjoint linear operator. Thus we can write the following for any X ∈ R

m×n:

PT (X) =
∑

i,j

〈

PT (X), eie
T
j

〉

eie
T
j =

∑

i,j

〈

PT (X),PT (eie
T
j )
〉

eie
T
j =

∑

i,j

〈

X,PT (eie
T
j )
〉

eie
T
j (19)

We can derive, for all i and j,

∥

∥PT

(

eie
T
j

)∥

∥

2

F
=
〈

PT

(

eie
T
j

)

, eie
T
j

〉

=
µi̺

m
+

νj̺

n
− µi̺

m
· νj̺

n
(20)

Also, we know for all i, j,

0 ≤ µi̺

m
≤
√

µi̺

m
≤ 1, 0 ≤ νj̺

n
≤
√

νj̺

n
≤ 1. (21)

Lemma 7 Using our notations, for all i, j,

µi̺

m
+

νj̺

n
− µi̺

m
· νj̺

n
≥
√

µi̺

m
·
√

νj̺

n
≥ µi̺

m
· νj̺

n

14



Proof: Let, x = µi̺
m and y =

νj̺
n . Then,

(x+ y − xy)2 = xy + (x2 − x2y) + (y2 − xy2) + x2y2 + xy − x2y − xy2

= xy + x2(1− y) + y2(1− x) + xy(1− x)(1− y)

≥ xy using (21)

Also, x + y − xy ≥ 0. Thus, x + y − xy ≥ √
xy ≥ xy. The last inequality follows because

0 ≤ x, y ≤ 1.
⋄

Lemma 8 ([14], [Theorem 16] of [5])
Let X1, ..., XN ∈ R

m×n be independent, zero-mean random matrices. Suppose

max

{∥

∥

∥

∥

∥

N
∑

t=1

E
[

XtX
T
t

]

∥

∥

∥

∥

∥

2

,

∥

∥

∥

∥

∥

N
∑

t=1

E
[

XT
t Xt

]

∥

∥

∥

∥

∥

2

}

≤ σ2

and ‖Xt‖2 ≤ γ almost surely for all t. Then for any c > 0, we have

∥

∥

∥

∥

∥

N
∑

t=1

Xt

∥

∥

∥

∥

∥

2

≤ 2
√

cσ2log(m+ n) + cγlog(m+ n)

with probability at least 1− (m+ n)−(c−1).

We consider sampling probabilities {qij} of the form (10) to prove Lemmas 1 through 4.

Notation Overloading: For simplicity, we reuse some of the notations in Section 7.1 through
7.4. Specifically, we replace Ω̃ by Ω to denote a sample set in (12), and, δij = I((i, j) ∈ Ω̃).

7.1 Proof of Lemma 1

For any matrix Z ∈ R
m×n, we can write

(PTRΩPT − PT ) (Z) =
∑

i,j

(

1

qij
δij − 1

)

〈

PT

(

eie
T
j

)

,Z
〉

PT

(

eie
T
j

)

=
∑

i,j

Sij(Z).

Using E [δij ] = qij, we have E[Sij(Z)] = 0 for any Z. Thus, we conclude that E[Sij ] = 0. Also,
Sij ’s are independent of each other. Using probabilities in (10) (Sij ’s vanish when qij = 1, for all
Z and (i, j)), and (20), we derive

‖Sij(Z)‖F ≤ 1

qij

∥

∥PT

(

eie
T
j

)∥

∥

2

F
‖Z‖F ≤ ‖Z‖F

c0 · log(m+ n)
.

