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Abstract

In this paper, we investigate the parametric knapsack problem, in which the item profits are affine functions
depending on a real-valued parameter. The aim is to provide a solution for all values of the parameter. It is
well-known that any exact algorithm for the problem may need to output an exponential number of knapsack
solutions.
We present a fully polynomial-time approximation scheme (FPTAS) for the problem that, for any desired
precision ε ∈ (0, 1), computes (1− ε)-approximate solutions for all values of the parameter. This is the first
FPTAS for the parametric knapsack problem that does not require the slopes and intercepts of the affine

functions to be non-negative but works for arbitrary integral values. Our FPTAS outputs O(n
2

ε
) knapsack

solutions and runs in strongly polynomial-time O(n
4

ε2 ). Even for the special case of positive input data, this is
the first FPTAS with a strongly polynomial running time. We also show that this time bound can be further

improved to O(n
2

ε ·A(n, ε)), where A(n, ε) denotes the running time of any FPTAS for the traditional (non-
parametric) knapsack problem.

Keywords: knapsack problems, parametric optimization, approximation algorithms

1. Introduction

The knapsack problem is one of the most funda-
mental combinatorial optimization problems: Given
a set of n items with weights and profits and a knap-
sack capacity, the task is to choose a subset of the
items with a maximum profit such that the weight
of these items does not exceed the knapsack capac-
ity. The problem is known to be weakly NP-hard and
solvable in pseudo-polynomial time. Moreover, sev-
eral constant factor approximation algorithms and
approximation schemes have been developed for the
problem [1–5] (cf. [6] for an overview).

In this paper, we investigate a generalization of
the problem in which the profits are no longer con-
stant but affine functions depending on a parame-
ter λ ∈ R. More precisely, for a knapsack with ca-
pacity W and for each item i in the item set {1, . . . ,n}
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Email addresses: holzhauser@mathematik.uni-kl.de
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with weight wi ∈ N>0, the profit pi is now of the
form pi(λ) := ai + λ · bi with ai,bi ∈ Z. The result-
ing optimization problem can be stated as follows:

p∗(λ) = max
n∑

i=1

(ai + λ · bi) · xi

n∑

i=1

wi · xi 6 W

xi ∈ {0, 1} ∀i ∈ {1, . . . ,n}

The aim of this parametric knapsack problem is
to return a partition of the real line into in-
tervals (−∞, λ1], [λ1, λ2], . . . , [λk−1, λk], [λk,+∞) to-
gether with a solution x∗ for each interval such that
this solution is optimal for all values of λ in the inter-
val. The function mapping each λ ∈ R to the profit
of the corresponding optimal solution is called the
optimal profit function and will be denoted by p∗(λ)

in the following. It is easy to see that p∗ is con-
tinuous, convex, and piecewise linear with break-
points λ1, . . . , λk [6].

Clearly, since the parametric knapsack problem is
a generalization of the traditional (non-parametric)
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knapsack problem, it is at least as hard to solve as
the knapsack problem. In fact, it was shown that,
even in the case of integral input data, the minimum
number of breakpoints of the optimal profit func-
tion can be exponentially large, so any exact algo-
rithm may need to return an exponential number of
knapsack solutions [7]. In this paper, we are inter-
ested in a fully polynomial time approximation scheme
for the parametric knapsack problem. We will show
that, for any desired precision ε ∈ (0, 1), a polyno-
mial number of intervals suffices in order to be able
to provide a (1 − ε)-approximate solution for each
λ ∈ R.

Without loss of generality, we may assume that
wi 6 W for each i ∈ {1, . . . ,n} since otherwise we are
not able to chose item i at all. However, note that we
do not set any further restrictions on the profits, i.e.,
the parameters ai and bi. In particular, each profit
may become negative for some specific value of λ. It
is even possible that there a no profitable items at all
for some values of λ.

