
Time and space optimality of rotor-router graph exploration

Artur Menc1, Dominik Pająk∗2, and Przemysław Uznański†3

1Faculty of Fundamental Problems of Technology, Wroclaw University of Technology,
Poland

2Computer Laboratory, University of Cambridge, UK
3Helsinki Institute for Information Technology HIIT, Department of Computer Science,

Aalto University, Finland

June 28, 2021

Abstract

We consider the problem of exploration of an anonymous, port-labeled, undirected graph with n
nodes and m edges and diameter D, by a single mobile agent. Initially the agent does not know the
graph topology nor any of the global parameters. Moreover, the agent does not know the incoming port
when entering to a vertex. Each vertex is endowed with memory that can be read and modified by the
agent upon its visit to that node. However the agent has no operational memory i.e., it cannot carry any
state while traversing an edge. In such a model at least log2 d bits are needed at each vertex of degree d
for the agent to be able to traverse each graph edge. This number of bits is always sufficient to explore
any graph in time O(mD) using algorithm Rotor-Router [20]. We show that even if the available
node memory is unlimited then time Ω(n3) is sometimes required for any algorithm. This shows that
Rotor-Router is asymptotically optimal in the worst-case graphs. Secondly we show that for the case
of the path the Rotor-Router attains exactly optimal time.

1 Introduction
In this paper we consider the exploration problem of a port-labeled graph in the following setting. The
exploration is performed by a single agent that has no memory (oblivious agent) and when it enters to a
node it has no information about the port number through which it entered (no inport). Each node contains
some number of bits of memory that can be read and modified by the agent upon its visit. Hence the whole
navigation mechanism needs to be defined using only local information.

Rotor-Router is an algorithm in which each node maintains a pointer to one of its neighbors and
a cyclic sequence of its neighbors. Upon each visit of the token to a node, the token is propagated along
the pointer of its current node and the pointer of the node is advanced to the next position in the cyclic
sequence. Studies of Rotor-Router show that it can be used as a graph-exploration algorithm and there
are guarantees on exploration time even is the initial state of the pointers and the sequence at each node can
be set by an adversary. In such a case, Rotor-Router can be also seen as a space-efficient algorithm since
the only information that needs to be stored at a node is the current position of the pointer. Hence dlog2 de
bits of memory needs to be stored at each node with degree d to implement Rotor-Router. It is worth
observing that with less memory the task becomes impossible as at each node with degree d, the algorithm
needs at least d different inputs to traverse every outgoing edge. This paper considers the following question:
∗Corresponding author. E-mail dsp39@cl.cam.ac.uk
†Part of this work was done while D. Pająk was visiting P. Uznański at Aix-Marseille Université. Partially supported by the

Labex Archimède and by the ANR project MACARON (ANR-13-JS02-0002)

1

ar
X

iv
:1

50
2.

05
54

5v
3

 [
cs

.D
S]

 2
9

N
ov

 2
01

5

does there exist an algorithm for exploration for oblivious agent with no inport that is always faster than
Rotor-Router if we allow more bits of memory at each node? We give a negative answer to this question
by showing a graph for which any such algorithm cannot be asymptotically faster than Rotor-Router
even if we allow unbounded memory at each node.

1.1 Preliminaries
We assume anonymous graph G = (V,E) with n nodes, m edges, diameter D and with no global labeling of
the nodes nor the edges. In order to navigate in the graph, the agent needs to locally distinguish between
the edges outgoing from its position, so we assume that all edges outgoing from a fixed vertex with degree
d are distinctly labeled using numbers {1, 2, . . . , d}.

The agent is modeled as a memoryless token. Each node contains a label ofMw bits which can be read
and modified by the agent upon its visit to that node. Such a model will be referred to as an oblivious agent.
Memory size on each node can depend on the node degree.