From definition of operator norm, ‖Sij‖op ≤ 1
c0·log(m+n) . Also, we derive

E
[

S2
ij(Z)

]

= E

[

(

1

qij
δij − 1

)2
]

〈

eie
T
j ,PT (Z)

〉 〈

eie
T
j ,PT (eie

T
j )
〉

PT

(

eie
T
j

)

=
1− qij
qij

〈

eie
T
j ,PT (Z)

〉 〈

eie
T
j ,PT (eie

T
j )
〉

PT

(

eie
T
j

)
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∥

∥

∥

∥

∥

∥

∑

i,j

E
[

S2
ij(Z)

]

∥

∥

∥

∥

∥

∥

F

≤
(

max
i,j

1− qij
qij

∥

∥PT (eie
T
j )
∥

∥

2

F

)

∥

∥

∥

∥

∥

∥

∑

i,j

〈

eie
T
j ,PT (Z)

〉

PT

(

eie
T
j

)

∥

∥

∥

∥

∥

∥

F

=

(

max
i,j

1− qij
qij

∥

∥PT (eie
T
j )
∥

∥

2

F

)

∥

∥

∥

∥

∥

∥

PT





∑

i,j

〈

eie
T
j ,PT (Z)

〉 (

eie
T
j

)





∥

∥

∥

∥

∥

∥

F

=

(

max
i,j

1− qij
qij

∥

∥PT (eie
T
j )
∥

∥

2

F

)

‖PT (Z)‖F

∥

∥

∥

∥

∥

∥

∑

i,j

E
[

S2
ij

]

∥

∥

∥

∥

∥

∥

op

≤ max
i,j

1− qij
qij

∥

∥PT (eie
T
j )
∥

∥

2

F
≤ 1

c0 · log(m+ n)

We apply Matrix Bernstein inequality in Lemma 8 using

σ2 =
1

c0 · log(m+ n)
, γ =

1

c0 · log(m+ n)
,

to obtain, for any c > 1, c0 ≥ 20c,

‖PTRΩPT − PT ‖op ≤ 1/2

holding with probability at least
1− (m+ n)(1−c).

7.2 Proof of Lemma 2

We can write the matrix (RΩ − I)Z as sum of independent matrices:

(RΩ − I)Z =
∑

i,j

(

1

qij
δij − 1

)

Zijeie
T
j =

∑

i,j

Sij.

We note that, E[Sij] = 0, and Sij ’s are zero matrix when qij = 1, for all (i, j). We have

‖Sij‖2 ≤
|Zij |
qij

. Moreover,

∑

i,j

E
[

SijS
T
ij

]

=
∑

i,j

Z2
ijeie

T
i E

[

(

1

qij
δij − 1

)2
]

=
∑

i





∑

j

Z2
ij

1− qij
qij



 eie
T
i

Thus,
∥

∥

∥

∥

∥

∥

∑

i,j

E
[

SijS
T
ij

]

∥

∥

∥

∥

∥

∥

2

≤ max
i

n
∑

j=1

1− qij
qij

Z2
ij

Similarly,
∥

∥

∥

∥

∥

∥

∑

i,j

E
[

ST
ijSij

]

∥

∥

∥

∥

∥

∥

2

≤ max
j

m
∑

i=1

1− qij
qij

Z2
ij
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Clearly, when qij = 1 the above quantities are zero. Using qij in (10), and Lemma 7, we have

‖Sij‖2 ≤
1

c0 · log(m+ n)
|Zij|

√

m

µi̺

√

n

νj̺
≤

‖Z‖µ(∞)

c0 · log(m+ n)
.

Using qij in (10), and noting that
(µi̺

m +
νj̺
n − µi̺

m · νj̺
n

)

≥ µi̺
m , we have

n
∑

j=1

1− qij
qij

Z2
ij ≤ 1

c0 · log(m+ n)
· m

µi̺

n
∑

j=1

Z2
ij ≤

‖Z‖2µ(∞,2)

c0 · log(m+ n)
.

Similarly,
m
∑

i=1

1− qij
qij

Z2
ij ≤

1

c0 · log(m+ n)
· n

νj̺

m
∑

i=1

Z2
ij ≤

‖Z‖2µ(∞,2)

c0 · log(m+ n)
.

