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Highlights

• We generate cluster-dependent feature weights reflecting the relevance of features.
• Features with a relatively low weight are removed from a data set.
• Our methods outperform other popular alternatives in synthetic and real-world data.
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Abstract

Feature selection is a popular data pre-processing step. The aim is to remove some of the features in a data set with
minimum information loss, leading to a number of benefits including faster running time and easier data visualisation.
In this paper we introduce two unsupervised feature selection algorithms. These make use of a cluster-dependent
feature-weighting mechanism reflecting the within-cluster degree of relevance of a given feature. Those features with
a relatively low weight are removed from the data set. We compare our algorithms to two other popular alternatives
using a number of experiments on both synthetic and real-world data sets, with and without added noisy features.
These experiments demonstrate our algorithms clearly outperform the alternatives.
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1. Introduction

Dimensionality reduction is a common pre-
processing step in data analysis. There are different
reasons for this, including: (i) it may help save process-
ing time when running a machine learning algorithm;
(ii) a data set would require less space to be saved
in a hard disk, or loaded into the main memory of
a computer; (iii) it may allow the creation of more
meaningful visualisation aids; (iv) it may reduce issues
raised by the curse of dimensionality [1, 2, 3].

Generally speaking, there are two main classes of
methods for dimensionality reduction: feature selection
and feature extraction. Methods applying feature selec-
tion attempt to find the smallest subset of relevant fea-
tures, according to a given criterion. Feature selection
methods do not alter the features themselves, preserving
their original meaning to the user. Methods applying
feature extraction attempt to reduce the dimensionality
of data sets by combining features. Such methods do at-
tempt to minimise information loss, however, the orig-
inal features and their meaning to the user are usually
lost.

Feature weighting can be seen as a generalisation of
feature selection. Consider a data set Y containing n

entities yi, each described over the same set of features
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V = {v1, v2, ..., vm}. In this scenario a feature weight-
ing algorithm will attempt to assign a weight wv to each
feature v ∈ V , usually in the interval [0, 1]. The weight
wv reflects the degree of relevance of v to the particular
problem at hand. Feature selection algorithms substitute
the [0, 1] interval by the constraint wv ∈ {0, 1} for each
v ∈ V . If wv = 1, v is placed in the subset of features
that have been selected, and discarded otherwise.

Clustering algorithms employ unsupervised learn-
ing to partition a data set Y into K clusters S =

{S 1, S 2, ..., S K}, according to some notion of similarity.
This means they are capable of assigning an entity yi

to a particular cluster S k without requiring labelled data
to learn from. The main objective of this type of al-
gorithm is to generate a clustering S in which there is
homogeneity within clusters, but heterogeneity between
clusters. Clustering algorithms have a long history (see
for instance [4, 5] and references therein), and they can
be generally divided into two main classes: hierarchi-
cal and partitional algorithms. The latter includes al-
gorithms generating a set of disjoint clusters, so that
S k ∩ S j = ∅ for k, j = 1, 2, ...,K and k � j. Hierar-
chical clustering algorithms generate a clustering S and
provide information regarding the relationships between
the clusters themselves, at a usually higher computa-
tional cost. These tree-like relationships can be easily
visualised with a dendrogram.

Here, we are particularly interested in partitional
clustering algorithms. Recent developments in this field
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have led to various partitional clustering algorithms ca-
pable of assigning feature weights (see for instance [6]
and references therein). These algorithms model the rel-
evance of a feature v using a feature weight wv. This fits
well with the intuitive idea that even among relevant fea-
tures there may be different degrees of relevance. How-
ever, they may be powerless in situations in which a user
actually needs to reduce the dimensionality of a data set.
This is because an irrelevant feature is usually assigned
a very low weight, but not zero. The weight tends to be
low enough for the feature to have a meaningless contri-
bution to the clustering, but high enough for the feature
to still be used in computations. In other words, if one
needs to reduce the amount of space a data set takes,
or if one intends to apply a different machine learning
algorithm (one that does not support feature weights)
after the clustering, feature weighting may not be the
most appropriate solution.

In this paper we address the problem above by de-
vising methods capable of taking the granularity given
by feature weights, and generating a subset of selected
features. That is, our feature selection methods are an
extension of feature weighting. We have divided this
paper into six sections. Section 2 sets the foundation by
presenting related work. Section 3 introduces our new
methods for unsupervised feature selection. We com-
pare our methods to two popular unsupervised feature
selection algorithms: feature selection with feature sim-
ilarity [7] and multi-cluster feature selection [8]. Details
of our settings and experiments can be found in Sections
4 and 5, respectively. Section 6 concludes our paper.

2. Related work

This section describes the work that is directly re-
lated to our paper. We begin by discussing clustering,
including clustering algorithms that are capable of gen-
erating feature weights. In the following subsection we
describe some popular unsupervised feature selection
algorithms. In the following sections we use these al-
gorithms for comparison.

