

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

ıY�¨Y⌅|8

ıµ <π⇠ ÒHD Q©\

®(�x |⌅ ®»Ï ⌅π 0ï

Fast batch modular exponentiation
with common-multiplicand multiplication

2018D 2‘

⌧∏�YP �Y–

⌅0 ·ÙË0ıYÄ

⌧ � ¸

Abstract

Fast batch modular exponentiation

with common-multiplicand multiplication

Jungjoo Seo
Department of Computer Science and Engineering

The Graduate School
Seoul National University

In the field of asymmetric cryptography, the exponentiation operation that

raises an element from a group to its power is fundamental for a great part of

cryptosystems. The exponents are often large numbers which essentially lead to

significant resource consumption for computation. There are two approaches to

enhance the performance of exponentiation. One way is to improve the efficiency

of multiplication itself. The other way is to reduce the number of multiplications

that is required to perform exponentiation.

In this thesis, we present an efficient algorithm for batch modular exponen-

tiation which improves upon the previous generalized intersection method with

respect to the cost of multiplications. The improvement is achieved by adopt-

ing an extended common-multiplicand multiplication technique that efficiently

computes an arbitrary number of multiplications that share a common multi-

plicand at once. Our algorithm shows a better time-memory tradeoff compared

to the previous generalized intersection method.

We analyze the cost of multiplications and storage requirement of the pro-

posed algorithm, and give an optimal parameter choice when the allowed amount

of memory is sufficient or limited. The comparison shows that our algorithm

i

reduces the cost of multiplications by 23% ⇠ 41% when the number of input ex-

ponents is between 10 and 60, and the bit length of exponents is 1024, 2048 and

4096. The practical performance enhancement is also supported by the actual

running time comparison. For further improvement, we also present an exponent

ordering algorithm that rearranges the input exponents and a precomputation

method to reduce the cost of multiplications.

Keywords: Cryptography, Exponentiation, Modular Exponentiation, Public-

Key Cryptography, Common-Multiplicand Multiplication, Algorithm

Student Number : 2009-20820

ii

Contents

Abstract i

Contents iii

List of Figures v

List of Tables vii

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Contribution . 4

1.3 Organization . 5

Chapter 2 Related Work 6

2.1 Common-Multiplicand Multiplication 6

2.1.1 Montgomery Multiplication 7

2.1.2 Common-Multiplicand Montgomery Multiplication 8

2.1.3 Extended Common-Multiplicand Montgomery Multipli-

cation . 9

2.2 Batch Exponentiation Algorithms 12

2.2.1 Square and Multiply . 13

2.2.2 Parallel Square and Multiply 14

iii

2.2.3 Generalized Intersection Method 15

2.2.4 Chung et al.’s Algorithm 19

Chapter 3 k-way Batch Exponentiation 23

3.1 Exponent Grouping and Partitioning 23

3.2 k-way Evaluation . 24

3.3 Combination . 26

3.4 Performance Analysis . 26

3.4.1 Cost of Multiplications . 26

3.4.2 Storage Requirement . 28

3.5 Optimal Group Size . 29

3.6 Parameters . 29

Chapter 4 Experimental Results and Comparison 32

4.1 Time-Memory Tradeoff . 33

4.2 Cost of Multiplications . 33

4.3 Running Time . 35

Chapter 5 Further Improvement 37

5.1 Exponent Ordering . 37

5.2 Precomputation . 40

Chapter 6 Conclusion 44

Bibliography 46

iv

List of Figures

Figure 2.1 Algorithm for Montgomery multiplication 7

Figure 2.2 Algorithm for Common-Multiplicand Montgomery mul-

tiplication . 8

Figure 2.3 Algorithm for extended Common-Multiplicand Montgomery

multiplication . 10

Figure 2.4 Algorithm for LSB Square-and-Multiply 13

Figure 2.5 Algorithm for MSB Square-and-Multiply 14

Figure 2.6 Algorithm for Parallel Square-and-Multiply 15

Figure 2.7 Intersection method for two exponents 16

Figure 2.8 Partitioned cells for three exponents 17

Figure 2.9 Algorithm for exponent partitioning 19

Figure 2.10 Algorithm for evaluation 20

Figure 2.11 Algorithm for decremental combination 21

Figure 3.1 Algorithm for batch exponentiation 27

Figure 4.1 Tradeoff comparison when l = 2048 and size(p) = 2048 . 33

Figure 4.2 Performance comparison 34

Figure 4.3 Running time comparison 36

Figure 5.1 Algorithm for Ordering Exponents 40

v

Figure 5.2 Cost of multiplications by precomputation when l =

size(p) = 2048 . 43

vi

List of Tables

Table 2.1 Cost of extended CMM Montgomery multiplication 11

Table 2.2 Example of exponent partitioning. 17

Table 2.3 Example of position array 20

Table 2.4 Example of decremental combination when n = 3 22

Table 3.1 Example of k-way evaluation. 25

Table 3.2 Optimal exponent group size m when w = 32. 30

Table 3.3 Optimal exponent group size m when w = 64. 30

Table 4.1 Costs of multiplications for various parameters 35

Table 4.2 Improvement upon Chung et al.’s 36

Table 5.1 An example of exponent ordering 38

Table 5.2 Improvement by exponent ordering when size(p) = 4096

for random exponents . 41

vii

Chapter 1

Introduction

Batch cryptography is an active research area for generating and verifying mul-

tiple exponentiations and signatures, or performing cryptographic primitives

such as encryption and decryption simultaneously. Especially in a cryptographic

application that requires digital signatures of multiple messages simultaneously,

multiple exponentiations with a fixed base and various exponents need to be

computed at the same time. We present an efficient algorithm for batch modular

exponentiation with a fixed base and various exponents based on the generalized

intersection method with exponent grouping. The enhancement is achieved by

common-multiplicand multiplication due to the shared repeated squaring pro-

cess and an expoenent rearragement method. The introduction begins with the

background on batch exponentiation followed by the outline of the thesis.

1.1 Background

Exponentiation, that raises an element from a group to its power, is one of the

most important arithmetic operations in public-key cryptography. The RSA

cryptosystem [43] requires exponentiation in Z/nZ for a positive integer n = pq

1

where p and q are large primes. Meanwhile, Diffie-Hellman key agreement [13]

and ElGamal scheme [19] require exponentiation in Zp for a large prime p.

There are two types of circumstance in which exponentiation algorithms

are applied. Firstly, the exponent x is fixed and the base g is chosen arbitrarily

as in RSA scheme. Secondly, the base g is fixed and the exponent x is chosen

arbitrarily. ElGamal scheme and Diffie-Hellman key agreement protocol benefit

from algorithms that computes such exponentiation efficiently. We mainly focus

on the latter situation where the base g is fixed.

The efficiency of exponentiation is increasingly important because the re-

quired key size has grown to ensure the cryptographic security levels. It is also

important because exponentiations are performed in devices with weak com-

puting power as the internet of things becomes ubiquitous. The computation

cost for exponentiation is heavily depends on the performance of multiplication,

since exponentiation consists of a series of multiplications. There are two ap-

proaches to enhance the performance of exponentiation. One way is to improve

the efficiency of multiplication itself [2, 11, 26, 37]. The other way is to reduce

the number of multiplications that is required to perform exponentiation [24].

If possible, both approaches can be adopted.

One approach to improve the efficiency of the multiplication is to take ad-

vantage of a special form of multiple multiplications {Ai ⇥ C | i = 1, 2, ..., t}

that share an identical multiplicand C [25,46,47,49,50]. Yen and Laih [50] pro-

posed an algorithm for common-multiplicand multiplications (CMM for short)

to improve the performance of the square-and-multiply exponentiation algo-

rithm. Rather than handling multiple multiplications independently, the algo-

rithm processes the bitwise common part of the multipliers and decomposes a

multiplier by the common part. This method reduces the number of 1’s in the

decomposed multipliers which results in less number of additions for computing

the multiplications. Wu and Chang [47] improved Yen and Laih’s algorithm by

folding the multipliers k times. Yen [49] proposed another improved algorithm

2

for the case that the number of multiplications is three.

In an application that requires a modular multiplication such as x⇥ y mod

N , Montgomery algorithm [37] can be adopted rather than using a straight-

forward multiplication method [29] due to the efficiency. In Montgomery mul-

tiplication, the given integers x and y are transformed into Montgomery form

where the modulo operation can be performed by the cheap shift operation

rather than the expensive division operation. Ha and Moon [25] introduced

an efficient algorithm for Montgomery multiplication where two multiplications

share a common multiplicand. Wu [46] extended Ha and Moon’s algorithm to

handle more than two multiplications.

To compute an exponentiation with a smaller number of multiplications,

majority of research focused on finding a short addition chain for a given

exponent x. As the problem of finding the shortest addition chain is NP-

complete [17], practical algorithms for exponentiation without a division oper-

ation have been studied such as the binary method, the m-ary method, window

methods [31,34,41,52], exponent-folding methods [33,49], and precomputation

methods [7,32]. For a group where the inversion operation is efficient like ellip-

tic curve cryptosystems [30,35], an addition-subtraction chain can yield a good

performance [38].

Batch cryptography is an active research area for generating and verifying

multiple exponentiations and signatures, or performing cryptographic prim-

itives such as encryption and decryption simultaneously. Batch verification,

which is firstly introduced by Naccache et al. [40], is used to verify multiple

signatures simultaneously consuming less time than verifying total individual

signatures. Successive research results have achieved improvements in terms of

efficiency and security [1,3,4,5,8,9,21,27,51]. There also have been researches

for batch signature schemes [22, 42, 53] and batch generation of exponentia-

tions [10,39].

In a cryptographic application that requires digital signatures of multi-

3

ple messages simultaneously, multiple exponentiations with various exponents

{x1, x2, ..., xn} and a fixed base g need to be computed at the same time [28,44].