The lemma follows from Matrix Bernstein inequality in Lemma 8, with

γ log(m+ n) ≤ 1

c0
‖Z‖µ(∞) , σ2 log(m+ n) ≤ 1

c0
‖Z‖2µ(∞,2) .

7.3 Proof of Lemma 3

Let,

X = (PTRΩ − PT )Z =
∑

i,j

(

δij
qij

− 1

)

ZijPT (eie
T
j )

Weighted b-th column of X can be written as sum of independent, zero-mean column vectors.
√

n

νb̺
X∗,b =

∑

i,j

(

δij
qij

− 1

)

Zij

(

PT (eie
T
j )eb

)

√

n

νb̺
=
∑

i,j

sij

Clearly, E[sij ] = 0. We need bounds on ‖sij‖2 and
∥

∥

∥

∑

i,j E

[

sTijsij

]∥

∥

∥

2
to apply Matrix Bernstein

inequality. First, we need to bound ‖PT (eie
T
j )eb‖2.

‖PT (eie
T
j )eb‖2 = ‖UUT (eie

T
j )eb + (eie

T
j )VVTeb −UUT (eie

T
j )VVTeb‖2

=







‖UUTei +
(

I−UUT
)

ei‖VT eb‖22‖2 ≤
√

µi̺
m + νb̺

n j = b,

‖
(

I−UUT
)

eie
T
j VVTeb‖2 ≤

∣

∣

∣eTj VVTeb

∣

∣

∣ j 6= b,
(22)

Above we use triangle inequality and definition of µi and νb. Note that, sij is a zero vector when
qij = 1, for all (i, j). Otherwise, for qij 6= 1, we consider two cases. Using bounds in (22), we
have for j = b,

‖sij‖2 ≤
1

qib
|Zib|

√

n

νb̺

(
√

µi̺

m
+

νb̺

n

)

Using qij in (10), qib ≥ c0 log(m + n)
√

µi̺
m

√

νb̺
n and qib ≥ c0 log(m+ n) · µi̺

m . Combining these

two inequalities, we have

‖sij‖2 log(m+ n) ≤ 2

c0
|Zib|

√

m

µi̺
·
√

n

νb̺

(√

µi̺
m + νb̺

n

)

(√

µi̺
m +

√

νb̺
n

) ≤ 2

c0
‖Z‖µ(∞)
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For j 6= b, using qib ≥ c0 log(m+ n)
√

µi̺
m

√

νb̺
n (Lemma 7) and

∣

∣

∣eTj VVT eb

∣

∣

∣ ≤
√

νj̺
n · νb̺

n ,

‖sij‖2 ≤
1

qij
|Zij |

√

n

νb̺
·
√

νj̺

n
·
√

νb̺

n
≤ 2

c0 log(m+ n)
‖Z‖µ(∞)

Therefore, for all (i, j), we have ‖sij‖2 ≤ 2
c0 log(m+n) ‖Z‖µ(∞) .

On the other hand,
∣

∣

∣

∣

∣

∣

∑

i,j

E
[

sTijsij
]

∣

∣

∣

∣

∣

∣

=





∑

j=b,i

+
∑

j 6=b,i





1− qij
qij

Z2
ij

∥

∥PT (eie
T
j )eb

∥

∥

2

2
· n

νb̺

The above quantity is zero for qij = 1. Otherwise, for qij 6= 1, we consider two cases.

For j = b, using (22) we have,
∥

∥

∥
PT (eie

T
j )eb

∥

∥

∥

2

2
≤
(√

µi̺
m +

√

νb̺
n

)2
≤ 2

(µi̺
m + νb̺

n

)

.