2.1. Clustering and feature weighting

Clustering algorithms follow the unsupervised learn-
ing framework, and thus do not require any labelled
samples for learning. The k-means algorithm [9, 10]
is arguably the most popular partitional clustering algo-
rithm [4, 5, 11]. It aims to partition a data set Y contain-
ing n entities yi into K clusters S = {S 1, S 2, ..., S K}, so
that
∑K

k=1 |S k | = n and S k ∩ S j = ∅, for k, j = 1, 2, ...,K
and k � j. For each S k ∈ S , k-means generates a cen-
troid ck ∈ C, where C is the set of all centroids. This

ck can be used to describe the general characteristics of
the entities assigned to a cluster S k, and it is often called
the prototype of S k. K-means generates a clustering S

by minimising

W(S ,C) =
K∑

k=1

∑
yi∈S k

∑
v∈V

(yiv − ckv)2, (1)

where V is the set of features, yiv and ckv are the vth

coordinates of yi and ck, respectively.
Since (1) applies the squared Euclidean distance be-

tween entities and respective centroids, we can set ckv =

|S k |−1∑
yi∈S k

yiv. In other words, the centroid ck is the
component-wise centre of yi ∈ S k. K-means minimises
(1) using three straightforward steps: (i) randomly se-
lect K entities of Y , and copy their values to the initial
centroids c1, c2, ..., cK ; (ii) for each entity yi ∈ Y find ck,
the nearest centroid to yi, and assign yi to S k; (iii) up-
date each centroid ck ∈ C to the component-wise centre
of yi ∈ S k. Steps (ii) and (iii) are repeated until conver-
gence.

Very much like any other machine learning algo-
rithm, k-means is not without weaknesses. Among
these: (i) it requires the number of clusters, K, to be
known beforehand; (ii) the minimisation of (1) may get
trapped in local minima; (iii) the final clustering de-
pends heavily on the initial centroids, usually chosen at
random; (iv) the algorithm is biased towards spherical
clusters (v) every feature is treated equally, regardless
of its actual relevance.

The intelligent Minkowski k-means (imwk-means)
[12] has been designed to address some of the above.
This algorithm calculates distances using a weighted
version of the Minkowski distance.

dp(yi, ck) =
∑
v∈V

w
p

kv
|yiv − ckv|p, (2)

where p is a user-defined Minkowski exponent. The
reason for the use of (2) is twofold. First, any dis-
tance measure will introduce a shape bias to clusters.
By using the Minkowski distance one can set this bias to
shapes other than spherical. Second, we can use wkv to
change the contribution v makes to the clustering. The
general idea is that wkv reflects the relevance of v at clus-
ter S k. The above leads to the criterion

W(S ,C,w) =
K∑

k=1

∑
yi∈S k

∑
v∈V

w
p

kv
|yiv − ckv|p, (3)

where wkv is inversely proportional to the dispersion
of yiv ∈ S k. This follows the intuitive idea that fea-
tures with a relatively high dispersion should have lower
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weight than that of features with a relatively low disper-
sion. We calculate the within cluster dispersion of a fea-
ture v ∈ V , Dkv =

∑
i∈S k
|yiv − ckv|p and the weight itself

can be set to

wkv =

⎡⎢⎢⎢⎢⎢⎢⎣
∑
u∈V

[
Dkv

Dku

] 1
p−1
⎤⎥⎥⎥⎥⎥⎥⎦
−1

. (4)

The imwk-means algorithm makes use of a Minkowski
based version of the Anomalous Pattern method present
in intelligent k-means [13]. This is a popular k-means
initialisation, which has been favourably compared with
various others [14, 15]. It works by setting the centre
of the data set as a reference point and then iteratively
removing anomalous clusters of the data set. The cen-
troids of these anomalous clusters can be used as initial
centroids in virtually any k-means based algorithm. The
cardinality of this set of centroids determines the num-
ber of clusters in the data set, allowing imwk-means to
address the k-means weaknesses (i), (ii) and (iii).

We have chosen to use imwk-means in particular be-
cause of our previous success with it, and positive re-
sults in comparisons [12, 6, 16].

2.2. Unsupervised feature selection

The main objective of feature selection algorithms is
to determine a proper subset V ′ ⊂ V , so that describing
yi ∈ Y over V ′ instead of V does not lead to loss of
information. Feature selection has a long history (see
for instance [17, 18, 19, 20, 21] and references therein),
however this tends to be for algorithms following the
supervised learning framework. Such feature selection
algorithms require labelled data to learn from. Here,
we are interested in unsupervised learning algorithms.
This section discusses two of the most popular feature
selection algorithms that do not require labelled sam-
ples. Readers interested in a more general discussion
are directed to surveys, such as [22, 23] and references
therein.

Feature selection using feature similarity
Feature selection using feature similarity (FSFS) [7] is
probably the most cited unsupervised feature selection
algorithm. It calculates pairwise feature similarities
in order to determine a set of maximally independent
features, and then discards those that are considered
redundant. This is the first algorithm to use the max-
imum information compression index, defined below

for features vt and v j, in a feature selection scenario.

2λ2(vt, v j) = var(vt) + var(v j)

−
√

(var(vt) + var(v j)2 − 4var(vt)var(v j)(1 − σ(vt, v j)2),
(5)

where σ(vt, v j) denotes the Pearson correlation co-
efficient between vt and v j, and var() represents the
variance of a feature passed as a parameter. The value
of λ2 is zero when the features are linearly dependent,
and increases as the amount of dependency decreases.