As a solution to the batch exponentiation problem, the generalized intersec-

tion method was proposed by M’Raïhi and Nacacche [39]. This method takes

advantage of the fact that intersecting exponents leads to a less number of

multiplications. They also showed that the exponentially increasing number of

partitioned exponents, which results in the exponentially increasing number of

multiplications, can be reduced by dividing exponents into groups. By grouping

exponents, the squaring process is shared amongst exponent groups, and the

algorithm achieves various time-memory tradeoffs. Chung et al. [10] proposed a

decremental combination strategy that removes the overlapping multiplications

in the combination stage of the generalized intersection method.

1.2 Contribution

We propose a k-way batch exponentiation algorithm that improves the evalua-

tion stage of the generalized intersection method with exponent-grouping. Our

algorithm divides exponents into several groups and produces many common-

multiplicand multiplications in the evaluation stage. This approach significantly

enhances the performance of the evaluation stage and the whole procedure

achieves a better time-memory tradeoff compared to Chung et al.’s by adopt-

ing CMM multiplication. An optimal choice for the exponent group size for

both cases when the allowed amount of memory is sufficient or limited is given

with performance analysis. The k-way algorithm reduces the cost of multipli-

cations by 23 ⇠ 41% and running time by 24 ⇠ 48% when the number of input

exponents is 10 ⇠ 60. We also present an exponent ordering algorithm for re-

arranging input exponents and a precomputation method to reduce the cost of

multiplications even further.

4

1.3 Organization

The rest of the thesis is organized as follows. In Chapter 2, we review the

background on common-multiplicand multiplication, exponentiation and batch

exponentiation algorithms. In Chapter 3, we propose the k-way batch exponen-

tiation algorithm and analyze the time and space performance. In Chapter 4 we

show the experimental results and compare the performance with previous al-

gorithms. In Chapter 5, exponent ordering and precomputation are considered

for further improvement. Finally, we conclude in Chapter 6

5

Chapter 2

Related Work

There are two approaches to enhance the performance of exponentiation. One

way is to improve the efficiency of multiplication itself. The other way is to

reduce the number of multiplications that is required to perform exponentia-

tion. For the former approach, we introduce common-multiplicand multiplica-

tion algorithms that enhances the performance of multiplications that share

a common-multiplicand. For the latter, a generalized intersection method for

batch exponentiation, that handles multiple exponentiations with a fixed base

simultaneously, and its improvement by Chung et al. are described.

2.1 Common-Multiplicand Multiplication

Common-multiplicand multiplication (CMM for short) is a widely used method

for enhancing the performance of exponentiations [25,46,47,49,50]. The CMM

method reduces the time for performing multiplications, and enhances the per-

formance of exponentiation. In this thesis, we are particullary interested in the

methods based on Montgomery multiplication since it efficiently evalutes mod-

ular multiplication. Ha and Moon [25] extended Montgomery multiplication to

6

MontMult(x, y, b, n,m0
0,m)

1 a 0

2 for i 0 to n� 1

3 a a+ xiy

4 u a0n0
0 mod b

5 a (a+ um)/b

6 if a � m

7 a a�m

8 return a

Figure 2.1: Algorithm for Montgomery multiplication

handle two multiplications with a common-multiplicand efficiently, and Wu [46]

generalized Ha and Moon’s work for an arbitrary number of multiplications.

2.1.1 Montgomery Multiplication

Montgomery multiplication [37] is a method for efficient modular multiplica-

tion and exponentiation. Consider following numbers x, y and m in radix b

representation with n digits :

x =
n�1X

i=0

xib
i, y =

n�1X

i=0

yib
i,m =

n�1X

i=0

mib
i

xi, yi and mi are elements from of {0, 1, ..., b�1}. Let R be an integer such that

R = bn > m and gcd(R,m) = 1, and R�1 be the inverse of R modulo m. The

m-residue with respect to R of an integer T < m is defined by T = TR mod m.

Montgomery reduction takes an integer a such that 0  a < Rm and yields

aR�1 mod m. To compute the Montgomery reduction of the product of two

integers x and y, multi-precision multiplication and Montgomery reduction

method can be combined efficiently [18]. Montgomery multiplication Mont-

Mult(x, y) yields xyR�1 mod m as described in Algorithm MontMult of

7

MontMultCMM(x, y, z, b, n,m0
0,m)

1 a 0

2 b 0

3 t z

4 for i n� 3 downto 0

5 u t0m0
0 mod b

6 t (t+ um)/b

7 a (a+ txi)/b b (b+ tyi)/b

8 for i 0 to 1

9 a a+ xn�2+iz b b+ yn�2+iz

10 ua a0m0
0 mod b ub b0m0

0 mod b

11 a (a+ uam)/b b (b+ ubm)/b

12 if a � m

13 a a�m

14 if b � m

15 b b�m

16 return a, b

Figure 2.2: Algorithm for Common-Multiplicand Montgomery multiplication

Figure 2.1, and consumes 2n2 + n single-precision multiplications. Note that

T = MontMult(T,R2) and T = MontMult(T , 1).

2.1.2 Common-Multiplicand Montgomery Multiplication

Ha and Moon [25] proposed a common-multiplicand Montgomery multiplication

algorithm that takes {x, y, z} and produces {xzR�1, yzR�1} requiring 3n2+3n

single-precision multiplications. The Montgomery reduction of the product of

8

two integers u and v can be written as follows :

uvR�1 mod m = u(vn�1b
n�1 + vn�2b

n�2 + ...+ v0b
0)bs�nb�s mod m

= (vn�1(ub
s�1 mod m) + vn�2(ub

s�2 mod m)) + ...

+ v0(ub
s�n mod m))b�s mod m

where b�n = R�1 mod m. With the choice s = 2, the Montgomery reductions

of xz and yz are

xzR�1 mod m = (xn�1z + (xn�2z + xn�3(zb
�1 mod m) + ...

+ x0(zb
2�n mod m))b�1)b�1 mod m

yzR�1 mod m = (yn�1z + (yn�2z + yn�3(zb
�1 mod m) + ...

+ y0(zb
2�n mod m))b�1)b�1 mod m.

In both Montgomery reductions, zb�i mod m for 1  i  n� 2 can be shared,

and zb�i mod m can be computed from the previous result zb�i+1 mod m. A

common-multiplicand Montgomery multiplication algorithm is described in Al-

gorithm MontMultCMM of Figure 2.2.

The first loop that includes the computation of all zb�i mod m requires

(n � 2)(3n + 1) single-precision multiplications. Computing the final result

xzR�1 and yzR�1 in the second loop requires 2(4n+2) = 8n+4 single-precision

multiplications. Thus, the common-multiplicand Montgomery multiplication al-

gorithm requires 3n2 + 3n + 2 single-precision multiplications. Since we need

2(2n2+n) = 4n2+2n single-precision multiplications to perform two instances

of Algorithm MontMult, the speedup of common-multiplicand Montgomery

multiplication algorithm is about 1.5 considering only the highest term.

2.1.3 Extended Common-Multiplicand Montgomery Multipli-

cation

Ha and Moon’s common-multiplicand Montgomery multiplication can be ex-

tended to handle more than two multiplications with a common multiplicand

9

ExtMontMulCMM(X, c, b, n,m0
0,m)

1 s c

2 Yj 0 for 1  j  t

3 for i n� 3 downto 0

4 u s0m0
0 mod b

5 s (s+ um)/b

6 Yj Yj + sXj,i for 1  j  t

7 for i 0 to 1

8 for j 1 to n

9 Yj Yj + cXj,n�2�i for 1  j  t

10 u Yj,0m0
0 mod b

11 Yj (Yj + um)/b

12 for j 1 to n

13 while Yj � m

14 Yj Yj �m

15 return Y

Figure 2.3: Algorithm for extended Common-Multiplicand Montgomery multi-

plication

of the form {A1C,A2C, ... , AtC} [46] as described in Algorithm ExtMont-

MultCMM of Figure 2.3. The required number of single-precision multiplica-

tions for the extend algorithm is as follows:

(t+ 1)b2 + (2t� 1)b+ 2t� 2. (2.1)

10

size(p) = 1024

#CMM # Single-Prec. Mult. Cost(w = 32) Cost(w = 64)

1 2b2 + b 1.000 1.000

2 3b2 + 3b 1.524 1.549

3 4b2 + 5b 2.048 2.098

4 5b2 + 7b 2.572 2.648

5 6b2 + 9b 3.096 3.197

size(p) = 2048

#CMM # Single-Prec. Mult. Cost(w = 32) Cost(w = 64)

1 2b2 + b 1.000 1.000

2 3b2 + 3b 1.512 1.524

3 4b2 + 5b 2.024 2.048

4 5b2 + 7b 2.536 2.572

5 6b2 + 9b 3.047 3.096

size(p) = 4096

#CMM # Single-Prec. Mult. Cost(w = 32) Cost(w = 64)

1 2b2 + b 1.000 1.000

2 3b2 + 3b 1.506 1.512

3 4b2 + 5b 2.012 2.024

4 5b2 + 7b 2.518 2.536

5 6b2 + 9b 3.024 3.047

Table 2.1: Cost of extended CMM Montgomery multiplication

11

Table 2.1 shows the performance of the extended CMM Montgomery method

with respect to the number of single-precision multiplications when size(m)

varies from 1024 to 4096, and w is 32 and 64. The constant terms in the second

column are omitted. Let SP (t) be the required number of single-precision mul-

tiplications to evaluate t CMMs of the form {A1C,A2C, ... , AtC}. The cost of

t CMMs is defined as

ct =
SP (t)

SP (1)
=

b2 + 2b+ 2

2b2 + b
(t� 1) + 1. (2.2)

Note that ct is approximately t+1
2 . Henceforth, the cost of multiplications means

the number of single-precision multiplications that is divided by SP (1) as in

the definition of ct. We also assume that w is fixed to 64 in the rest of thesis.