1.1. Previous work

A large number of publications investigated para-
metric versions of well-known problems. This in-
cludes the parametric shortest path problem [8–
11], the parametric minimum spanning tree problem
[12, 13], the parametric maximum flow problem [14–
16], and the parametric minimum cost flow problem
[7] (cf. [17] for an overview). The parametric knap-
sack problem considered here was first investigated
by Carstensen [7]. She showed that the number of
breakpoints of the optimal profit function can be-
come exponentially large in general. If the parame-
ters are integral, the number of breakpoints can still
attain a pseudo-polynomial size. The first special-
ized exact algorithm for the problem was presented
by Eben-Chaime [18], who showed that the problem
can be solved in O(knW) time, where k denotes the
number of breakpoints of the optimal profit func-
tion p∗.

The first approximation scheme for the prob-
lem was recently published by Giudici et al. [17].
The authors presented a generalization of the stan-
dard polynomial-time approximation scheme for the
knapsack problem, resulting in a PTAS for the prob-

lem with a running time in O( 1
ε2 · n

1
ε+2). In the

special case of positive values of λ as well as non-
negative values of ai and bi for each i ∈ {1, . . . ,n},
the authors show that an algorithm of Erlebach

et al. [19] for the bicriteria knapsack problem can be
used to obtain an FPTAS for the parametric knap-

sack problem running in O(n
3

ε2 · log2 UBmax) time,
where UBmax denotes an upper bound on the maxi-
mum possible profit with respect to both of the profit
functions

∑n
i=1 ai · xi and

∑n
i=1 bi · xi.

1.2. Our contribution

We present the first FPTAS for the parametric
knapsack problem without the restriction to non-
negative input data. In particular, we show that we

only need a total number of O(n
2

ε
) intervals to ap-

proximate the problem (which, itself, may need an
exponential number of intervals as described above)
and that we can compute an approximate solution

for each interval in O(n
2

ε ) time, yielding an FPTAS

with a strongly polynomial running time of O(n
4

ε2 ).
Our algorithm is the first FPTAS for the problem
with a strongly polynomial running time, being su-
perior to the PTAS of Giudici et al. [17] for ε 6 0.5
and, in the special case of positive input data, supe-
rior to their FPTAS for large input values. In a sec-
ond step, we improve this result to a running time

of O(n
2

ε
·A(n, ε)), where A(n, ε) denotes the running

time of any FPTAS for the traditional knapsack prob-
lem. Using the FPTAS of Kellerer and Pferschy [4, 5],

this yields a time bound of O
(
n3

ε
log 1

ε
+ n2

ε4 log2 1
ε

)

for the parametric knapsack problem.

1.3. Organization

The results of this paper are divided into three
main parts. In Section 2, we show how we can gen-
eralize the well-known greedy-like 1

2
-approximation

algorithm for the traditional knapsack problem to
the parametric setting and how the resulting profit
function can be “smoothened” such that it becomes
convex and continuous without losing the approx-
imation guarantee. This will be the key ingredient
for the parametric FPTAS, which will be presented in
Section 3. We will first recapitulate a basic FPTAS for
the traditional knapsack problem in Section 3.1 and
then extend it to the parametric case in Section 3.2,
presenting a first time bound for the resulting FP-
TAS. In Section 3.3, as a main result of the paper, we
present an improved analysis yielding the claimed
running time of the FPTAS. Finally, in Section 4, we
show that is suffices to solve the corresponding sub-
problems only approximately so that we can incor-
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porate traditional FPTASs, which improves the run-
ning time of our algorithm to the claimed one.

2. Obtaining a parametric 1

2
-approximation

The parametric FPTAS will rely on a convex and
continuous 1

2 -approximation of the optimal profit

function p∗(λ), i.e., a parametric 1
2 -approximation

algorithm for the parametric knapsack problem. We
will therefore present such an algorithm in this sec-
tion and describe how we can guarantee these prop-
erties of the function.