Feature selection using feature similarity (FSFS)

1. Select the value for k, subject to k ≤ m − 1. Set
V ′ ← V .

2. For each v′ ∈ V ′, compute rk
v′ .

3. Find the feature v′∗ for which rk
v′∗ is minimum.

4. Remove from V ′ the k nearest-neighbours of v′∗.
5. Set ε = rk

v′∗ .
6. If k > mV ′ go to Step 9.
7. While rk

v′∗ > ε

(a) k = k − 1.
rk

v′∗ = infv′∈V ′
(k is decremented by 1, until the kth nearest-
neighbour of at least one of the features in V ′
is less than ε-dissimilar with the feature).

(b) If k = 1 go to Step 9.
8. Go to Step 2.
9. Return the feature set V ′ as the reduced feature set.

In the algorithm above mV ′ represents the cardinality
of V ′, and k relates to the kth nearest-neighbours
algorithm. By setting k we can calculate rk

v′ as the
dissimilarity between feature v′ and its kth nearest-
neighbour in V ′ using (5). Having k as a user-defined
parameter allows for multi-scale representation of data
sets. However, the use of k also means that to generate
the smallest V ′ (that with the lowest mV ′) representing
the information of Y , one needs to find its optimal value
- we present one way to do this in Section 5.

Multi-Cluster Feature Selection
Traditionally, unsupervised feature selection algorithms
select the top ranked features of a data set based
on scores computed independently for each feature.
This approach certainly decreases the computational
effort required to find a meaningful subset of features.
However, since it neglects the possible correlations
between features it may not be able to produce an
optimal feature subset.

With the above in mind, Deng Cai et al. introduced
Multi-Cluster Feature Selection (MCFS) [8]. Their
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method has been inspired by recent developments in
spectral analysis (manifold learning) [24, 25] and L1-
regularized models for subset selection [26, 27]. MCFS
uses multiple eigenvectors of graph Laplacian matrix,
allowing for the selection of those features so that the
multi-cluster structure of the data can be best preserved.
Multi-cluster feature selection

1. Construct a k-nearest-neighbours graph.
2. Solve a generalised eigen-problem, leading to the

K top eigenvectors with respect to the smallest
eigenvalues.

3. Solve K L1-regularised regression problems, lead-
ing to K sparse coefficient vectors.

4. Compute the MCFS score for each feature.
5. Return the top mV ′ features according to their

MCFS scores.

For details on the above, particularly, steps 2 to 4,
please refer to the original paper[8]. MCFS has received
considerable attention, with evidence of such in cita-
tions to the original paper.

3. Feature selection via feature weighting

We build on previous work in feature weighting by
using the imwk-means as a tool to find feature weights.
We then use these weights as a foundation for feature
selection. Given a data set Y = (yi) where each yi is
described over m features v ∈ V , imwk-means generates
a clustering S = {S 1, S 2, ..., S K}, where | ∪K

k=1 S k | = n,
and S k ∩ S j = ∅ for k, j = 1, 2, ...,K and k � j. This
algorithm also generates a centroid ck for each cluster
S k ∈ S , as well as cluster dependent weights wkv for
k = 1, 2, ...,K and v ∈ V .

A feature weight wkv models the degree of relevance
of a feature v at a cluster S k. A feature weight wkv is
defined in the interval [0, 1], subject to

∑
v∈V wkv = 1 for

k = 1, 2, ...,K. Our methods (explained below) are ca-
pable of mapping wkv ∈ [0, 1] to wv ∈ {0, 1}, so that wv

effectively selects or deselects a feature v. The key to
this mapping is, as one would imagine, to find a thresh-
old θ so that

wv =

⎧⎪⎪⎨⎪⎪⎩
1, if wv ≥ θ,
0, if wv < θ.

(6)

Here we introduce two feature selection methods based
on the above. These are simple but rather powerful
methods, as the results from our experiments show (see
Section 5).

The imwk-means generates K weights for each fea-
ture v, however, to apply (6) we need each feature

to have one weight. To do so we first present a
method called meanFSFW. In this method we set wv =

K−1∑K
k=1 wkv for v = 1, 2, ...,m. We then set θ = m−1

and apply (6). Those features with wv = 0 are then sim-
ply removed from the data set.

Our second method maxFSFW first sets wv =

max({w1v,w2v, ...,wKv}, and then normalises the weights
wv = wv/

∑
v∈V wv, so that

∑
v∈V wv = 1. Now that we

have one weight per feature we can set θ = m−1 and ap-
ply (6). We remove those features with wv = 0 from the
data set.

Both of the methods described above set θ = m−1.
Consider (4) in the case of noise being truly random
and uniformly distributed. In this case Dku = c for
u ∈ V ′, where V ′ represents the set of noisy features
and c is a constant. Given that each Dkv is divided by
the same value c, and that (4) is subject to

∑
v∈V wkv = 1

for k = 1, 2, ...,K, this leads to wku = m−1. There-
fore, meaningful features should have a higher value
than that.