2.2 Batch Exponentiation Algorithms

As the internet of things becomes ubiquitous, exponentiations are performed in

devices with weak computing power that needs to sign a number of messages si-

multaneously. The required key size also has grown to ensure the cryptographic

security levels. Thus, the efficiency of such exponentiation is increasingly im-

portant. In a batch modular exponentiation, given g, p, and n l-bit exponents

X = {x1, x2, ..., xn}, we want to compute R = {Ri = gxi mod p | 1  i  n}

simultaneously. As a solution to the batch exponentiation problem, M’Raïhi

and Nacacche [39] proposed the generalized intersection method, and Chung

et al. [10] improved M’Raïhi and Nacacche’s algorithm by introducing a decre-

mental combination strategy that removes the overlapping multiplications.

Throughout the thesis, the i-th element in an array A is denoted by Ai.

Likewise, the i-th bit of an integer a =
P

i=0 a[i]2
i is denoted by a[i]. For binary

operations, let ^, _ and � denote the bitwise AND, OR and XOR, respectively.

Let d = d[n]d[n�1]...d[1] be an n-bit integer and A = {a1, a2, ..., an} be an array

of n integers. Given a bit b,
V

i:d[i]=b ai denotes the result of bitwise AND of all

ai’s such that d[i] = b.
W

i:d[i]=b ai is defined in the same way. Also the exponents

12

SquareAndMultiplyLSB(g, x)

1 y 1

2 s g

3 for i 0 to l � 1

4 if x[i] = 1

5 y y ⇥ s

6 s s⇥ s

7 return y

Figure 2.4: Algorithm for LSB Square-and-Multiply

are assumed to be randomly chosen non-negative integers which means that

each bit in an exponent is 1 with probability 1
2 .

2.2.1 Square and Multiply

The square-and-multiply method, which is also known as binary method, is

a simple exponentiation algorithm that uses the binary representation of the

exponent. Let l be the length of the exponent x in binary. Then the exponent

x =
Pl�1

i=0 xi2
i and gx = gx020gx121 ...gxl�12l�1 where xi 2 {0, 1}. The square-

and-multiply method repeatedly raises g to g2
l�1 by squaring while scanning

the bits of x from the least significant bit (LSB), and multiplies all gxi2i with

xi = 1 since gxi2i = 1 when xi = 0. The LSB square-and-multiply algorithm is

described in Algorithm SquareAndMultiplyLSB of Figure 2.4.

Let w(x) be the number of 1’s in the binary representation of x. The LSB

square-and-multiply algorithm requires l squarings and w(x) multiplications.

Assuming that the exponent x is randomly chosen and squaring is treated as

multiplication, the expected number of multiplication for the LSB square-and-

multiply is l + 1
2 l = 1.5l.

13

SquareAndMultiplyMSB(g, x)

1 y 1

2 for i l � 1 downto 0

3 y y ⇥ y

4 if x[i] = 1

5 y y ⇥ g

6 return y

Figure 2.5: Algorithm for MSB Square-and-Multiply

Alternatively, the bits of the exponent x can be scanned from the most

significant bit (MSB) as described in Algorithm SquareAndMultiplyMSB of

Figure 2.5. The MSB square-and-multiply method has the same computational

complexity with the LSB method.

2.2.2 Parallel Square and Multiply

The parallel square-and-multiply algorithm (PSM) is a simple extension of the

square-and-multiply algorithm that perform batch exponentiation. Let us con-

sider a set of n l-bit exponents X = {x1, x2, ..., xn}, and let xi[j] be the bit at

position j in the exponent xi. To compute the result R = {Ri | Ri = gxi mod p},

the repeated squaring process that raises g to g2
l�1 is performed only once. The

intermediate value g2
j is shared and multiplied when xi[j] = 1 as described in

Algorithm PSM of Figure 2.6. The number of squaring is l� 1 since the squar-

ing at the last iteration can be omitted. Assuming that all input exponents

are randomly chosen, the number of multiplications for each exponentiation

Ri is w(xi) � 1 where w(x) is the number of 1’s in x, since a multiplication

with 1 as its multiplicand can be ignored. Thus, the overall computation cost

is l + n
�
l
2 � 1

�
if squaring is treated as multiplication.

14

PSM(g, p,X)

1 Ri 1, 1  i  n

2 for i l � 1 downto 0

3 for j 1 to n

4 if xj = 1

5 Rj Rj ⇥ g

6 g g ⇥ g mod p

7 return R

Figure 2.6: Algorithm for Parallel Square-and-Multiply

2.2.3 Generalized Intersection Method

Let us consider two given exponents x1 and x2 of length l that are randomly

chosen. The expected number of 1’s is l
2 for both x1 and x2, and l

4 for the

intersection xc = x1 ^ x2 where ^ is the bitwise AND operation. Then we can

observe that following inequality is satisfied where w(x) is the number of 1’s in

x.

w(x1 � xc) + w(x2 � xc) + w(xc)  w(x1) + w(x2).

To compute the results of exponentiations gx1 and gx2 , we compute gx1�xc ,

gx2�xc and gxc first. Then gx1 and gx2 is derived from gxi = gxi�xcgxc for 1 

i  2. The overall number of multiplication is 2
�
l
2 � 1

�
= l � 2 for computing

gx1 and gx2 separately, but it is 3
�
1
4 l � 1

�
+2 = 3

4 l�1 with intersection method

where squaring is considered as multiplication.

M’raïhi and Naccache proposed the generalized intersection method for

batch exponentiation that applies the exponent intersecting approach to handle

more than 2 input exponents. In the generalized intersection method, the n in-

put exponents X = {x1, x2, ..., xn} are partitioned to 2n�1 bitwise mutually ex-

clusive cells by intersecting the input exponents. Exponentiations for all disjoint

15

x1 x2

xc
x1 ^ x2

x1 � xc x2 � xc

Figure 2.7: Intersection method for two exponents

cells are evaluated by Algorithm PSM and the final result R = {gx1 , gx2 , ..., gxn}

is derived by combining the evaluated values.

Partitioning In the generalized intersection method, the set of n input expo-

nents X = {x1, x2, ..., xn} is partitioned to 2n� 1 disjoint cells by the following

formula:

Cd =
^

i:d[i]=1

xi �

0

@
^

i:d[i]=1

xi ^
_

i:d[i]=0

xi

1

A

where 1  d < 2n and d = d[n]d[n� 1]...d[1] for d[i] 2 {0, 1}. Note that all Cd’s

are bitwise mutual exclusive.

Example 1 Let us consider a set X of three exponents x1 = 10100111, x2 =

10101111 and x3 = 11100011 with n = 3 and l = 8. The seven disjoint cells Cd

for 1  d < 8 are shown in Table 2.2. C100 is composed of bits that are set in

x3, but not in x1 and x2. Likewise, bits in C011 are set in both x1 and x2, but

not in x3. As Table 2.2 shows, there is at most one cell for each bit column that

is set to 1. For instance, the bit at position 5 is set to 1 only in C111.

Evaluation Each gCd mod p for 1  d < 2n is computed by Algorithm PSM.

16

Index 7 6 5 4 3 2 1 0

x1 1 0 1 0 0 1 1 1

x2 1 0 1 0 1 1 1 1

x3 1 1 1 0 0 0 1 1

C001 0 0 0 0 0 0 0 0

C010 0 0 0 0 1 0 0 0

C011 0 0 0 0 0 1 0 0

C100 0 1 0 0 0 0 0 0

C101 0 0 0 0 0 0 0 0

C110 0 0 0 0 0 0 0 0

C111 1 0 1 0 0 0 1 1

Table 2.2: Example of exponent partitioning.

x1

x2 x3

C111

C001

C010 C100C110

C011 C101

Figure 2.8: Partitioned cells for three exponents

17

Combination Each result value Ri = gxi mod p for 1  i  n is derived from

the output values gCd ’s from the evaluation stage by following formula :

Ri = gxi =
Y

d:d[i]=1

gCd mod p.

The index d = d[n� 1]d[n� 2]...d[1] of disjoint cells is represented in binary.

Let us consider the case where the number of input exponents is three for

example as depicted in Figure 2.8. The following is the computation in the

combination stage.

gx1 = gC001gC011gC101gC111

gx2 = gC010gC011gC110gC111

gx3 = gC100gC101gC110gC111

Performance For each disjoint cell, the probability that the cell has 1 at a

bit position is 1
2n . Thus, the number of 1’s in all cells is expected to be l

2n .

Assuming that the number of 1’s in each cell is at least one, the evaluation

stage requires (2n � 1)
�

l
2n � 1

�
multiplications and l � 1 squarings. The com-

bination stage requires n
�
2n�1 � 1

�
multiplications. Thus, the overall number

of multiplications is

l

✓
2� 1

2n

◆
� 2n + n

�
2n�1 � 1

�
, (2.3)

assuming that squaring is treated as multiplication. Since the algorithm main-

tains 2n � 1 disjoint cells and 2n � 1 output values from the evaluation stage,

the required amount of memory is

(2n � 1) (l + size(p)) (2.4)

in bits where size(p) is the bit length of an evaluated value gCd mod p. The

space requirement in bits can be normalized to

(2n � 1) (l + size(p))
size(p)

(2.5)

by dividing Equation 2.4 by size(p).

18

Part(x)

1 Pi 0 for 0  i < l

2 for d 1 to 2n � 1

3 c
V

i:d[i]=1 xi �
⇣V

i:d[i]=1 xi ^
W

i:d[i]=0 xi
⌘

4 for i 0 to l � 1

5 if c[i] = 1

6 Pi d

7 return P

Figure 2.9: Algorithm for exponent partitioning

2.2.4 Chung et al.’s Algorithm

Chung et al. [10] improved M’raïhi and Naccache’s algorithm by reducing the

required number of bits to store the partitioned exponents and removing over-

lapping multiplications in the combination stage.

Position Array In the exponent partitioning stage, the values of disjoint cells

can be represented as a position array P of l elements because of the bitwise

mutual exclusiveness of the disjoint cells. An i-th element of P is defined to be

the index of the partitioned cell that has 1 for its bit at position i. Thus, Pi = d

if the i-th bit of Cd is 1, and Pi = 0 otherwise. This representation of disjoint

cells reduces the memory requirement compared to M’raïhi and Naccache’s

algorithm. The algorithm for the partitioning stage to compute the position

array P is described in Algorithm Part. In the evaluation stage, the index d

of gCd that g2
j is multiplied to at the j-th iteration can be found in d = Pj .