2.1. Traditional 1
2

-approximation algorithm

The basic (non-parametric) 1
2 -approximation algo-

rithm proceeds as follows: In a first step, the algo-
rithm sorts the items in decreasing order of their ra-
tios pi

wi
, which can be done in O(n logn) time. It then

packs the items in this ordering until the next item k

with k > 2 would violate the knapsack capacity (or
until there are no items left), yielding a feasible solu-
tion x ′. The algorithm either returns x ′ or, if better,
the solution containing only an item with the largest
profit p(max). If x∗ denotes an optimal solution to the
given knapsack instance, xA the solution returned
by the above algorithm, and xLP a solution to the
LP-relaxation of the problem, we get that

pA := p(xA) :=

n∑

i=1

pi · x
A
i = max

{

p(max),

k−1∑

i=1

pi

}

>
1

2
·

k∑

i=1

pi >
1

2
· p(xLP) >

1

2
· p(x∗),

so xA is a 1
2 -approximation. We refer to [6] for fur-

ther details on this standard algorithm.

2.2. Parametric 1
2 -approximation algorithm

In the parametric knapsack problem, the profits
are affine functions of the form pi(λ) = ai + λ · bi

such that the optimal profit p∗ changes with λ. How-
ever, note that the solution x ′ of the traditional 1

2 -
approximation algorithm only depends on the or-
dering of the items and, thus, remains constant as
long as this ordering does not change. Moreover,
two items can only change their relative ordering if
their profit functions intersect, yielding O(n2) inter-
vals I ′j, within which the ordering of the items re-
mains unchanged. For all values of λ in such an

interval I ′j, the algorithm computes the same solu-

tion x ′, which has a profit of the form p(j)(λ) :=

α(j) + λ · β(j). For each λ ∈ I ′j, the 1
2

-approximation

algorithm either returns x ′ with profit p(j)(λ) or the
most valuable item only. One possibility to obtain a
parametric 1

2
-approximation algorithm would be to

consider each interval I ′j separately and to divide it

into subintervals, depending on whether p(j)(λ) or
p(max)(λ) is larger, where p(max) denotes the profit of
the most valuable item (which, again, now depends
on λ). However, the resulting piecewise linear func-
tion pA(λ) is not necessarily continuous or convex,
which will be required later, though (see Figure 1).

Instead, we ignore the intervals I ′j and only con-

sider the above affine functions p(j)(λ) = α(j) + λ ·
β(j). Let S denote the set of all such functions to-
gether with the function p(0)(λ) := 0 and each profit
function pi(λ). By computing the upper envelope
of the O(n2) functions in S, we obtain a function ϕ,
which is based on feasible solutions whose profit is
not smaller than pA(λ) at each λ ∈ R (see the dotted
curve in Figure 1). By standard arguments, it follows
that ϕ is convex, piecewise linear, and continuous as
it is the pointwise maximum of affine functions. For
m functions, the upper envelope can be computed
in O(m logm) time as shown1 by Hershberger [20].
Within the same time bound, we can sort the result-
ing intervals by increasing values of their left bound-
ary. Hence, we obtain a piecewise linear, continuous,
and convex 1

2
-approximation ϕ with O(n2) break-

points in O(n2 logn) time. In the following, we will
refer to the intervals between the breakpoints of ϕ as
I1, . . . , Iq.

3. Obtaining a parametric FPTAS

Before we explain the parametric FPTAS in detail,
we first recapitulate the basic FPTAS for the tradi-
tional (non-parametric) knapsack problem as intro-
duced by Lawler [21] since its way of proceeding is
crucial for the understanding of the parametric ver-
sion.

1Strictly speaking, the author proves the result for finite line
segments and not for straight lines. However, it is easy to com-
pute upper and lower bounds for the smallest and largest pos-
sible intersection point of two of the involved functions, respec-
tively, and to reduce the problem to the resulting interval.
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λ

p
p∗(λ)

ϕ(λ)

pA(λ)

Figure 1: The optimal solution value p∗ (black thick line),
the profit function pA of the 1

2 -approximation algorithm (blue
straight lines), and the “smoothed” curve ϕ (red dotted lines).