Using qij in (10), we have,

∑

j=b,i

≤ 2
∑

i

1− qib
qib

Z2
ib

(µi̺

m
+

νb̺

n

)

· n

νb̺
≤ 4

c0 log(m+ n)
‖Z‖2µ(∞,2) ,

where we use the following bound in the second inequality. For all (i, j), qij 6= 0,

µi̺
m +

νj̺
n

µi̺
m +

νj̺
n − µi̺

m · νj̺
n

= 1 +
µi̺
m · νj̺

n
µi̺
m +

νj̺
n − µi̺

m · νj̺
n

≤ 1 +
µi̺
m · νj̺

n

max{µi̺
m ,

µj̺
n } ≤ 2.

For j 6= b, using qij ≥ c0 log(m+ n) · µj̺
n and (22),

∑

j 6=b,i

≤
∑

j 6=b,i

1− qij
qij

Z2
ij

∣

∣eTj VVTeb
∣

∣

2 · n

νb̺

=
n

νb̺

∑

j 6=b

∣

∣eTj VVTeb
∣

∣

2∑

i

1− qij
qij

Z2
ij

≤ n

νb̺

∑

j 6=b

∣

∣eTj VVTeb
∣

∣

2

(

1

c0 log(m+ n)
· n

νj̺

∑

i

Z2
ij

)

≤
(

‖Z‖2µ(∞,2)

c0 log(m+ n)

)

n

νb̺

∑

j 6=b

∣

∣eTj VVTeb
∣

∣

2

≤
‖Z‖2µ(∞,2)

c0 log(m+ n)
,

where the last inequality follows from,
∑

j 6=b

∣

∣

∣
eTj VVTeb

∣

∣

∣

2
≤
∥

∥VVTeb
∥

∥

2

2
≤ νb̺

n .

Combining the two summations,
∥

∥

∥

∥

∥

∥

∑

i,j

E
[

sTijsij
]

∥

∥

∥

∥

∥

∥

2

≤ 5

c0 log(m+ n)
‖Z‖2µ(∞,2)

We can bound
∥

∥

∥
E

[

∑

i,j sijs
T
ij

]∥

∥

∥

2
in a similar way.

We apply Matrix Bernstein inequality in Lemma 8, with

γ =
2

c0 log(m+ n)
‖Z‖µ(∞) , σ2 =

5

c0 log(m+ n)
‖Z‖2µ(∞,2) ,
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to obtain
∥

∥

∥

∥

∥

∥

∑

i,j

sij

∥

∥

∥

∥

∥

∥

2

≤
√

20c

c0
‖Z‖µ(∞,2) +

2c

c0
‖Z‖µ(∞) .

We set c0 ≥ 80c to derive

∥

∥

∥

∥

√

n

νb̺
X∗,b

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∑

i,j

sij

∥

∥

∥

∥

∥

∥

2

≤ 1

2

(

‖Z‖µ(∞,2) + ‖Z‖µ(∞)

)

.

Similarly, we can bound
∥

∥

∥

√

m
µa̺

Xa,∗
∥

∥

∥

2
by the same quantity. We take a union bound over all

rows a and all columns b (i.e., total (m+ n) events) to obtain, for any c > 2,

‖(PTRΩ − PT )(Z)‖µ(∞,2) ≤
1

2

(

‖Z‖µ(∞,2) + ‖Z‖µ(∞)

)

holding with probability at least 1− (m+ n)2−c.

7.4 Proof of Lemma 4

Let, X = (PTRΩ − PT )Z =
∑

i,j

(

δij
qij

− 1
)

Zij

(

PT (eie
T
j )
)

. We write rescaled (a, b)-th element

of X as

[X]ab

√

m

µa̺

√

n

νb̺
=
∑

i,j

(

δij
qij

− 1

)

Zij

(

PT (eie
T
j )
)

ab

√

m

µa̺

√

n

νb̺
=
∑

i,j

sij

This is a sum of independent, zero-mean random variables. we seek to bound |sij| and
∣

∣

∣

∑

i,j E

[

s2ij

]∣

∣

∣.

First, we need to bound
∣

∣

∣

〈

eae
T
b ,PT (eie

T
j )
〉∣

∣

∣.