Let us denote by Sw = {0, 1, . . . , 2Mw − 1} the set node states. An oblivious agent is then defined
as a function f : Sw × N → Sw × N whose input is a tuple (sw, d) ∈ Sw × N, where sw is the state of
the node currently occupied by the agent and d is the node degree. The output of function f is a tuple
(s′w, p) ∈ Sw × {1, 2, . . . , d}, where s′w is the new state of the currently occupied node and p is the port
number through which the agent exits the current node in the current step. We say that the agent is located
at a node v at the beginning of some step t, then traverses the chosen arc during step t and appears at the
other end of the arc at the beginning of step t+ 1. Initially, each node is in a starting state s0w.

Observe that the port label through which the agent entered to the current node is not part of the input.
Thus the agent cannot easily backtrack its moves. We call this model feature an unknown inport.

At any step, the configuration of Rotor-Router is a triple ((πv)v∈V , (ρv)v∈V , r), where r is the current
position of the agent. In the current step, the agent traverses the edge indicated by pointer πr which is then
advanced to the next edge in the port ordering ρr.

Graph exploration problem. The goal of the agent is to visit all vertices of graph G. We assume that
the initial agent position in the graph as well as the port-labeling of the edges can be chosen by an adversary.
Initially the agent has no knowledge about the topology of G or even its size.

An oblivious agent that explores all unknown graphs, needs to traverse all edges and thus needs at least
d different inputs at any vertex with degree d in order to traverse all of its outgoing edges. This leads to the
following lower bound on the total memory at a vertex and on the agent.

Observation 1.1. If an oblivious agent explores all graphs in the model with unknown inport, then Mw ≥
log2 d holds for any node with degree d.

1.2 Our results
In this paper we show two lower bounds. In the first we show that for any oblivious algorithm with no
inport there exists a labeling of a path for which this algorithm needs at least (n − 1)2 steps. This shows
that unbounded memory at a node cannot decrease the exploration time of the path even by one step. On
the other hand Rotor-Router needs only 1 bit and always explores a path in time at most (n− 1)2. For
general graphs we show that any oblivious agent in the model with no inport requires time Ω(n3) for some
graphs regardless of the sizes of node memory. This shows that it is impossible to construct an algorithm
for oblivious agent that would be asymptotically faster than the Rotor-Router in the worst-case even if
unbounded memory at each node is available.

1.3 Related work
When exploring a graph using a Rotor-Router mechanism with arbitrary initialization, time Θ(mD) is
always sufficient and sometimes required for any graph [20] [3]. Since the Rotor-Router requires no special

2

initialization, it can be implemented in a graph with dlog2 de-bits of memory at each node with degree d. An
oblivious agent can simply exit the node v via port w(v)+ 1, where w(v) is the value on the whiteboard, and
increment the value w(v) modulo deg(v). Thus exploration in time O(mD) is possible by oblivious agents
with dlog2 de-bit node memory, which is the smallest possible by Observation 1.1.

2 Lower bounds
In this section we prove a lower bound on the number of steps of graph exploration for oblivious agent. First
we need the following observation, which helps to reason about behavior of oblivious agents in port-labeled
graphs.

Lemma 2.1. Behavior of any oblivious agent A in graph G with arbitrary size of node memory is fully
characterized by the collection of functions portd(i) for d = 1, 2, For a fixed d, the function denotes the
outport chosen by the agent upon its i-th visit to any node with degree d.

Proof. Since the agent has no internal memory and does not know the label of the port through which it
enters to a node, the only information the agent has is the degree of the current node and the state of the
node memory. Thus the label of the next outport taken from a node v can only depend on the degree of v
and on the labels of previously chosen outports from node v.

The following lemma characterizes the worst-case exploration time for any oblivious agent on a path.

Theorem 2.2. Let P be a path on n vertices v1, v2, . . . , vn. For any oblivious agent A, starting on vertex
vn, there exists port labeling of P such that if A visits v1, then:

1. A makes at least (n− 1)2 edge traversals before its first visit to v1,

2. A traverses arc vn → vn−1 at least n− 1 times before its first visit to v1.

Proof. Let us fix any oblivious agent A. By Lemma 2.1 we can also fix its sequence {ai}∞i=1 of exits from
each node of degree 2 (that is ai = port2(i) ∈ {1, 2}).