3.1. Traditional FPTAS

Consider the case of some fixed value for λ, such
that the profits have a constant, but possibly nega-
tive value pi. The basic FPTAS for the traditional
knapsack problem is based on a well-known dy-
namic programming scheme, which was originally
designed to solve the problem exactly in pseudo-
polynomial time: Let P denote an upper bound on
the maximum profit of a solution to the given in-
stance. For k ∈ {0, . . . ,n} and p ∈ {0, . . . ,P}, let
w(k,p) denote the minimum weight that is neces-
sary in order to obtain a profit of exactly p with
those items in the item set {1, . . . , k} that have a non-
negative2 profit. For k = 0, we set w(0,p) = 0

for p = 0 and w(0,p) = W + 1 for p > 0. For
k ∈ {1, . . . ,n} and for the case that pk ∈ {0, . . . ,p}, we
compute the values w(k,p) recursively by w(k,p) =
min{w(k− 1,p),w(k− 1,p−pk) +wk}, representing
the choice to either not pack the item or to pack it,
respectively. Else, if pk /∈ {0, . . . ,p}, we set w(k,p) =
w(k − 1,p) since we can omit negative item- and
knapsack-profits. The largest value of p such that
w(n,p) 6 W then yields the optimal solution to the
problem. The procedure runs in pseudo-polynomial
time O(nP).

The idea of the basic FPTAS is to scale down the
item profits pi to new values p̃i :=

⌊
pi

M

⌋
, where

M := ε·p
n for some value p fulfilling 1

2 · p∗ 6 p 6 p∗.
Instead of setting p := pA as it is done in the tradi-
tional FPTAS, we can alternatively use our improved
2-approximate solution ϕ. Since the maximum pos-

2Note that items with a negative profit will not be present in
an optimal solution.

sible profit P̃ is then given by

P̃ 6

n∑

i=1

p̃i 6

n∑

i=1

n · pi

ε ·ϕ
6

n

ε
·
p∗

ϕ
6

2n

ε
,

the procedure runs in polynomial time O(n
2

ε ). The
crucial observation is that we only lose a factor of
(1 − ε) by scaling down the profits, so the solu-
tion obtained by the above dynamic programming
scheme applied to the scaled profits yields a (1− ε)-
approximate solution for the problem (see [6, 21] for
further details on the algorithm).

3.2. Parametric scaling

Although the parametric FPTAS is based on the
basic FPTAS, the instance parameters now depend
on λ and, thus, change while λ increases. In par-
ticular, both the item profits and ϕ now depend on

λ, so the scaled profits p̃i(λ) :=
⌊
n·pi(λ)
ε·ϕ(λ)

⌋
have a

highly non-linear behavior. Nevertheless, similar to
the parametric 1

2
-approximation considered in Sec-

tion 2.2, the solution returned by the FPTAS does
not change as long as the profit p̃i(λ) of each item
remains constant. Hence, if I ′j denotes an interval
such that the scaled profits p̃i remain constant for
each λ ∈ I ′j, we can evaluate the dynamic program-
ming scheme with the profits p̃i to obtain a (1− ε)-
approximate solution for the interval I ′j. The proof of
the polynomial running time and the approximation
guarantee remain unchanged.

It remains to show how we can divide the real line
into a polynomial number of intervals such that the
profits remain constant in each interval. The basic
FPTAS will then be evaluated for each such inter-
val subsequently (using the corresponding constant
scaled profits) in order to obtain (1− ε)-approximate
solutions for the whole real line.

One natural idea would be to build on those inter-
vals described in Section 2.2 for which ϕ(λ) behaves
like an affine function: Let I1, . . . , Iq with q ∈ O(n2)

denote the affine segments of ϕ such that, for each
j ∈ {1, . . . ,q}, the function ϕ takes on some affine
form ϕ(λ) = α(j) + λ ·β(j) for λ ∈ Ij.

Now consider one such interval Ij. If ϕ(λ) = 0

for λ ∈ Ij, it also holds that p∗(λ) = 0 since ϕ(λ) >
1
2
·p∗(λ) for λ ∈ R, so the all-zero solution is optimal.