∣

∣

〈

eae
T
b ,PT (eie

T
j )
〉∣

∣

=
∣

∣eTaUUT (eie
T
j )eb + eTa (eie

T
j )VVTeb − eTaUUT (eie

T
j )VVTeb

∣

∣

=



























∥

∥PT (eae
T
b )
∥

∥

2

F
= µa̺

m + νb̺
n − µa̺

m · νb̺
n i = a, j = b,

∣

∣

∣eTa (I −UUT )eae
T
j VVTeb

∣

∣

∣ ≤
∣

∣

∣eTj VVTeb

∣

∣

∣ i = a, j 6= b,
∣

∣eTaUUTeie
T
b (I −VVT )eb

∣

∣ ≤
∣

∣eTaUUTei
∣

∣ i 6= a, j = b,
∣

∣

∣eTaUUTeie
T
j VVTeb

∣

∣

∣ ≤
∣

∣eTaUUTei
∣

∣

∣

∣

∣eTj VVTeb

∣

∣

∣ i 6= a, j 6= b

(23)

where we use
∥

∥I−UUT
∥

∥

2
≤ 1 and

∥

∥I−VVT
∥

∥

2
≤ 1.

Note that, sij = 0 when qij = 1. Otherwise, for qij 6= 1,

|sij | ≤
1

qij
|Zij |

∣

∣

〈

eae
T
b ,PT (eie

T
j )
〉∣

∣

√

m

µa̺

√

n

νb̺

We consider four cases.
For i = a, j = b, using qab ≥ c0log(m+ n)

(µa̺
m + νb̺

n − µa̺
m · νb̺

n

)

|sij| ≤ 1

qab
|Zab|

∥

∥PT (eae
T
b )
∥

∥

2

F

√

m

µa̺

√

n

νb̺

≤ |Zab|
c0 log(m+ n)

√

m

µa̺

√

n

νb̺
≤

‖Z‖µ(∞)

c0 log(m+ n)
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For i = a, j 6= b, using qaj ≥ c0 log(m+ n)
(µa̺

m +
νj̺
n − µa̺

m · νj̺
n

)

≥ c0 log(m+ n)
νj̺
n ,

|sij | ≤
|Zaj |
qaj

∣

∣eTj VVTeb
∣

∣

√

m

µa̺

√

n

νb̺
≤ |Zaj |

c0 log(m+ n)

√

n

νj̺

√

m

µa̺
≤

‖Z‖µ(∞)

c0log(m+ n)

Similarly, for i 6= a, j = b, using qib ≥ c0log(m+ n)µi̺
m

|sij| ≤
‖Z‖µ(∞)

c0 log(m+ n)
.

For i 6= a, j 6= b, using qij ≥ c0 log(m+ n)
√

µi̺
m · νj̺

n

|sij| ≤ 1

qij
|Zij |

∣

∣eTaUUT ei
∣

∣

∣

∣eTj VVTeb
∣

∣

√

m

µa̺

√

n

νb̺

≤ 1

qij
|Zij |

√

µi̺

m

√

µa̺

m
·
√

νb̺

n

√

νj̺

n
·
√

m

µa̺

√

n

νb̺

≤ 1

c0 log(m+ n)
|Zij|

√

m

µi̺

√

n

νj̺
≤ 1

c0 log(m+ n)
‖Z‖µ(∞) .

Above we use
√

µi̺
m ≤ 1,

√

νj̺
n ≤ 1, for all i, j. We conclude, for all (i, j),

|sij| ≤
1

c0 log(m+ n)
‖Z‖µ(∞) .