The algorithm for the evaluation stage with a position array is described in

Algorithm Eval.

Example 2 Let us consider the input exponents in Example 1. The disjoint

19

Eval(P, g, p)

1 Gi 1 for 0 < i < 2n

2 for i 0 to l � 1

3 if Pi 6= 1

4 GPi GPi ⇥ g mod p

5 g g ⇥ g mod p

6 else

7 g g ⇥ g mod p

8 return G

Figure 2.10: Algorithm for evaluation

Index 7 6 5 4 3 2 1 0

x1 1 0 1 0 0 1 1 1

x2 1 0 1 0 1 1 1 1

x3 1 1 1 0 0 0 1 1

C001 0 0 0 0 0 0 0 0

C010 0 0 0 0 1 0 0 0

C011 0 0 0 0 0 1 0 0

C100 0 1 0 0 0 0 0 0

C101 0 0 0 0 0 0 0 0

C110 0 0 0 0 0 0 0 0

C111 1 0 1 0 0 0 1 1

P 7 4 7 0 2 3 7 7

Table 2.3: Example of position array

20

Comb(G, p)

1 for i n downto 1

2 Ri G2i�1

3 for j 1 to 2i�1 � 1

4 Ri Ri ⇥G2i�1+j mod p

5 Gj Gj ⇥G2i�1+j mod p

6 return R

Figure 2.11: Algorithm for decremental combination

cells and the position array are shown in Table 2.3. For instance, since the bit

at position 5 is set to 1 only in C111, the value of P5 is 7.

Decremental Combination In the combination stage of M’raïhi and Nac-

cache’s algorithm, there are overlapping multiplications amongst the computa-

tions of Ri = gxi =
Q

d:d[i]=1 g
Cd mod p. To avoid redundant multiplications,

Chung et al. devised a decremental combination method where the final results

are calculated from Rn down to R1 (or any arbitrary order) as in Algorithm

Comb of Figure 2.11. At the iteration for computing Ri, each cell C2i�1+j is

merged with the adjacent cell Cj by multiplying gC2i�1+j to gCj . After Ri is

computed, the set of merged values Gd for 1  d < 2i�1 is equivalent to the out-

put of the evaluation stage for the exponent set {x1, ..., xi�1}. The process of the

decremental combination stage for the case that the number of input exponents

is three is described in Table 2.4. For example, for computing gx3 , R3 is initial-

ized to gC100 . Then, gC111 is multiplied to gC011 and R3. The same procedure is

applied for gC101 and gC110 . After gx3 is computed, Gi for 1  i  3 is equivalent

to the output of the evaluation stage for the input exponents {x1, x2}.

21

Index
Exponents of Evaluated Values

Before R3 Before R2 Before R1

001 C001 C001 + C101 C001 + C011 + C011 + C111

010 C010 C010 + C110 C010 + C110

011 C011 C011 + C111 C011 + C111

100 C100 C100 C100

101 C101 C101 C101

110 C110 C110 C110

111 C111 C111 C111

Table 2.4: Example of decremental combination when n = 3

Performance The expected number of multiplications of the evaluation stage

is the same with M’raïhi and Naccache’s. The required number of multiplica-

tions for computing Ri in the combination stage is 2i�1 � 1. Thus, the com-

bination stage requires 2
Pn

i=1

�
2i�1 � 1

�
multiplications, and the total cost of

Chung et al.’s algorithm is given by
✓
2� 1

2n

◆
l + 2n � 2n� 2. (2.6)

The amount of required memory in bits to store P and the evaluated values

are nl and (2n � 1)size(p), respectively, where size(p) is the bit length of an

evaluated value Gd. Thus, the space requirement in bits is

nl + (2n � 1)size(p). (2.7)

The space requirement in bits can be normalized to

nl + (2n � 1)size(p)
size(p)

(2.8)

by dividing the equation (2.7) by size(p).

22

Chapter 3

k-way Batch Exponentiation

We propose an enhanced batch exponentiation algorithm that improves effi-

ciency of the evaluation stage of the generalized intersection method. As de-

scribed in [39] and [10], the set of n input exponents can be decomposed into

several groups to achieve various time-memory tradeoffs. However, we point out

that there is a room for improvement in the evaluation stage by observing that

all exponent groups share the same multiplicand at each iteration. To handle

more than two multiplications that share the same multiplicand at once, we

utilize an extended common-multiplicand multiplication method.

3.1 Exponent Grouping and Partitioning

In our batch modular exponentiation algorithm, the set of input exponents

X = {x1, x2, ... , xn} is divided into k = d nme groups X1, X2, ..., Xk, given

the exponent group size m. Then, each exponent group Xi contains mi = dnk e

exponents if 1  i  n mod k, and mi = bnk c exponents, otherwise (i.e., mi is

the number of exponents in Xi). (The grouping above is slightly better than

the grouping where mi = m for 1  i < k and mi = n mod m for i = k.) After

23

the exponents are divided into k groups, the exponents in the exponent group

Xi are partitioned to Ci,d for 1  d < 2mi and represented as a position array

Pi as in Section 2.2.3.

Example 3 Let us consider three more exponents x4 = 10010010, x5 = 10110101

and x6 = 10110000 with those in Example 1. By setting the number of groups

k to 2, we have two exponent groups X1 = {x1, x2, x3} and X2 = {x4, x5, x6}.

Then the position arrays of X1 and X2 are P1 = {7, 7, 3, 2, 0, 7, 4, 7} and P2 =

{2, 1, 2, 0, 7, 6, 0, 7}, respectively.

3.2 k-way Evaluation

For each position array Pi from the exponent grouping and partitioning stage,

intermediate values gCi,d mod p are calculated in this stage where 0 < d < 2mi .

These values will be combined in the combination stage. The intermediate values

can be calculated by simply invoking Algorithm Eval k times. However, the

same repeated squaring process is performed in the k instances of Algorithm

Eval as described in [39] and [10]. Furthermore, we observe the following:

1. At each iteration of repeated squaring, each exponent group requires at

most 1 multiplication due to the mutual exclusiveness of the disjoint cells

of partitioned exponents.

2. All multiplications for exponent groups at each iteration share a common

multiplicand, and the squaring for the next iteration also has the same

common multiplicand.

The cost of multiplications in the evaluation stage can be reduced by exploiting

these properties.

First, we initialize all Gi,d to 1 for 1  i  k and 1  d < 2mi . The

value of Gi,d will be gCi,d mod p at the end of the evaluation stage. After the

initialization, a repeated squaring process is started with the initial value g

24

j P1 P2 g2
j

g2
j

multiplied to

0 7 2 g2
0

G1,7, G2,2, g2
0

1 7 1 g2
1

G1,7, G2,1, g2
1

2 3 2 g2
2

G1,3, G2,2, g2
2

3 2 0 g2
3

G1,2, g2
3

4 0 7 g2
4

G2,7, g2
4

5 7 6 g2
5

G1,7, G2,6, g2
5

6 4 0 g2
6

G1,4, g2
6

7 7 7 g2
7

G1,7, G2,7

Table 3.1: Example of k-way evaluation.

which is squared at each iteration. At the j-th iteration, g2j mod p has to be

multiplied to Gi,Pi,j for each exponent group Xi where Pi,j 6= 0, because Pi,j is

the index to the disjoint cell of partitioned exponents of Xi that has 1 for its

bit at position j. The number of such cells for each Xi is at most 1 due to the

mutual exclusiveness of disjoint cells. Also, g2j mod p needs to be multiplied by

itself for the next iteration. All required multiplications are

Gi1,Pi1,j
= Gi1,Pi1,j

⇥ g2
j
mod p

Gi2,Pi2,j
= Gi2,Pi2,j

⇥ g2
j
mod p

· · ·

Git,Pit,j
= Git,Pit,j

⇥ g2
j
mod p

g2
j+1

= g2
j ⇥ g2

j
mod p

where is for 1  s  t are the indexes of exponent groups that have non-

zero Pis,j values. We can observe that all multiplications at each iteration can

be efficiently evaluated by extended CMM Montgomery multiplication due to

the common multiplicand g2
j
mod p. Therefore, the cost of the multiplications

is ct+1 rather than t + 1 which significantly enhances the performance of the

evaluation stage. Note that t is at most k at each iteration.

25

At the iteration of j = 5 in Example 3, both P1,5 = 7 and P2,5 = 6 are non-

zero and thus G1,P1,5 and G2,P2,5 need to be multiplied by g2
5

mod p. This is

because C1,7 and C2,6 have 1 for their bits at position 5. The number of multipli-

cations for all iterations is 20. By adopting the extended common-multiplicand

Montgomery multiplication method, the cost of multiplications is reduced to

4c3 + 3c2 = 12.764, where c2 = 1.524 and c3 = 2.048. All multiplications that

are computed during the whole evaluation stage are presented in Table 3.1.

3.3 Combination

The evaluated values are combined by decremental combination strategy to

produce the final results Ri = gxi mod p. Since the two multiplications in lines

4-5 of Algorithm Comb also share the same multiplicand, we can use CMM

to reduce the multiplication cost. This modified algorithm is applied to the

evaluated values of each exponent group. The whole procedure of k-way batch

exponentiation algorithm is described in Figure 3.1.

3.4 Performance Analysis

3.4.1 Cost of Multiplications

The most part of the running time of the batch exponentiation algorithm is

spent for computing multiplications including squares. We analyze the running

time performance by counting the costs of multiplications in the evaluation

and combination stages. In this section, we assume that n is divisible by m for

simplicity. (When n is not divisible by m, the analysis is more complicated, but

the result is almost identical.)

Lemma 3.4.1 Given k exponent groups Xi for 1  i  k with m exponents

each, let pt be the probability that there are t non-zero Pi,j values at each j-th

iteration in the evaluation stage. Then pt =
�k
t

� �
1
2m
�k�t �

1� 1
2m
�t.