4. Setting of experiments

We validate our methods through a number of experi-
ments using synthetic and real-world data, in both cases
with and without noisy features: we define a noisy fea-
ture as one composed of within-domain uniformly ran-
dom values. In an ideal scenario a feature selection al-
gorithm would remove all noisy features from a data set.

We experiment with 12 configurations for our syn-
thetic data, generating 50 data sets for each configura-
tion totalling 600 synthetic data sets. Each data set con-
tains Gaussian clusters with diagonal covariance matri-
ces of σ2 = 0.5. Each centroid was independently gen-
erated from the Gaussian distribution N(0, 1), and each
entity had a chance of 1/K to come from any cluster. Ta-
ble 1 presents the configurations of our synthetic data.

For our experiments with real-world data, we selected
some of the most popular data sets from the popular UCI
macine learning repository [28] (see Table 2 for details).
Since we cannot be sure which features are relevant, we
used each of these data sets to generate two noisy ver-
sions. To the first we have added �m/2
 noisy features,
to the second we added m noisy features. These give a
total of 30 real-world data sets.

We then proceeded to standardise the data. Numeri-
cal features are put into the range [0, 1], using:

yiv =
yiv − ȳv

max(yv) − min(yv)
, (7)

where ȳv = n−1∑n
i=1 yiv. We have decided to apply (7)

rather than the popular z-score because the latter is bi-
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Table 1: The twelve different configurations of the synthetic data sets
containing Gaussian clusters we use in our experiments. NF refers
to the number of extra features composed of uniformly random noise
added to the data set.

Features

Data set Entities (n) Clusters (K) Original Noise Total (m)

1000x8-2 1000 2 8 0 8
1000x8-2 + 4NF 1000 2 8 4 12
1000x8-2 + 8NF 1000 2 8 8 16
1000x12-3 1000 3 12 0 12
1000x12-3 + 6NF 1000 3 12 6 18
1000x12-3 + 12NF 1000 3 12 12 24
1000x16-4+8NF 1000 4 16 0 16
1000x16-4 1000 4 16 8 24
1000x16-4+16NF 1000 4 16 16 32
1000x20-5 1000 5 20 0 20
1000x20-5+10NF 1000 5 20 10 30
1000x20-5+20NF 1000 5 20 20 40

Table 2: Real-world data sets used in our experiments. We generated
two more data sets from each data set by adding either �m/2
 or m

extra features composed of uniformly random noise.
Original Features

Name Entities (n) Clusters (K) Numerical Categorical Total (m)

Australian credit approval 690 2 6 8 14
Car evaluation 1,728 4 0 6 6
Ecoli 336 8 7 0 7
Glass 214 6 9 0 9
Ionosphere 351 2 33 0 33
Iris 150 3 4 0 4
Wine 178 3 13 0 13
Zoo 101 7 1 15 16
Low Resolution Spectrometer 531 10 101 0 101
Gas Sensor Array Drift Batch10 3,600 6 129 0 129

ased towards unimodal distributions [11, 6]. We re-
placed each categorical v ∈ V containing t categories
by t binary features. For a given entity yi only one of
these t binary features was set to one, that representing
the original category in yiv.

We measure the performance of our methods, and
those we use as a benchmark (see Section 2) in two
ways. First, we are interested to know if the selected
features are representative of the data. Clearly, there
are a number of algorithms we could use to measure
this representativeness. We use a clustering algorithm
so that our results are completely data-driven. Thus,
we run k-means 100 times using solely the selected fea-
tures. The final clustering is that with the lowest output
criterion (1). We then measure accuracy by comparing
this clustering with the known labels using the adjusted
Rand Index (ARI) [29], a popular corrected-for-chance
version of the Rand index [30].

Second, we would also like the set of selected fea-
tures to have the lowest possible cardinality, without
losing representativeness. In order to analyse this, we
compare all methods based on the number of features
they select. This reveals the possible trade offs between
the representativeness of the features (measured as an
accuracy), and the number of selected features.

5. Results and analysis

In this section we compare our new methods mean-
FSFW and maxFSFW (see Section 3) with FSFS and
MCFS (see Section 2). Some of the algorithms above
require the setting of a parameter. Unfortunately, the
original authors of FSFS and MCFS did not clearly state
a method to select such parameters under the unsuper-
vised learning framework. Thus, we begin this section
by describing how these parameters can be selected.