On the other hand,
∣

∣

∣

∣

∣

∣

∑

i,j

E
[

s2ij
]

∣

∣

∣

∣

∣

∣

=
∑

i,j

E

[

(

δij
qij

− 1

)2
]

Z2
ij

〈

eae
T
b ,PT (eie

T
j )
〉2 m

µa̺
· n

νb̺

=
∑

i,j

1− qij
qij

Z2
ij

〈

eae
T
b ,PT (eie

T
j )
〉2 m

µa̺
· n

νb̺

=
∑

i=a,j=b

+
∑

i=a,j 6=b

+
∑

i 6=a,j=b

+
∑

i 6=a,j 6=b

The above quantity is zero for qij = 1. We bound the above considering four cases for qij 6= 1.
For i = a, j = b, using qab ≥ c0 log(m+ n)

(µa̺
m + νb̺

n − µa̺
m · νb̺

n

)

,

∑

i=a,j=b

≤ Z2
ab

qab

(µa̺

m
+

νb̺

n
− µa̺

m
· νb̺

n

)2 m

µa̺
· n

νb̺
≤

‖Z‖2µ(∞)

c0 log(m+ n)

Above we use
(µi̺

m +
νj̺
n − µi̺

m · νj̺
n

)

≤ 1, for all i and j.

For i = a, j 6= b, using qaj ≥ c0 log(m+ n)
νj̺
n ,

∑

i=a,j 6=b

≤
∑

j 6=b

1

qaj
Z2
aj

∣

∣eTj VVTeb
∣

∣

2 m

µa̺

n

νb̺

≤ 1

c0 log(m+ n)

∑

j 6=b

Z2
aj

(

n

νj̺

m

µa̺

)

∣

∣eTj VVTeb
∣

∣

2 n

νb̺

≤ 1

c0 log(m+ n)
‖Z‖2µ(∞) .
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Above we use,
∑

j 6=b

∣

∣eTj VVTeb
∣

∣

2 ≤
∥

∥VVTeb
∥

∥

2

2
≤ νb̺

n
.

Similarly, we can derive identical bound for
∑

i 6=a,j=b.

We use qij ≥ c0 log(m+ n)
√

µi̺
m · νj̺

n ≥ c0 log(m+ n)µi̺
m · νj̺

n to bound

∑

i 6=a,j 6=b

≤
∑

i 6=a,j 6=b

1

qij
Z2
ij

∣

∣eTaUUTei
∣

∣

2 ∣
∣eTj VVTeb

∣

∣

2 m

µa̺

n

νb̺

≤
‖Z‖2µ(∞)

c0 log(m+ n)

∑

i 6=a,j 6=b

∣

∣eTaUUTei
∣

∣

2 ∣
∣eTj VVTeb

∣

∣

2 m

µa̺

n

νb̺

=
‖Z‖2µ(∞)

c0 log(m+ n)

∑

i 6=a

∣

∣eTaUUTei
∣

∣

2 m

µa̺

∑

j 6=b

∣

∣eTj VVTeb
∣

∣

2 n

νb̺

≤
‖Z‖2µ(∞)

c0 log(m+ n)

Combining the summations, we derive
∣

∣

∣

∣

∣

∣

∑

i,j

E
[

s2ij
]

∣

∣

∣

∣

∣

∣

≤
4 ‖Z‖2µ(∞)

c0 log(m+ n)
.

We now apply Bernstein inequality in Lemma 8 to obtain, for any c > 3, c0 ≥ 68c

‖(PTRΩ − PT )(Z)‖µ(∞) ≤
1

2
‖Z‖µ(∞)

We take union bound over all (a, b) (i.e., total mn ≤ (m+n)2 events) to conclude that the above
result holds with probability at least

1− (m+ n)(3−c).

7.5 Proof of Lemma 5

Let δi = I(i ∈ Γ), where I(·) is the indicator function. We can write,

UTSΓ(U)− I̺ = UTSΓ(U)−UTU =

m
∑

i=1

(

1

p
δi − 1

)

UTeie
T
i U =

m
∑

i=1

Si,

where Si’s are independent of each other. Clearly, E[Si] = 0m×n.
Note that, ‖Si‖22 ≤ 1
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pm . Also,
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We apply the matrix Bernstein inequality in Lemma 8 to derive the result.
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