26

BatchExponentiation(X,n, g, p,m)

1 k d nme, j 1

2 for i 1 to k

3 if i  n mod k

4 mi dnk e

5 else

6 mi bnk c

7 Pi Part({xj , ... , xj+mi�1})

8 j j +mi

9 Gi,j 1 for 1  i  k and 1  j < 2mi

10 for j 1 to l � 1

11 M {g}

12 for i 1 to k

13 if Pi,j 6= 0

14 M .append(Gi,Pi,j)

15 Cmm(M, g)

16 u 0

17 for i 1 to k

18 for j mi downto 1

19 Ru+j Gi,2j�1

20 for s 1 to 2j�1 � 1

21 Cmm({Ru+j , Gi,s}, Gi,s+2j�1)

22 u u+mi

23 return R

Figure 3.1: Algorithm for batch exponentiation

27

Proof: Let Xi for 1  i  k be a random variable such that Xi = 0 if Pi,j = 0,

and Xi = 1 otherwise at the j-th iteration. Let X = X1 +X2 + ...+Xk be the

random variable that represents the number of non-zero Pi,j . Because Pi,j = 0

happens when bit values at bit position j for all exponents in Xi are zero,

the probability that Pi,j = 0 is 1
2m . Thus, Xi is a Bernoulli random variable

with p = 1� 1
m . Since Xi’s are independent and identically distributed random

variables, X is a binomial random variable with parameters k and p = 1� 1
2m .

Therefore, the probability that there are t non-zero Pi,j values at the j-th

iteration is
�k
t

�
pt(1� p)k�t. ⇤

Theorem 1 With extended common-multiplicand Montgomery multiplication,

the expected cost of multiplications of the k-way batch exponentiation is

l

✓
k
b2 + 2b+ 2

2b2 + b

✓
1� 1

2m

◆
+ 1

◆
+ k

✓
b2 + 2b+ 2

2b2 + b
+ 1

◆
(2m �m� 1) (3.1)

where b = size(p)
w .

Proof: Let us consider the random variable X in Lemma 3.4.1 which repre-

sents the number of non-zero Pi,j at the j-th iteration in the evaluation stage.

By the definition of ct in Section 2.1.3, the expected cost of multiplications

at each iteration is E[cX+1] = E
h
b2+2b+2
2b2+b X + 1

i
. The first term is derived

from lE
h
b2+2b+2
2b2+b X + 1

i
= l

⇣
b2+2b+2
2b2+b E[X] + 1

⌘
= l

⇣
b2+2b+2
2b2+b kp+ 1

⌘
because

there are l iterations and X follows the binomial distribution B(k, p) where

p = 1 � 1
2m . The overall cost of multiplications in the combination stage is

c2k
Pm

i=1

�
2i�1 � 1

�
because Algorithm Comb is applied to each exponent group

and the cost for two CMMs is reduced to c2. Note that the ct+1 and c2 become

t+1 and 2, respectively, for Chung et al.’s algorithm where t is the value of the

random variable X. ⇤

3.4.2 Storage Requirement

The required amount of memory for k position arrays is nl bits. Since there are

k(2m � 1) intermediate values from the evaluation stage, the total amount of

28

memory that is required for the whole procedure is nl+(k(2m�1))size(p) bits.

3.5 Optimal Group Size

The expected cost of multiplications per exponentiation with extended common-

multiplicand Montgomery multiplication is obtained by dividing the result of

Theorem 1 by n:

l

✓
b0

m

✓
1� 1

2m

◆◆
+

l

n
+

1

m

�
b0 + 1

�
(2m �m� 1) .

where b0 = b2+2b+2
2b2+b . Since the second term l

n does not change when n, l and

b are given, the optimal integer value of m is obtained by finding the integer

solution that minimizes the following:

F (l, b,m) = l

✓
b0

m

✓
1� 1

2m

◆◆
+

1

m

�
b0 + 1

�
(2m �m� 1) . (3.2)

The optimal values of m for various l and size(p) are shown in Table 3.2.

The optimal group size of the k-way algorithm is smaller than that of Chung

et al.’s. For example, given size(p) = 1024 and l = 160, the optimal value of m

is 4 for the k-way algorithm but it is 5 for Chung et al.’s algorithm.

3.6 Parameters

We show how to choose optimal values for the size of an exponent group m

and the number of exponent groups k when the number of exponents n, the

bit-length of exponent l and size(p) are given. The computing environment can

be restricted in terms of memory, or a sufficient amount of memory can be

allowed. We consider both cases for the choice of parameters.

Given input parameters l and size(p), we first choose the optimal value of

m from Table 3.2. With a sufficient amount of memory, the k-way algorithm

is applied to n input exponents with the chosen m. If the algorithm runs on a

computing device where the allowed amount of memory is restricted by M , the

29

m

Length of exponent l

Ours
Chung et al.

M’Raïhi

Naccachesize(p) = 1024 size(p) = 2048 size(p) = 4096

4 160 ⇠ 175 160 ⇠ 178 160 ⇠ 179 160 ⇠ 196

5 176 ⇠ 421 179 ⇠ 427 180 ⇠ 431 160 ⇠ 289 197 ⇠ 538

6 422 ⇠ 995 428 ⇠ 1011 432 ⇠ 1019 290 ⇠ 684 539 ⇠ 1433

7 996 ⇠ 1024 1012⇠ 2048 1020 ⇠ 2372 685 ⇠ 1594 1434 ⇠ 3714

8 2373 ⇠ 4096 1595 ⇠ 3657 3715 ⇠ 4096

9 3658 ⇠ 4096

Table 3.2: Optimal exponent group size m when w = 32.

m

Length of exponent l

Ours
Chung et al.

M’Raïhi

Naccachesize(p) = 1024 size(p) = 2048 size(p) = 4096

4 160 ⇠ 170 160 ⇠ 175 160 ⇠ 178 160 ⇠ 196

5 171 ⇠ 408 176 ⇠ 421 179 ⇠ 427 160 ⇠ 289 197 ⇠ 538

6 409 ⇠ 965 422 ⇠ 995 428 ⇠ 1011 290 ⇠ 684 539 ⇠ 1433

7 966 ⇠ 1024 996⇠ 2048 1012 ⇠ 2354 685 ⇠ 1594 1434 ⇠ 3714

8 2355 ⇠ 4096 1595 ⇠ 3657 3715 ⇠ 4096

9 3658 ⇠ 4096

Table 3.3: Optimal exponent group size m when w = 64.

30

optimal batch size nb = kbm is calculated by picking the largest integer value

kb that satisfies the inequality M � kb(ml+ (2m � 1)size(p)) which is obtained

by storage analysis in Section 3.4. Then the k-way algorithm with the chosen

m is applied for every nb exponents of the given n input exponents.

31

Chapter 4

Experimental Results and

Comparison

In this chapter, we compare the time-memory tradeoff of the k-way algorithm

with two previous batch exponentiation algorithms, i.e. M’Raïhi-Naccache and

Chung et al.’s algorithm, which decompose exponents into groups but do not

apply a CMM method in the evaluation and combination stages. We also com-

pare the performance in terms of cost of multiplications with Chung et al.’s.

For comparisons, the cost of multiplications is counted in the evaluation

and combination stages for randomly generated exponents. At each iteration

of the evaluation stage, the number of non-zero Pi,j values t is counted, which

results in the cost of multiplications ct+1. In the combination stage, the cost

of multiplications of each exponent group Xi is counted as c2(2mi � mi � 1),

where mi is the number of exponents in Xi. Each experiment is carried out

50 times, given particular values for parameters n, l and size(p). The costs of

multiplications obtained from Theorem 1 and experiments are almost identical.

32

150

200

250

300

350

400

450

500

550

600

650

0 500 1000 1500 2000

C
os

t
of

m
ul

ti
pl

ic
at

io
ns

/
n
b

Memory / size(p)

k-way
Chung et al.

M’Raïhi-Naccache

kb=1

kb=2
kb=3

Figure 4.1: Tradeoff comparison when l = 2048 and size(p) = 2048

4.1 Time-Memory Tradeoff

The time-memory tradeoffs of the k-way algorithm, Chung et al.’s and M’Raïhi-

Nacacche’s are compared in Figure 4.1 for size(p) = 2048 and l = 2048. The

optimal values of m for the k-way, Chung et al.’s and M’Raïhi-Nacacche’s are

7, 8 and 7, respectively, from Table 3.2. The x-axis represents the required

amount of memory divided by size(p), and the y-axis represents the cost of

multiplications for nb exponents divided by nb. A point on each line corresponds

to a particular value for kb. The figure shows that the k-way algorithm achieves

a better tradeoff compared to other algorithms.

4.2 Cost of Multiplications

Figure 4.2 shows the cost of multiplications of the k-way algorithm and Chung

et al.’s as n grows when the bit length of exponents l and the size of modulus

size(p) vary from 1024 to 4096, and a sufficient amount of memory is allowed,

33

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60

C
os

t
of

m
ul

ti
pl

ic
at

io
ns

/
n

n

k-way 1024
k-way 2048
k-way 4096

Chung et al. 1024
Chung et al. 2048
Chung et al. 4096

Figure 4.2: Performance comparison

i.e. all exponentiations are computed at once. As in Section 4.1, l and size(p) are

set to be identical for each line, and the optimal value of the exponent group size

m for each line is chosen from Table 3.2. Increasing steps in lines occur when

n is increased by 1 from a multiple of m. The k-way algorithm outperforms

Chung et al.’s since the extended CMM Montgomery multiplication reduces

the cost of multiplications in the evaluation stage from t+1 to ct+1 as analyzed

in Theorem 1.

Table 4.1 shows costs of multiplications of the k-way algorithm and Chung

et al.’s for various values for (size(p), l) including parameters (1024, 160), (2048,

224), (2048, 256) and (3072, 256) from Digital Signature Standard (DSS) [28].