Given a clustering S = {S 1, S 2, ..., S K} there are a
number of cluster validity indices that can be used to
measure how good S is. There is no index that is bet-
ter than all others in all cases, but usually the Silhouette
width is among the top performers (for a recent compar-
ison see [31] and references therein). We can define the
Silhouette width of an entity yi ∈ S k as

S IL(yi) =
b(yi) − a(yi)

max{a(yi), b(yi)} , (8)

where a(yi) is the average dissimilarity between yi ∈ S k

and all other entities in S k, and b(yi) is the lowest av-
erage dissimilarity between yi to any other cluster. A
Silhouette width close to one indicates a(yi) << b(yi)
meaning that yi is well placed in S k, an index value
close to minus one indicates the opposite. With (8) we
can calculate the Silhouette width for Y as S IL(Y) =
n−1∑

i∈Y S IL(yi).
In the case of FSFS, its parameter k is used for

a neighbourhood search using the popular k-nearest
neighbours algorithm. Since k is directly related to
the number of selected features, we experiment with
k = 1, 2, ...,m − 1. Given a value for the FSFS parame-
ter (k), we then run k-means 100 times selecting as final
clustering that with the lowest output criterion, and then
calculate the Silhouette width of the clustering. We se-
lect the value of k leading to the highest Silhouette width
as being the optimal. It is probably worth noting that the
k in k-nearest neighbours is not the same as the k in k-
means. The latter represents the number of clusters in a
data set, something we know for all the data sets we ex-
periment with. We also present the best case scenarios.
In these we simply select for k the value leading to the
highest ARI in relation to the known labels. This is an
unrealistic data analysis scenario, but we are interested
in finding the best possible case for FSFS.

The MCFS algorithm has three parameters. First we
have a parameter k also related to the use of k-nearest
neighbours. In this case the original authors of MCFS
suggest a default value of five, and we use their sugges-
tion in our experiments. Their second parameter relates
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to the number of eigenfunctions MCFS uses: the orig-
inal authors also suggest a default of five. The last pa-
rameter indicates the number of features to be selected.
We searched for the optimal value for this last param-
eter in the exact same way we searched for the FSFS
parameter. We also report the best possible cases for
MCFS, based on trying all possible values for this last
parameter and reporting that leading to the highest ARI
in relation to the ground truth.

Since our methods are based on the imwk-means, we
need to define the value for the Minkowski exponent p.
For simplicity we have chosen to set this exponent to
two, leading to a weighted version of the popular Eu-
clidean distance.

Table 3 presents the accuracy measured using the ad-
justed Rand index (ARI) in relation to the ground truth.
In this and the following tables, we put the best results
in bold. In all cases the results are over the 50 data sets
generated for each data set configuration. The reader
will notice that the results under “Best Case” some-
times may be equal to or even higher than those in bold.
In the “Best Case” experiments we simply provide a
given algorithm with the parameter leading to the best
result. Clearly this is unrealistic as it is impossible for a
user to simply guess the optimal parameter value. The
only reason we provide the results under “Best Case” is
to demonstrate that the Silhouette width is a good pa-
rameter estimator. Table 3 clearly shows our method
meanFSFW to be competitive or better than FSFS and
MCFS. In this case, it is particularly interesting to see
that meanFSFW is even superior to the best cases of
FSFS and MCFS when the data sets contain noisy fea-
tures.

Table 4 presents the average percentage of selected
features, and respective standard deviation. We divided
this table into two parts, so it is easier to understand the
results. The upper part of the table presents the average
percentage of original features selected. These original
features are those generated using a Gaussian distribu-
tion (see details in Section 4). It is tempting to think
that a successful method would select 100% of such fea-
tures, however, it is possible to meaningfully represent
the original data with less features. To avoid confusion
we have not put any of these results in bold. For in-
stance, meanFSFW selected on average 84.5% of the
original features for 1000x8-2 +4NF, while FSFS se-
lected 88.5%. However, Table 3 shows the accuracy of
meanFSFW to be far superior to that of FSFS. The best
method would be that with a low percentage of origi-
nal features selected paired with a high accuracy. The
second part of Table 4 presents the average percentage
of noisy features selected. In this case it is fair to state

that such noisy features do not add any meaningful in-
formation to the data set (for details on their generation
see Section 4). Thus, a good feature selection algorithm
would select the least amount of such features. Again,
we can clearly see the superiority of meanFSFW, which
typically removes all the noisy features.

Table 5 presents the accuracy results of our exper-
iments in real-world data sets with and without noisy
features. In these experiments meanFSFW presented
the best results in 14 out of 30 cases. At first this
may not seem an impressive result, but MCFS presented
the best results in eight cases (one of which tied with
meanFSFW), while FSFS presented the best results in
six cases (three of which tied with meanFSFW). Here,
maxFSFW outperformed all other methods by provid-
ing the best results in 21 out of 30 cases. The perfor-
mance of maxFSFW was considerably better than its
performance in previous experiments, probably because
in real-world data there would be more cases of one fea-
ture being relevant to a single cluster. In these cases
meanFSFW may end up removing such a feature.

Table 6 presents the average percentage of noisy fea-
tures selected. For obvious reasons this table does not
present experiments in data sets with no noisy features.
One can clearly see the superiority of maxFSFW and
meanFSFW. Each removed all noisy features except in
two cases, out of 20. It is fair to conclude that if there is
a reason to believe a data set contains Gaussian clusters
meanFSFW should be applied and, if in doubt, apply
maxFSFW.

5.1. Performance of classifiers after feature selection

Our previous experiments analysed results in the un-
supervised learning scenario. This was indeed the main
goal of our paper as the use of clustering and unsu-
pervised feature selection algorithms is well-aligned.
In this subsection we briefly show results using two
popular classification algorithms: k-nearest neighbours
(kNN) [32], and decision trees [33]. Our objective is
not to claim one should use our methods in a super-
vised scenario, but to further analyse the behaviour of
our methods.