The proof will proceed by induction on the number of nodes of the path. For i = 2, the agent makes one
traversal of v2 → v1 before its first visit to v1.

Let us assume, that the claim is true for some i ≥ 2 and we will show it for i+1. The agent starts at node
vi+1. We will use the inductive assumption for subpath of nodes vi, . . . , v2, v1. The agent needs to traverse
arc vi → vi−1 at least i−1 times before its first visit in v1. We want to choose port labeling of node vi. Take
first 2(i− 1)− 1 elements of sequence {ai} and take the element α that appears in it at least (i− 1) times.
Set α to be the label of the arc vi → vi+1. The other element, {1, 2} \ {α} is the label of the arc vi → vi−1.
Observe that under such port labeling, before i− 1 traversals of vi → vi−1, arc vi → vi+1 will be traversed
at least i− 1 times. This means that before the first visit to v1, the agent will enter node vi+1 at least i− 1
times. Since the agent started at vi+1 then before the first visit to v1 it will traverse edge vi+1 → vi at least
i times. The total number of steps within subpath vi, . . . v1 is at least (i− 1)2 by the inductive assumption.
Additionally the agent traverses vi+1 → vi at least i and vi → vi+1 at least i−1 times thus the total number
of traversals is at least (i− 1)2 + (i− 1) + i = i2.

The previous theorem showed that any strategy for oblivious agents requires at least (n − 1)2 steps to
explore a path. Interestingly, (n − 1)2 is also the worst-case number of steps to explore a path for the
Rotor-Router. It shows that the Rotor-Router is optimal on a path. It means that even adding
arbitrarily large node memory cannot provide any speedup (not only asymptotic one) for path exploration,
when compared to just one bit node memory sufficient to implement Rotor-Router on the path.

The next theorem shows a lower bound on exploration time for oblivious agents on arbitrary graphs.

Theorem 2.3. For any value of n and any any oblivious agent A there exists graph G with n vertices, such
that A needs at least Ω(n3) time steps to visit all vertices of G.

3

Proof. Fix agent A and size of the graph n. Assume that n divisible by 3. Let d = n/3. Consider the
sequence ai = portd(i) ∈ {1, 2, . . . d} for i = 1, 2, . . . , where portd(i) is defined in Lemma 2.1. In the prefix of
length d · (d− 1) of sequence {ai} there exists a value p that appears at most d− 1 times.

Consider a graph G1 constructed from the clique Kd by attaching one node v′ to each node v of the clique
(see Figure 1 for an example). Observe that each node coming from clique Kd has an additional neighbor
thus its degree in G1 is d. For each v from the clique, the port leading to v′ is p. All other ports are set
arbitrarily.

p

p

pp

p

p

Figure 1: Example of graph G1 for n = 18.

p

p

pp

p

p

v∗ vf

Figure 2: Example of graph G for n = 18.

Consider a walk of agent A on graph G1 starting from an arbitrary vertex vs for d2 · (d− 1) steps. There
exists a vertex v∗ from the original clique Kd that was visited at most d · (d− 1) times.

Construct a graph G by modifying G1. Replace the one additional node attached to v∗ with a path P
of d + 1 nodes. Set the worst-case port-labeling of path P , as in the Theorem 2.2, depending on function
port2(i) of A. Denote by vf , the first node of P that is connected to v∗ (see Figure 2 for an example).

Consider agent A exploring the graph G starting from vertex vs. Since the agent is oblivious, its moves
between vertices in G that come from original graph G1 are the same as in the graph G1. Thus within
d2 · (d − 1) steps in G, node v∗ is visited at most d · (d − 1) times. Since p is the port leading from v∗ to
vf then after d · (d − 1) visits to v∗, agent visited vf at most d − 1. But by Theorem 2.2, the agent needs
to visit vf at least d times to explore path P . Thus the agent needs time at least d2 · (d − 1) = Ω(n3) to
explore graph G.