Otherwise, for the non-rounded scaled profit of each
item i, it holds that

n · pi(λ)

ε ·ϕ(λ)
=

n · (ai + λ · bi)

ε · (α(j) + λ ·β(j))
=:

n

ε
· fi(λ).
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These functions fi are monotonous, since the first
derivative fulfills

dfi

dλ
(λ) =

bi · (α
(j) + λ ·β(j)) − (ai + λ · bi) ·β

(j)

(α(j) + λ ·β(j))2

=
bi ·α

(j) − ai ·β
(j)

(α(j) + λ ·β(j))2

and, thus, does not change its sign within Ij. Hence,
within the interval Ij, each scaled profit p̃i has a
monotone behavior. Moreover, it holds that 0 6

fi(λ) 6 2 for all λ ∈ Ij since each item either has
a non-negative profit within the whole interval or it
will be ignored and since pi(λ) 6 p∗(λ) 6 2 · ϕ(λ).
These observations yield that each scaled profit p̃i

changes its (integral) value at most O(nε ) times
within Ij since we only need to consider values for
p̃i between 0 and 2n

ε . Hence, the above recursive

formulae only change O(n
2

ε ) times within each Ij,
in which case we have to repeat the computation of
the values w(i,p). This yields a total computational

overhead of O(n
4

ε2 ) per interval and, since there are at

most O(n2) intervals, a total running time of O(n
6

ε2 )

for the parametric FPTAS. This running time will be
significantly improved in the next subsection.

It should be noted that we need to take care of a
proper definition of the returned intervals: For ex-
ample, consider two scaled profits of the forms p̃i =

⌊1+ λ⌋ and p̃j = ⌊1− λ⌋. For the critical value λ1 =

1, both profits evaluate to 1. However, for λ ′

1 :=

λ1 + δ and λ ′′

1 := λ1 − δ for a small value of δ, one of
the profits already changes its integral value and the
dynamic programming scheme may behave differ-
ently. One simple solution is to assess that we add a
single-point interval [λ1, λ1] for each critical value as
well as two open intervals of the forms (λ0, λ1) and
(λ1, λ2), where λ0 and λ2 are adjacent critical values.
The returned (ordered) sequence of intervals then al-
ternates between single-point intervals and open in-
tervals. For an open interval, we can obtain an ap-
proximate solution by setting λ to the middle point
of the interval and performing the dynamic program
for the corresponding constant scaled profits.

3.3. Improved Analysis

The major drawback of the above algorithm is
that we basically need to reset the whole proce-
dure whenever the function ϕ changes its behav-
ior. With this approach, we were able guarantee
that each scaled profit has a monotone behavior such

that each possible integral value is only attained at
most once per interval. As it will be shown in this
Section, we are somewhat allowed to “ignore” these
changes without losing the guarantee that each pos-
sible value of the scaled profits will only be attained
a constant number of times.

Theorem 1. For each item i ∈ {1, . . . ,n}, the scaled
profits p̃i(λ) attain each value in {0, . . . , 2n

ε } at most three
times as λ increases from −∞ to +∞.

PROOF. In order to prove the claim, it suffices to
show that the sign of the first derivative of each func-
tion fi changes at most twice while λ increases. As
above, let I1, . . . , Iq denote the intervals for which ϕ

takes on some affine form ϕ(λ) = α(j)+ λ ·β(j) such
that

fi(λ) =
ai + λ · bi

α(j) + λ ·β(j)

for λ ∈ Ij. Since ϕ is convex and continuous, it
holds that β(j) 6 β(j+1) for j ∈ {1, . . . ,q − 1} and
that there is some index h such that α(j) 6 α(j+1)

for j ∈ {1, . . . ,h} and α(j) > α(j+1) for j ∈ {h +

1, . . . ,q− 1}. In fact, due to the construction of the
intervals, these inequalities hold in the strict sense
since β(j) = β(j+1) would also imply that α(j) =

α(j+1) by continuity of ϕ, so both segments would
belong to the same interval. Hence, if we plot the
points (β(j),α(j))T into a b-a-space, we get a pic-
ture as shown in Figure 2. Moreover, for each j ∈
{1, . . . ,q− 1}, there is some λj ∈ R with