The number of input exponents n is assumed to be a multiple of the exponent

group size m and the word size w is set to 64. The costs of multiplications in

the fifth and seventh columns are calculated from the result of Theorem 1. The

table shows that we obtained the experimental result for randomly generated

exponents as expected in the analysis in Section 3.4.

34

size(p) b0 l
Chung et al. k-way

m Cost of Mults m Cost of Mults

1024 0.549
160 5 41.4 + 160

n 4 24.9 + 160
n

1024 7 179.4 + 1024
n 7 106.3 + 1024

n

2048 0.524

224 5 53.8 + 224
n 4 30.7 + 224

n

256 5 60.0 + 256
n 4 33.9 + 256

n

2048 8 316.8 + 2048
n 7 178.2 + 2048

n

3072 0.516
256 5 60.0 + 256

n 4 33.5 + 256
n

3072 8 444.3 + 3072
n 8 244.1 + 3072

n

4096 0.512 4096 9 565.8 + 4096
n 8 307.7 + 4096

n

Table 4.1: Costs of multiplications for various parameters

4.3 Running Time

In order to demonstrate that the k-way algorithm is practically improved upon

Chung et al.’s, the actual running time is also measured by implementing the

whole procedure of both algorithms. The actual running time is measured on

a machine with an Intel i5 2.7GHz CPU and 8GB memory. All algorithms

including Montgomery multiplication are implemented in C++ using g++ and

GNU MP library with -O2 option. Since the experiment is conducted on a 64-bit

computing environment, parameters are chosen by setting w = 64.

Figure 4.3 shows the measured running time of the k-way algorithm and

Chung et al.’s in seconds when l = size(p) vary from 1024 to 4096. We assumed

that a sufficient amount of memory is allowed, and the optimal values for the

exponent group size m is chosen from Table 3.2 as in Section 4.2. The k-way

algorithm also performs better than Chung et al.’s with respect to the actual

running time in the real world.

Table 4.2 shows performance improvement that is achieved by the k-way

algorithm. The values in the third column indicates how much cost of mul-

35

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

10 20 30 40 50 60

se
co

nd
s

/
n

n

k-way 1024
k-way 2048
k-way 4096

Chung et al. 1024
Chung et al. 2048
Chung et al. 4096

Figure 4.3: Running time comparison

l, size(p) n Cost of Mults Running Time

1024 10 ⇠ 60 31.1 ⇠ 41.5% 23.9 ⇠ 42.4%

2048 10 ⇠ 60 22.8 ⇠ 39.8% 24.6 ⇠ 42.7%

4096 10 ⇠ 60 23.9 ⇠ 41.1% 27.1 ⇠ 44.1%

Table 4.2: Improvement upon Chung et al.’s

tiplications is reduced by k-way algorithm compared to Chung et al.’s. For

example, the k-way algorithm reduces the cost of multiplications of Chung et

al.’s by 22.8% ⇠ 39.8% when n is 10 ⇠ 60, and l = size(p) is 2048. Likewise,

the fourth column shows the percentage of the reduced running time by the

k-way algorithm. For instance, the k-way algorithm reduces the running time

of Chung et al.’s by 24.6% ⇠ 42.7% when n is 10 ⇠ 60, and l = size(p) is 2048.

The result of the experiment shows that we obtained the improvement ratio

with respect to running time as expected from the result in terms of the cost

of multiplications.

36

Chapter 5

Further Improvement

In this chapter, we introduce methods for further improvement: exponent order-

ing and precomputation. While the exponents are grouped in a straightforward

way in Section 3.1, the exponent ordering algorithm takes a heuristic approach

to rearrange the input exponents so that the cost of multiplications in the eval-

uation stage can be reduced. On top of that, we show how to utilize the fixed

base property to speed up the exponentiation in the computing environment

with a sufficient amount of offline storage.

5.1 Exponent Ordering

The exponent grouping and partitioning stage of the k-way algorithm groups

the input exponents in a straightforward way : Xi contains xs, xs+1, ..., xs+mi�1

where s =
Pi�1

j=1mj and mj is the number of input exponents of group Xj as

defined in Section 3.1. However, there can be an optimal order of the input

exponents that results in the minimum cost of multiplications in the evaluation

stage.

There are bit patterns of a set of exponents that benefits from the exponent

37

Not Rearranged Rearranged

Input Group 1 Group 1

00101110 10111000

00101110 10111000 11101000

10111000 00111010 10101000

00111010 11101000 11011000

11101000 !

00110110 Group 2 Group 2

10101000 00110110 00101110

00101010 10101000 00111010

11011000 00101010 00110110

11011000 00101010

o1 = 11111110 o1 = 11111000

o2 = 11111110 o2 = 00111110

Table 5.1: An example of exponent ordering

intersection method with this observation. To produce exponents of such a bit

pattern, we can choose a set of s indexes of non-zero bit columns for each

exponent group. Then for each group, we assign random bits to the non-zero

bit columns for exponents ensuring that a non-zero bit column has at least one

exponent that has 1 for that bit column. Although such a biased bit pattern is

not usual for a set of given input exponents, the k-way algorithms can benefit

from rearranging for the random exponents.

Let oi =
W

x2Xi
x. The optimal order of input exponents also minimizes

Pk
i=1w(oi) where w(oi) is the number of 1’s in oi, since the cost of multiplica-

38

tions in the evaluation stage can be stated as follows:

costeval =
l�1X

j=0

cPk
i=1 oi[j]+1

=
l�1X

j=0

b0

kX

i=1

oi[j]

!
+ 1

!

= l + b0
l�1X

j=0

kX

i=1

oi[j]

= l + b0
kX

i=1

w(oi).

Table 5.1 shows an example of exponent ordering. If the input exponents are not

rearranged, the cost of multiplications in the evaluation stage is 10.5 assuming

that ct =
t+1
2 . However, the cost is reduced to 8.5 when the input exponents

are rearranged and grouped as in the table.

Finding an optimal order of exponents is not straightforward. There is a

similar problem that partitions a given set of integers into k groups in a way

that the sum of the integers in each partition are as near as possible. This multi-

way partitioning problem is NP-complete. In the k-way algorithm, the size for

each partition is given, and the objective of the optimization is to minimize
P

w(oi). Although the optimal order might not be found in a polynomial time,

we can take a greedy approach for a heuristic algorithm. For group i, we pick an

integer x amongst the set of input exponents X that satisfies minx2X w(o _ x)

where o has the initial value 0 for each group i. Then we remove the selected

exponent x from X, and set o to o_x. This process is repeated until group i has

mi exponents. The whole procedure is described in Algorithm RearrangeExp

of Figure 5.1.

Table 5.2 shows the improvement achieved by exponent ordering when

size(p) = 4096 and random exponents are given. The costs of multiplication

are measured for randomly generated exponents and rearranged exponents.

Improvement ratios are obtained by measuring the reduced costs of multipli-

39

RearrangeExp(X,n,m)

1 k d nme

2 X 0 {}

3 for i 1 to k

4 if i  n mod k

5 mi dnk e

6 else

7 mi bnk c

8 o 0

9 for j 1 to mi

10 e minx2X w(o _ x)

11 X 0.append(e)

12 X.remove(e)

13 o o _ e

14 return X 0

Figure 5.1: Algorithm for Ordering Exponents

cations by the exponent ordering. The proposed exponent ordering algorithm

improves the performance of the k-way algorithm as shown in the table. On the

other hand, the improvement ratio decreases as the exponent group size grows,

because larger exponent group size leads to less number of bit columns that

have 0 for all group exponents.

5.2 Precomputation

In applications where the common base g and the modulus p are fixed and

known in advance, we can consider an offline precomputation technique to speed

up exponentiation when a sufficient amount of offline storage is allowed. One

40

l m n Improvement Ratio

160 4 8 ⇠ 100 0.73 ⇠ 4.45 %

256 5 10 ⇠ 100 0.39 ⇠ 2.82 %

512 6 12 ⇠ 102 0.28 ⇠ 1.53 %

1024 7 12 ⇠ 105 0.13 ⇠ 0.85 %

2048 7 14 ⇠ 105 0.12 ⇠ 0.64 %

4096 8 16 ⇠ 104 0.08 ⇠ 0.47 %

Table 5.2: Improvement by exponent ordering when size(p) = 4096 for random

exponents

simple method is to precompute the intermediate values g2
i in the repeated

squaring process [23]. Brickell et al. (BGMW) proposed a fixed-base window-

ing technique where some powers gxi are precomputed and exponentiation is

performed for the decomposed input exponent x =
P

aixi. Algorithms by Lim-

Lee [32] and De Rooji [12] take advantage of vector addition chains to compute

exponentiation in the form of a product of multiple powers gx = gx0
0 gx1

1 ...g
xh�1

h�1

where x =
P

xi2i and gi = g2
il
h . Lim-Lee proposed a fixed-base comb method

that provides a simple and efficient vector addition chain by decomposing ex-

ponents into h ⇥ v subexponents of bit length l
hv . Then exponentiation is ef-

ficiently preformed with precomputed values
Qh�1

t=0 g2
at+bji[t] for 0  i < 2h

and 0  j < v where a = l
h and b = a

v . The efficiency of precomputation

method also can be improved by adopting various number systems for rep-

resenting exponents such as non-adjacned form [36, 45, 48], m-ary [20] and a

double-base number system [14,15,16]. In case a power gx is generated when an

exponent is not given, gx can be calculated from a subset of the precomputed

pairs (a1, ga1), (a2, ga2), ..., (an, gan) by adding all exponents and multiplying all

powers in the chosen subset [6].

There are some obstacles to adopt precomputation techniques above for

41

the generalized intersection method. Number systems that have negative digits

such as signed-digit representation and non-adjacent form reduce the number

of non-zero digits. However, they are not suitable for modular exponentiation

because of the expensive inversion operation. For other number systems, we

need to find how to apply the exponent intersection method to produce mu-

tual exclusive partitioned exponents. Methods for vector addition chains cannot

be utilized directly because the inputs g and {C0, C1, ..., C2m�1} and outputs

{gC1 , gC2 , ..., gC2m�1} of the evaluation stage have different forms compared to

those of exponentiation methods for vector addition chains. An online power

generating method such as [6] cannot be applied when input exponents are

given. Devising a sophisticated offline precomputation method for the general-

ized intersection method utilizing some of these methods is an interesting open

research topic.