Table 7 shows the results for experiments on the syn-
thetic data sets. We can clearly see that in data sets
with noise features there is an increase in the average
adjusted Rand index. In these experiments, we set the
number of neighbours for kNN to the square root of the
number of entities in the data set, rounded. We do not
present results for experiments on real-world data be-
cause of limitations in space.
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Table 3: The average adjusted Rand Index and its standard deviation for the cluster recovery in synthetic data sets with and without noisy features.
FS using Feature Similarity Multi-Cluster FS FS using Feature Weight

Data sets k-means SIL Best Case SIL Best Case meanFSFW maxFSFW

1000x8-2 0.965/0.04 0.935/0.08 0.937/0.08 0.958/0.06 0.958/0.06 0.932/0.10 0.898/0.13
1000x8-2 +4NF 0.788/0.39 0.772/0.39 0.920/0.13 0.789/0.39 0.891/0.25 0.965/0.05 0.818/0.36
1000x8-2 +8NF 0.768/0.40 0.771/0.39 0.922/0.12 0.770/0.41 0.847/0.32 0.965/0.05 0.859/0.32
1000x12-3 0.984/0.03 0.973/0.04 0.974/0.04 0.983/0.03 0.984/0.03 0.949/0.09 0.915/0.14
1000x12-3 +6NF 0.930/0.19 0.917/0.19 0.963/0.07 0.930/0.19 0.937/0.18 0.983/0.03 0.947/0.16
1000x12-3 +12NF 0.915/0.20 0.917/0.19 0.964/0.06 0.926/0.19 0.934/0.18 0.984/0.03 0.958/0.13
1000x16-4 0.996/0.01 0.993/0.01 0.993/0.01 0.995/0.01 0.996/0.0 0.977/0.03 0.946/0.07
1000x16-4 +8NF 0.987/0.04 0.977/0.07 0.988/0.02 0.987/0.05 0.989/0.05 0.996/0.01 0.991/0.01
1000x16-4 +16NF 0.985/0.04 0.973/0.07 0.986/0.02 0.985/0.05 0.987/0.05 0.996/0.01 0.994/0.01
1000x20-5 0.998/0.02 0.997/0.01 0.997/0.01 0.999/0.00 0.999/0.00 0.991/0.01 0.976/0.03
1000x20-5 +10NF 0.992/0.03 0.995/0.01 0.996/0.01 0.994/0.03 0.994/0.03 0.999/0.00 0.996/0.01
1000x20-5 +20NF 0.988/0.04 0.994/0.01 0.995/0.01 0.994/0.02 0.995/0.02 0.999/0.00 0.999/0.00

Table 4: The average percentage of noisy features selected, and respective standard deviations, on synthetic data sets.
FS using Feature Similarity Multi-Cluster FS FS using Feature Weight

Data sets SIL Best Case SIL Best Case meanFSFW maxFSFW

av
g

%
of
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ig

in
al

fe
at

.s
el

ec
te

d

1000x8-2 74.500/20.61 73.250/21.21 82.500/11.73 80.500/15.24 41.500/10.74 32.500/11.46
1000x8-2 +4NF 88.500/12.46 85.000/15.61 60.750/22.91 50.750/24.67 84.500/11.61 49.000/10.56
1000x8-2 +8NF 88.500/13.88 85.000/16.58 62.000/25.24 53.250/25.35 99.000/3.39 71.000/13.79
1000x12-3 86.335/11.15 84.668/11.47 85.501/9.55 83.834/11.36 45.500/8.20 37.000/9.15
1000x12-3 +6NF 91.168/5.87 89.001/8.41 75.500/17.51 67.833/21.15 93.334/7.07 60.166/7.51
1000x12-3 +12NF 91.001/7.04 88.667/8.46 74.334/19.28 68.001/22.20 99.833/1.17 82.333/9.07
1000x16-4 92.500/3.06 92.875/2.50 82.125/13.17 80.500/13.03 46.000/6.59 39.125/8.08
1000x16-4 +8NF 93.000/5.81 91.875/7.63 77.375/16.20 76.500/15.49 93.875/5.66 67.875/7.07
1000x16-4 +16NF 91.250/9.01 90.375/8.59 80.625/15.97 76.875/15.63 99.750/1.22 86.750/8.07
1000x20-5 93.700/5.81 93.200/6.54 71.700/15.74 69.000/13.78 46.700/5.53 39.800/6.63
1000x20-5 +10NF 93.000/5.48 92.300/6.34 69.500/18.09 66.500/15.01 96.700/3.95 72.300/8.90
1000x20-5 +20NF 92.500/6.02 90.300/7.51 74.600/20.42 69.700/17.93 99.900/0.70 89.600/6.77