α(j) + λj ·β
(j) = α(j+1) + λj ·β

(j+1)

due to the continuity and construction of ϕ. Hence,
since β(j+1) = β(j) + δj for some value δj > 0, we
get that

α(j+1) = α(j) + λj ·β
(j) − λj ·β

(j+1)

= α(j) − λj · δj,

so the slope of the line that connects the
points (β(j),α(j))T and (β(j+1),α(j+1))T evalu-
ates to

α(j+1) −α(j)

β(j+1) −β(j)
=

−λj · δj
δj

= −λj

and, thus, decreases while j increases. This yields
that the piecewise linear function g connecting each
of the points (β(j),α(j))T in the order j = 1, . . . ,q

5



is concave3 (as illustrated by the highlighted area in
Figure 2).

Now, for some specific item i ∈ {1, . . . ,n}, consider
the first derivate of fi, which as we have seen evalu-
ates to

dfi

dλ
(λ) =

bi ·α
(j) − ai ·β

(j)

(α(j) + λ ·β(j))2

as shown above. Since the denominator is always
positive, we need to bound the number of times
the sign of the numerator changes. The value bi ·
α(j) − ai · β

(j) can be interpreted as the inner prod-
uct of the vectors (−ai,bi) and (β(j),α(j))T . Hence,
since (−ai,bi) · (bi,ai)

T = 0, the sign of the derivate
changes whenever the function g crosses the line go-
ing through the origin and the point (bi,ai)

T (see
the dotted line in Figure 2). Since g is concave as
shown above, this can happen at most two times
while λ increases, which yields the claim. �

b

a

(β(j),α(j))T

(β(j+1),α(j+1))T

(bi,ai)
T

Figure 2: Plotting the slope β(j) and intersect α(j) of each affine
segment of ϕ. The piecewise linear function connecting these
points is concave and intersects with each straight line through
the origin at most twice.

Theorem 1 shows that each possible profit is only
attained a constant number of times per item al-

3This can also be seen by arguments used in the field of com-
putational geometry: It is known that the upper envelope of a
set of affine functions of the form c · λ − d corresponds to the
lower surface of a convex hull in the dual space, which is clearly
convex. Such a dual space contains a point (c,d)T for each affine
function of the above form in the primal space and, conversely,
an affine function λ · c− µ for each point (λ,µ)T in the primal
space. Hence, each line segment (breakpoint) of our upper en-
velope corresponds to a corner point (line segment) of the lower
surface of a convex hull in the dual space (cf. [22]). In fact, Fig-
ure 2 shows the dual space mirrored at the b-axis.

though the involved functions fi are rational func-
tions whose denominator changes for increasing λ.
Hence, each item only creates O(nε ) subintervals as
opposed to the O(n2 · nε ) subintervals proven in Sec-
tion 3.2. It remains to show that we can determine
these subintervals efficiently.

As shown in the proof of Theorem 1, the slope
of each function fi changes at most twice, yielding
for each item up to three partitions of the set of in-
tervals I1, . . . , Iq such that fi is monotonous within
each partition. By scanning through the sequence of
intervals of ϕ, we can determine these three parti-
tions for all items in total time O(n ·n2) = O(n3). For
each item, each partition, and each possible scaled
profit in {0, . . . , 2n

ε } (which can be attained only once
in the partition), we perform a binary search on the
intervals in the partition in order to find a value for λ
at which the corresponding profit is attained, if such
a λ exists. This can be done in O(n · 3 · n

ε · logn2) =

O(n
2

ε · logn) time in total. Finally, we need to sort
this list of critical values of λ in order to determine
the subintervals of the FPTAS, which can be done in
O(n · n

ε · log(n · n
ε )) = O(n

2

ε · log n
ε ) time.