If n is not divisible by 3 we can add the remaining vertices to the path and the exploration time will be
at least

⌊
n
3

⌋2 · (⌊n
3

⌋
− 1

)
= Ω(n3)

The theorem shows that, even with unbounded node memory, the oblivious agents need Ω(n3) steps to
explore some graphs. Since the Rotor-Router explores any graph in time O(mD) = O(n3) [20] there
is no strategy for oblivious agents that would be faster in the worst-case. Observe also that the Rotor-
Router can be implemented using node memory of minimum possible size dlog2 de at nodes of degree d.
By Observation 1.1, agent with less memory cannot traverse all outgoing edges. Thus the Rotor-Router
is both time and space optimal strategy for oblivious agents.

References
[1] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff. Random walks, universal traversal

sequences, and the complexity of maze problems. In FOCS, pages 218–223, 1979.

[2] C. Ambühl, L. Gasieniec, A. Pelc, T. Radzik, and X. Zhang. Tree exploration with logarithmic memory.
ACM Trans. on Alg., 7(2):17, 2011.

[3] E. Bampas, L. Gąsieniec, N. Hanusse, D. Ilcinkas, R. Klasing, and A. Kosowski. Euler tour lock-in
problem in the rotor-router model. In DISC, pages 423–435, 2009.

[4] P. Berenbrink, C. Cooper, and T. Friedetzky. Random walks which prefer unvisited edges: Exploring
high girth even degree expanders in linear time. Random Struct. Algorithms, 46(1):36–54, 2015.

4

[5] A. Borodin, W. L. Ruzzo, and M. Tompat. Lower bounds on the length of universal traversal sequences.
JCSS, 45(2):180–203, 1992.

[6] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, and D. Peleg. Label-guided graph exploration by a
finite automaton. ACM Trans. on Alg., 4(4), 2008.

[7] H. Dai and K. Flannery. Improved length lower bounds for reflecting sequences. In Computing and
Combinatorics, volume 1090 of LNCS, pages 56–67. Springer Berlin Heidelberg, 1996.

[8] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree exploration with little memory. J. Algorithms,
51(1):38–63, 2004.

[9] G. Dudek, M. Jenkin, E. E. Milios, and D. Wilkes. Robotic exploration as graph construction. IEEE
T. Robotics and Automation, 7(6):859–865, 1991.

[10] U. Feige. A tight upper bound on the cover time for random walks on graphs. Random Struct. Algo-
rithms, 6(1):51–54, 1995.

[11] P. Fraigniaud and D. Ilcinkas. Digraphs exploration with little memory. In STACS, pages 246–257,
2004.

[12] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by a finite automaton.
Theor. Comput. Sci., 345(2-3):331–344, 2005.

[13] P. Fraigniaud, D. Ilcinkas, S. Rajsbaum, and S. Tixeuil. The reduced automata technique for graph
exploration space lower bounds. In Theor. Comput. Sci., Essays in Memory of Shimon Even, pages
1–26, 2006.

[14] M. Koucký. Log-space constructible universal traversal sequences for cycles of length o(n4.03). Theor.
Comput. Sci., 296(1):117–144, 2003.

[15] M. Koucký. Universal traversal sequences with backtracking. JCSS, 65(4):717 – 726, 2002. Special Issue
on Complexity 2001.

[16] N. Nisan. RL ⊆ SC. Computational Complexity, 4:1–11, 1994.

[17] V. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy. Eulerian walkers as a model of self-organized
criticality. Phys. Rev. Lett., 77(25):5079–5082, Dec 1996.

[18] O. Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008.

[19] H. A. Rollik. Automaten in planaren graphen. Acta Informatica, 13(3):287–298, 1980.

[20] V. Yanovski, I. A. Wagner, and A. M. Bruckstein. A distributed ant algorithm for efficiently patrolling
a network. Algorithmica, 37(3):165–186, 2003.

5