av
g

%
no

is
y

fe
at

.s
el

. 1000x8-2 +4NF 73.500/31.78 51.000/44.71 93.000/24.00 79.000/39.80 0.000/0.00 7.500/16.77
1000x8-2 +8NF 73.750/35.64 44.500/42.22 89.750/24.96 76.500/36.02 0.500/2.45 4.250/9.56
1000x12-3 +6NF 80.000/33.50 63.333/43.33 95.666/9.89 91.333/21.15 0.000/0.00 1.000/5.17
1000x12-3 +12NF 81.001/32.62 60.667/43.69 85.834/18.50 77.667/23.95 0.000/0.00 0.833/3.00
1000x16-4 +8NF 89.750/22.32 81.750/34.02 82.250/14.60 80.250/14.16 0.000/0.00 0.000/0.00
1000x16-4 +16NF 87.875/27.28 73.125/40.80 69.500/20.60 62.250/20.54 0.000/0.00 0.500/2.11
1000x20-5 +10NF 83.400/32.16 77.600/37.18 47.000/22.11 42.000/18.11 0.000/0.00 0.000/0.00
1000x20-5 +20NF:20 78.700/36.83 66.400/42.24 43.600/29.33 32.300/20.40 0.000/0.00 0.000/0.00
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Table 5: The average adjusted Rand Index and its standard deviation for the cluster recovery in real-world data sets with and without noisy features.
Accuracy

FS using Feature Similarity Multi-Cluster FS FS using Feature Weight
Data set k-means SIL Best Case SIL Best Case meanFSFW maxFSFW
Austra C.A. 0.500 0.220 0.220 0.500 0.500 0.500 0.500
Austra C.A.+21NF 0.500 0.220 0.220 0.500 0.500 0.220 0.220
Austra C.A.+42NF 0.500 0.220 0.220 0.500 0.500 0.220 0.500
Car Evaluation 0.010 0.010 0.220 0.020 0.150 0.110 0.020
Car Evaluation +11NF 0.040 0.030 0.220 0.030 0.170 0.000 0.010
Car Evaluation +22NF 0.010 0.150 0.220 0.150 0.150 0.140 0.130
Ecoli 0.440 0.390 0.390 0.450 0.450 0.030 0.030
Ecoli +4NF 0.160 0.020 0.200 0.220 0.320 0.100 0.030
Ecoli +8NF 0.130 0.130 0.200 0.110 0.190 0.210 0.100
Glass 0.170 0.160 0.260 0.160 0.210 0.010 0.190
Glass +5NF 0.090 0.100 0.260 0.100 0.180 0.160 0.180
Glass +10NF 0.070 0.080 0.260 0.090 0.180 0.130 0.260
Ionosphere 0.170 0.210 0.330 0.160 0.420 0.210 0.210
Ionosphere +17NF 0.170 0.210 0.330 0.160 0.420 0.210 0.210
Ionosphere +34NF 0.170 0.210 0.330 0.150 0.330 0.210 0.210
Iris 0.710 0.620 0.850 0.850 0.850 0.890 0.890
Iris +2NF 0.660 0.480 0.560 0.480 0.890 0.720 0.890
Iris +4NF 0.490 0.490 0.560 0.500 0.890 0.720 0.720
Wine 0.860 0.900 0.900 0.850 0.900 0.880 0.830
Wine +7NF 0.800 0.770 0.820 0.900 0.900 0.740 0.910
Wine +14NF 0.820 0.680 0.790 0.770 0.850 0.870 0.900
Zoo 0.630 0.680 0.810 0.680 0.690 0.840 0.840
Zoo +8NF 0.680 0.690 0.840 0.680 0.690 0.830 0.830
Zoo +16NF 0.680 0.690 0.840 0.690 0.690 0.830 0.830
Low Resolution Spectrometer 0.202 0.210 0.230 0.240 0.260 0.260 0.270
Low Resolution Spectrometer +51NF 0.207 0.180 0.220 0.180 0.240 0.220 0.280
Low Resolution Spectrometer +101NF 0.194 0.180 0.200 0.190 0.230 0.230 0.070
Gass Sensor Array Batch10 0.126 0.120 0.210 0.170 0.170 0.190 0.140
Gass Sensor Array Batch10 +65NF 0.128 0.130 0.210 0.130 0.190 0.120 0.140
Gass Sensor Array Batch10 +129NF 0.126 0.140 0.210 0.140 0.160 0.130 0.140

Table 6: The average percentage of noisy features selected, and respective standard deviations, on real-world data sets containing about 50% or
100% extra features composed of uniformly random noise.