In this thesis, we apply a simple precomputation method that precomputes

the intermediate values g2
j of the repeated squaring process. At iteration j in

the evaluation stage, g2j is obtained from the precomputed values and multi-

plied to corresponding cells for each exponent group that has a non-zero element

at position j in its position array. Since squaring is not required, the number of

common-multiplicand multiplications is reduced by 1 at each iteration. Thus,

the total cost of multiplications with precomputation is

lb0k

✓
1� 1

2m

◆
+ l(1� b0) + k(b0 + 1) (2m �m� 1) (5.1)

where b0 = b2+2b+2
2b2+b and b = size(p)

w , and the cost of multiplications per exponen-

tiation can be obtained by dividing Equation 5.1 by n as follows:

lb0

m

✓
1� 1

2m

◆
+

l

n
(1� b0) + k(b0 + 1) (2m �m� 1) . (5.2)

The optimal group size for given l, size(p) and w is same as in Section 3.5.

The additional required amount storage for the offline precomputation values

is (l � 1)size(p) bits.

42

100

200

300

400

500

600

0 10 20 30 40 50 60

C
os

t
of

m
ul

ti
pl

ic
at

io
ns

/
n

Number of input exponents n

k-way
prec. k-way

Chung et al.
prec. Chung et al.

Figure 5.2: Cost of multiplications by precomputation when l = size(p) = 2048

Figure 5.2 shows the cost of multiplications of the k-way algorithms and

Chung et al.’s with the precomputed intermediate values of the repeated squar-

ing process when l = size(p) = 2048. The k-way algorithm reduces the cost of

multiplications by about 12% ⇠ 40% compared to Chung et al.’s when both

algorithms use the precomputation technique and n = 10 ⇠ 60. Compared to

the k-way algorithm without precomputation, the cost of multiplications is re-

duced by about 8% ⇠ 25% for the same range of n, and the improvement ratio

decreases as n grows because the squaring cost is amortized over the number

of input exponents.

43

Chapter 6

Conclusion

In this thesis, we have proposed the k-way algorithm that efficiently computes

multiple modular exponentiations simultaneously. First, we have introduced an

improved batch exponentiation algorithm by utilizing the extended common-

multiplicand multiplication method which evaluates more than two multipli-

cations simultaneously. When the input exponents are divided into k groups,

the multiplications at each iteration in the evaluation stage share the same

multiplicand, and the number of multiplications is bounded by k+1. Multipli-

cations at each iteration in the combination stage also share the same multipli-

cand. These multiplications are handled by the extended common-multiplicand

Montgomery multiplication algorithm that computes arbitrary number of mul-

tiplications that share a same multiplicand.

Second, we have analyzed the performance of the k-way algorithm in terms

of the cost of multiplications which is defined with respect to the number of

single precision multiplications. We also analyzed the optimal algorithm param-

eters for both computing environments: the amount of memory is restricted, or

a sufficient amount of memory is allowed. The comparison of time-memory

tradeoffs shows that the k-way algorithm performs better than previous algo-

44

rithms given the same amount of memory. When a sufficient amount of memory

is allowed, the k-way algorithm reduces the cost of multiplications of Chung et

al.’s by 23% ⇠ 41% when n is 10 ⇠ 60, and l = size(p) is 1024, 2048 and 4096.

Third, we have implemented the whole procedure of the k-way algorithm to

show that our algorithms performs better than Chung et al.’s in the real world.

The algorithm including the extended common-multiplicand Montgomery mul-

tiplication has been implemented in C++ using GNU MP library on a 64-bit

machine. The optimal algorithm parameters for the word size 64 are chosen as

analyzed in the thesis, and the experimental results have shown that the k-way

algorithm reduces the running time of Chung et al.’s by 24% ⇠ 44% when n is

10 ⇠ 60, and l = size(p) is 1024, 2048 and 4096.

Finally, we have presented an exponent ordering algorithm and a precompu-

tation method for further improvement. With the exponent ordering algorithm,

exponents are grouped in a way that the number of 1’s in the partitioned ex-

ponents is reduced for each group. We also have presented a simple offline

precomputation method for the evaluation stage where the intermediate values

of the repeated squaring process are computed in advance and stored in the

offline storage.

45

Bibliography

[1] J. A. Akinyele, M. Green, S. Hohenberger, and M. Pagano. Machine-

generated algorithms, proofs and software for the batch verification of dig-

ital signature schemes. Journal of Computer Security, 22(6):867–912, 2014.

[2] P. Barrett. Implementing the Rivest Shamir and Adleman public key en-

cryption algorithm on a standard digital signal processor. In Advances in

Cryptology — CRYPTO’ 86, pages 311–323. Springer, 1987.

[3] M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for mod-

ular exponentiation and digital signatures. In Advances in Cryptology —

EUROCRYPT ’98, pages 236–250. Springer, 1998.

[4] D. J. Bernstein, J. Doumen, T. Lange, and J.-J. Oosterwijk. Faster batch

forgery identification. In Progress in Cryptology - INDOCRYPT 2012,

pages 454–473. Springer, 2012.

[5] C. Boyd and C. Pavlovski. Attacking and repairing batch verification

schemes. In Advances in Cryptology — ASIACRYPT ’00, pages 58–71.

Springer, 2000.

[6] V. Boyko, M. Peinado, and R. Venkatesan. Speeding up discrete log and

factoring based schemes via precomputations. In K. Nyberg, editor, Ad-

vances in Cryptology — EUROCRYPT ’98, pages 221–235, Berlin, Heidel-

berg, 1998. Springer Berlin Heidelberg.

46

[7] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast

exponentiation with precomputation. In Advances in Cryptology — EU-

ROCRYPT’ 92, pages 200–207. Springer.

[8] J. Camenisch, S. Hohenberger, and M. O. Pedersen. Batch verification of

short signatures. In Advances in Cryptology — EUROCRYPT ’07, volume

4515, pages 246–263. Springer, 2007.

[9] J. H. Cheon and D. H. Lee. Use of sparse and/or complex exponents in

batch verification of exponentiations. IEEE Transactions on Computers,

55(12):1536–1542, 2006.

[10] B. Chung, J. Hur, H. Kim, S.-M. Hong, and H. Yoon. Improved batch

exponentiation. Information Processing Letters, 109(15):832 – 837, 2009.

[11] B. Chung, S. Marcello, A.-P. Mirbaha, D. Naccache, and K. Sabeg.

Operand folding hardware multipliers. In Cryptography and Security: From

Theory to Applications, pages 319–328. Springer, 2012.

[12] P. de Rooij. Efficient exponentiation using precomputation and vector

addition chains. In Advances in Cryptology — EUROCRYPT ’94, pages

389–399. Springer.

[13] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans-

actions on Information Theory, 22(6):644–654, 1976.

[14] V. Dimitrov, L. Imbert, and P. Mishra. The double-base number system

and its application to elliptic curve cryptography. Mathematics of Com-

putation, 77(262):1075–1104, 2008.

[15] V. S. Dimitrov, G. A. Jullien, and W. C. Miller. An algorithm for modular

exponentiation. Information Processing Letters, 66(3):155–159, 1998.

47

[16] C. Doche and L. Imbert. Extended double-base number system with ap-

plications to elliptic curve cryptography. In Progress in Cryptology - IN-

DOCRYPT ’06, pages 335–348. Springer, 2006.

[17] P. Downey, B. Leong, and R. Sethi. Computing sequences with addition

chains. SIAM Journal on Computing, 10(3):638–646, 1981.

[18] S. R. Dussé and B. S. Kaliski. A cryptographic library for the Motorola

DSP56000. In Advances in Cryptology — EUROCRYPT ’90, pages 230–

244. Springer, 1991.

[19] T. Elgamal. A public key cryptosystem and a signature scheme based

on discrete logarithms. IEEE Transactions on Information Theory,

31(4):469–472, Jul 1985.

[20] B. Feix and V. Verneuil. There’s something about m-ary. In Progress in

Cryptology – INDOCRYPT ’13, pages 197–214. Springer, 2013.

[21] A. L. Ferrara, M. Green, S. Hohenberger, and M. Ø. Pedersen. Practical

short signature batch verification. In Topics in Cryptology – CT-RSA ’09,

pages 309–324. Springer, 2009.

[22] A. Fiat. Batch RSA. Journal of Cryptology, 10(2):75–88, Mar 1997.

[23] R. Fuji-Hara. Cipher algorithms and computational complexity. Bit,

17:954–959, 1985.

[24] D. M. Gordon. A survey of fast exponentiation methods. Journal of Algo-

rithms, 27(1):129 – 146, 1998.

[25] J.-C. Ha and S.-J. Moon. A common-multiplicand method to the Mont-

gomery algorithm for speeding up exponentiation. Information Processing

Letters, 66(2):105 – 107, 1998.

48

[26] S.-M. Hong, S.-Y. Oh, and H. Yoon. New modular multiplication algo-

rithms for fast modular exponentiation. In Advances in Cryptology —

EUROCRYPT ’96, pages 166–177. Springer, 1996.

[27] S. Karati, A. Das, D. Roychowdhury, B. Bellur, D. Bhattacharya, and

A. Iyer. New algorithms for batch verification of standard ECDSA signa-

tures. Journal of Cryptographic Engineering, 4(4):237–258, 2014.

[28] C. F. Kerry and P. D. Gallagher. Digital signature standard (DSS). FIPS

PUB, pages 186–4, 2013.

[29] D. E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.):

Seminumerical Algorithms. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1997.

[30] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,

48(177):203–209, 1987.