In summary, we need O(n3 + n2

ε · log n
ε ) time to

determine the O(n
2

ε ) subintervals of the FPTAS. For
each of these subintervals, we need to perform the
traditional FPTAS with the corresponding (constant)

scaled profits, which can be done in O(n
2

ε ) time each.
Hence, we obtain an FPTAS for the parametric knap-

sack problem running in O(n
4

ε2 ) time in total. This
yields the main result of this paper:

Theorem 2. There is an FPTAS for the parametric
knapsack problem running in strongly polynomial time

O(n
4

ε2 ). �

4. Combining FPTASs

In the previous section, we have seen that the
parametric knapsack problem can be divided into

O(n
2

ε
) subproblems, for which we need to provide

(1 − ε)-approximate solutions. These subproblems
were created in a way such that the scaled profits
are constant for each subproblem. Each of them can
be seen as a new, independent, and non-parametric
knapsack instance (albeit a special one, since the
profits are now of polynomial size). In Section 3,
we simply solved each of the resulting knapsack in-

stances exactly in O(n
2

ε ) time. The main observation

6



of this section is that we actually do not necessarily
need to solve the subproblems exactly – it suffices to
solve them up to a factor of (1− ε) using any FPTAS
for the traditional knapsack problem.

Consider one fixed interval I ′ of the O(n
2

ε
) subin-

tervals of the problem. For each λ ∈ I ′, the scaled
profits p̃i take on constant values. Moreover, it holds
that 1

2 ·p
∗(λ) 6 ϕ(λ) 6 p∗(λ) for any λ ∈ I ′ as shown

in Section 2.2. Let x denote a solution returned by
some FPTAS for the traditional knapsack problem
that is called on an instance with the scaled profits
and let x denote an exact solution to the scaled in-
stance (which, e.g., can be obtained by the dynamic
programming scheme as above). Clearly, it holds
that

p̃(x) :=

n∑

i=1

p̃i · xi > (1− ε) ·

n∑

i=1

p̃i · xi =: p̃(x).

For any fixed λ ∈ I ′ and an optimal solution x∗ for
the unscaled problem at λ, we then get the following
approximation guarantee for the solution x:

p(x) =

n∑

i=1

pi · xi >

n∑

i=1

M ·
⌊pi

M

⌋
· xi

= M · p̃(x)

> (1− ε) ·M · p̃(x)

> (1− ε) ·M · p̃(x∗)

> (1− ε) ·M ·

n∑

i=1

(pi

M
− 1
)
· x∗i

= (1− ε) ·

(
p∗(λ) −M ·

n∑

i=1

x∗i

)

> (1− ε) · (p∗(λ) − ε ·ϕ(λ))

> (1− ε) · (p∗(λ) − ε · p∗(λ))

> (1− ε)2 · p∗(λ)

= (1− 2ε+ ε2) · p∗(λ)

> (1− 2ε) · p∗(λ).

Setting ε ′ := ε
2 then yields the desired approxima-

tion guarantee. Hence, although the subproblems
were designed in a way such that the basic dynamic
programming scheme does not change its behavior,
we do not necessarily need to execute it but can also
use an FPTAS instead.

Theorem 3. There is an FPTAS for the parametric knap-

sack problem running in O(n
2

ε · A(n, ε)) time, where

A(n, ε) denotes the running time of an FPTAS for the
traditional knapsack problem. �

Note that it clearly holds that A(n, ε) ∈ Ω(n), so the
running time of the main procedure will dominate
the overheads to compute ϕ and the set of subinter-
vals.

At present, the best FPTAS for the traditional
knapsack problem is given by Kellerer and Pfer-
schy [4, 5] and achieves a running time of

O

(
n · min

{

logn, log
1

ε

}

+

1

ε2
log

1

ε
· min

{

n,
1

ε
log

1

ε

})
.

Under the commonly used assumption that n is
much larger than 1

ε in practice [21], this running time
evaluates to

O

(
n log

1

ε
+

1

ε3
log2 1

ε

)
,

yielding an FPTAS for the parametric knapsack
problem with a strongly polynomial running time of

O

(
n3

ε
log

1

ε
+

n2

ε4
log2 1

ε

)
.
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