[31] C. K. Koç. Analysis of sliding window techniques for exponentiation. Com-

puters & Mathematics with Applications, 30(10):17–24, 1995.

[32] C. H. Lim and P. J. Lee. More flexible exponentiation with precomputation.

In Advances in Cryptology — CRYPTO’94, pages 95–107. Springer, 1994.

[33] D. C. Lou and C. C. Chang. Fast exponentiation method obtained by

folding the exponent in half. Electronics Letters, 32(11):984–985, May

1996.

[34] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. Handbook of Applied

Cryptography. CRC Press, 1996.

[35] V. S. Miller. Use of elliptic curves in cryptography. In Advances in Cryp-

tology — CRYPTO ’85, pages 417–426. Springer, 1986.

49

[36] N. A. F. Mohamed, M. H. A. Hashim, and M. Hutter. Improved fixed-base

comb method for fast scalar multiplication. In Progress in Cryptology -

AFRICACRYPT ’12, pages 342–359. Springer, 2012.

[37] P. L. Montgomery. Modular multiplication without trial division. Mathe-

matics of Computation, 44(170):519–521, 1985.

[38] F. Morain and J. Olivos. Speeding up the computations on an elliptic

curve using addition-subtraction chains. Theoretical Informatics and Ap-

plications, 24:531–543, 1990.

[39] D. M’Raïhi and D. Naccache. Batch exponentiation: A fast DLP-based

signature generation strategy. In Proceedings of the 3rd ACM Conference

on Computer and Communications Security, pages 58–61. ACM, 1996.

[40] D. Naccache, D. M’RaÏhi, S. Vaudenay, and D. Raphaeli. Can D.S.A. be

improved? — complexity trade-offs with the digital signature standard —.

In Advances in Cryptology — EUROCRYPT ’94, pages 77–85. Springer,

1995.

[41] H. Park, K. Park, and Y. Cho. Analysis of the variable length nonzero

window method for exponentiation. Computers & Mathematics with Ap-

plications, 37(7):21–29, 1999.

[42] C. Pavlovski and C. Boyd. Efficient batch signature generation using tree

structures. In International Workshop on Cryptographic Techniques and

E-Commerce, CrypTEC, volume 99, pages 70–77, 1999.

[43] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM,

26(1):96–99, Jan. 1983.

[44] C. P. Schnorr. Efficient signature generation by smart cards. Journal of

Cryptology, 4(3):161–174, 1991.

50

[45] W.-J. Tsaur and C.-H. Chou. Efficient algorithms for speeding up the

computations of elliptic curve cryptosystems. Applied Mathematics and

Computation, 168(2):1045–1064, 2005.

[46] C.-L. Wu. An efficient common-multiplicand-multiplication method to the

Montgomery algorithm for speeding up exponentiation. Information Sci-

ences, 179(4):410 – 421, 2009.

[47] T.-C. Wu and Y.-S. Chang. Improved generalisation common-multiplicand

multiplications algorithm of Yen and Laih. Electronics Letters,

31(20):1738–1739, Sep 1995.

[48] W. Yang, K. Lin, and C. Laih. A precomputation method for elliptic curve

point multiplication. Journal - Chinese Institute of Electrical Engineering,

9(4):339–344, 2002.

[49] S.-M. Yen. Improved common-multiplicand multiplication and fast expo-

nentiation by exponent decomposition. IEICE Transactions on Fundamen-

tals of Electronics, Communications and Computer Sciences, 80(6):1160–

1163, 1997.

[50] S. M. Yen and C. S. Laih. Common-multiplicand multiplication and its

applications to public key cryptography. Electronics Letters, 29(17):1583–

1584, Aug 1993.

[51] S.-M. Yen and C.-S. Laih. Improved digital signature suitable for batch

verification. IEEE Transactions on Computers, 44(7):957–959, 1995.

[52] S. M. Yen, C. S. Laih, and A. K. Lenstra. Multi-exponentiation (crypto-

graphic protocols). IEE Proceedings - Computers and Digital Techniques,

141(6):325–326, Nov 1994.

51

[53] T.-Y. Youn, Y.-H. Park, T. Kwon, S. Kwon, and J. Lim. Efficient flexi-

ble batch signing techniques for imbalanced communication applications.

IEICE Transactions on Information and Systems, 91(5):1481–1484, 2008.

52

�]

¯˘X –å| pÌ⌧Ò<\ ù�‹§î ⌅π ∞@ Œ@ ı⌧§ T8 ‹§\–

⌧ uÏ�<\ ¨©⇠î ∞t‰. ⌅π ∞– ¸¥¿î ¿⇠î p ⇠x Ω∞�

ŒD ∞– Œ@ ê–D Dî\ \‰. ⌅π ∞X 1•D •¡‹§î P �¿

⌘¸ït à‰. ´¯î ÒH ∞X ®(D •¡‹§î Ét‰. ‰x)ï@ ⌅π

∞– Dî\ ÒHX ⇠| ⌅tî Ét‰.

¯ |8–⌧î ÒH ∞ D© !t–⌧ ‰⇠X ⌅π ∞D |⌅ ƒ∞Xî

¿⇠ P(0ïD P �¿ ⌘¸ïD ®P ‡$XÏ ⌧ \ L‡¨òD ⌧H\‰.

¿⇠‰D ÏÏ ¯˘<\ ò⌅¥ ¿⇠ P(0ïD �©` Ω∞ ıµ<π⇠| �

¿î ÏÏ ⌧X ÒHt ⇠ı�<\ ⇠â(– ¸©\‰. ⌧H\ L‡¨òX 1•

•¡@ ıµ<π⇠| �¿î ÑXX ⇠X ÒH ∞‰D \ à– ò¨Xî U•

⌧ ıµ<π⇠ ÒH 0ïX �©D µt ªD ⇠ à‰. t⌥å ⌧ ⌧ L‡¨ò@

t⌅ l ∞¸Ù‰ T �@ T®¨| ¨©XÏ `x ‹⌅– |⌅ ⌅π ∞D

⇠â` ⇠ à‰.

⌧H⌧ L‡¨òX ÒH ∞ D© !t–⌧X ⇠â‹⌅¸ åî T®¨| Ñ

�X‡, T®¨X ët ⌧\⇠pò ©Ñ\ XΩ–⌧ ¿⇠ ¯˘X l0X \�✓D

 ›Xî)ïD ⌧‹\‰. ‰ÿ∞¸| µt ¿⇠X ⇠� 10 ⇠ 60t‡ ¯ D∏

8t� 1024, 2048, 4096| L ÒH ∞ D©t t⌅ l �D 23% ⇠ 41% �

… ⇣åhD Ùx‰. ⇣\ ‰⌧\ l⌅XÏ ª@ ⇠â‹⌅ Ì‹ t⌅ l �D

⇣åXÏ ⌅‰ 8ƒ–⌧ƒ ⌧H\ L‡¨òt T ®(�ÑD Ùx‰.

]<\¿⇠‰D¿⇠P(0ï–⌧®(tã@¯˘<\ò⌅îL‡¨òD

⌧‹X‡ t| µt ÒH ∞ D©D ⌅| ⇠ àLD Ùx‰. ¯¨‡ �•ı⌅t

©Ñà ¸¥¿î XΩ–⌧ ⌘⇠X pÌ⌧Ò ✓‰D ƒ∞D µt �•XÏ t|

¿⇠ P(0ï–⌧ \©Xî)ïD $ÖX‡, t L ⇣åXî ÒH ∞ D©–

�t Ñ�\‰.

¸î¥: T8Y, ⌅π ∞, ı⌧§ T8, ıµ<π⇠, L‡¨ò

Yà: 2009-20820

53

	1 Introduction
	1.1 Background
	1.2 Contribution
	1.3 Organization

	2 Related Work
	2.1 Common-Multiplicand Multiplication
	2.1.1 Montgomery Multiplication
	2.1.2 Common-Multiplicand Montgomery Multiplication
	2.1.3 Extended Common-Multiplicand Montgomery Multiplication

	2.2 Batch Exponentiation Algorithms
	2.2.1 Square and Multiply
	2.2.2 Parallel Square and Multiply
	2.2.3 Generalized Intersection Method
	2.2.4 Chung et al.s Algorithm

	3 k-way Batch Exponentiation
	3.1 Exponent Grouping and Partitioning
	3.2 k-way Evaluation
	3.3 Combination
	3.4 Performance Analysis
	3.4.1 Cost of Multiplications
	3.4.2 Storage Requirement

	3.5 Optimal Group Size
	3.6 Parameters

	4 Experimental Results and Comparison
	4.1 Time-Memory Tradeoff
	4.2 Cost of Multiplications
	4.3 Running Time

	5 Further Improvement
	5.1 Exponent Ordering
	5.2 Precomputation

	6 Conclusion

<startpage>10
1 Introduction 9
 1.1 Background 9
 1.2 Contribution 12
 1.3 Organization 13
2 Related Work 14
 2.1 Common-Multiplicand Multiplication 14
 2.1.1 Montgomery Multiplication 15
 2.1.2 Common-Multiplicand Montgomery Multiplication 16
 2.1.3 Extended Common-Multiplicand Montgomery Multiplication 17
 2.2 Batch Exponentiation Algorithms 20
 2.2.1 Square and Multiply 21
 2.2.2 Parallel Square and Multiply 22
 2.2.3 Generalized Intersection Method 23
 2.2.4 Chung et al.s Algorithm 27
3 k-way Batch Exponentiation 31
 3.1 Exponent Grouping and Partitioning 31
 3.2 k-way Evaluation 32
 3.3 Combination 34
 3.4 Performance Analysis 34
 3.4.1 Cost of Multiplications 34
 3.4.2 Storage Requirement 36
 3.5 Optimal Group Size 37
 3.6 Parameters 37
4 Experimental Results and Comparison 40
 4.1 Time-Memory Tradeoff 41
 4.2 Cost of Multiplications 41
 4.3 Running Time 43
5 Further Improvement 45
 5.1 Exponent Ordering 45
 5.2 Precomputation 48
6 Conclusion 52
</body>