Percentages of Noisy Feature Selected
FS using Feature Similarity Multi-Cluster FS FS using Feature Weight

Data sets SIL Best Case SIL Best Case meanFSFW maxFSFW
Austra C.A.+21NF 100.000 100.000 0.000 0.000 0.000 0.000
Austra C.A.+42NF 100.000 100.000 40.480 0.000 0.000 0.000
Car Evaluation +11NF 9.090 9.090 0.000 9.090 100.000 0.000
Car Evaluation +22NF 22.730 4.550 0.000 0.000 100.000 100.000
Ecoli +4NF 100.000 25.000 100.000 25.000 0.000 0.000
Ecoli +8NF 87.500 0.000 100.000 25.000 0.000 0.000
Glass +5NF 80.000 0.000 100.000 0.000 0.000 0.000
Glass +10NF 80.000 0.000 100.000 0.000 0.000 0.000
Ionosphere +17NF 5.880 0.000 0.000 0.000 0.000 0.000
Ionosphere +34NF 2.940 0.000 0.000 0.000 0.000 0.000
Iris +2NF 100.000 0.000 100.000 0.000 0.000 0.000
Iris +4NF 100.000 0.000 100.000 0.000 0.000 0.000
Wine +7NF 100.000 0.000 85.710 85.710 0.000 0.000
Wine +14NF 100.000 28.570 85.710 50.000 0.000 0.000
Zoo +8NF 100.000 0.000 62.500 0.000 0.000 0.000
Zoo +16NF 100.000 0.000 75.000 0.000 0.000 0.000
Low Resolution Spectrometer +51NF 100.000 100.000 98.040 25.490 0.000 0.000
Low Resolution Spectrometer +101NF 100.000 100.000 97.030 48.510 0.000 100.000
Gas Sensor Array Drift Batch10 +65 78.290 100.000 0.000 0.000 0.000 0.000
Gas Sensor Array Drift Batch10 +129 83.720 100.000 0.000 0.000 0.000 0.000
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Table 7: The average adjusted Rand index of two classifiers, and respective standard deviations, on synthetic data sets. Experiments followed a
10-fold cross validation, which was ran 50 times for each data set.

kNN Decision Tree

Data sets Orginal After meanFWFS After maxFWFS Original After meanFWFS After maxFWFS

1000x8-2 0.967/0.05 0.934/0.09 0.899/0.13 0.897/0.10 0.884/0.12 0.852/0.16
1000x8-2 +4NF 0.960/0.05 0.968/0.05 0.945/0.09 0.895/0.10 0.897/0.10 0.890/0.12
1000x8-2 +8NF 0.943/0.07 0.967/0.05 0.960/0.06 0.892/0.10 0.896/0.10 0.899/0.1
1000x12-3 0.984/0.03 0.948/0.09 0.917/0.13 0.891/0.07 0.876/0.11 0.853/0.14
1000x12-3 +6NF 0.973/0.05 0.984/0.03 0.974/0.05 0.890/0.07 0.892/0.07 0.892/0.08
1000x12-3 +12NF 0.954/0.07 0.985/0.03 0.980/0.05 0.889/0.07 0.891/0.07 0.891/0.08
1000x16-4 0.996/0.01 0.977/0.03 0.948/0.06 0.887/0.05 0.885/0.05 0.856/0.07
1000x16-4 +8NF 0.987/0.01 0.995/0.01 0.990/0.01 0.886/0.05 0.887/0.05 0.888/0.05
1000x16-4 +16NF 0.972/0.02 0.996/0.01 0.994/0.01 0.885/0.05 0.886/0.05 0.886/0.05
1000x20-5 0.999/0.00 0.989/0.01 0.976/0.02 0.888/0.04 0.882/0.04 0.870/0.04
1000x20-5 +10NF 0.992/0.01 0.999/0.00 0.996/0.01 0.888/0.04 0.888/0.04 0.887/0.04
1000x20-5 +20NF 0.979/0.02 0.999/0.00 0.998/0.00 0.887/0.04 0.887/0.04 0.888/0.04

6. Conclusion

This paper introduces two novel unsupervised feature
selection algorithms, meanFSFW and maxFSFW. Our
methods are based on the concept of cluster-dependent
feature weights, meaning we model the degree of rele-
vance of a particular feature at a particular cluster. Each
feature weight is defined in the interval [0, 1]. Our meth-
ods are capable of setting a feature weight to either one
or zero. This effectively selects or deselects a given fea-
ture.

We have run an extensive number of experiments us-
ing synthetic and real-world data sets, in both cases with
and without noisy features. These experiments com-
pared our methods to two of the most popular unsu-
pervised feature selection algorithms: feature selection
using feature similarity (FSFS) and multi-cluster fea-
ture selection (MCFS). Our results demonstrate that our
methods outperform the others in terms of selecting the
most appropriate features, and removing noisy features.
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[2] E. Chávez, G. Navarro, Probabilistic proximity search: Fighting
the curse of dimensionality in metric spaces, Information Pro-
cessing Letters 85 (1) (2003) 39–46.

[3] V. Pestov, On the geometry of similarity search: dimensional-
ity curse and concentration of measure, Information Processing
Letters 73 (1) (2000) 47–51.

[4] A. K. Jain, Data clustering: 50 years beyond k-means, Pattern
recognition letters 31 (8) (2010) 651–666.

[5] D. Steinley, K-means clustering: a half-century synthesis,
British Journal of Mathematical and Statistical Psychology
59 (1) (2006) 1–34.

[6] R. C. de Amorim, A survey on feature weighting based k-means
algorithms, Journal of Classification 33 (2) (2016) 210–242.

[7] P. Mitra, C. Murthy, S. K. Pal, Unsupervised feature selection
using feature similarity, Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on 24 (3) (2002) 301–312.

[8] D. Cai, C. Zhang, X. He, Unsupervised feature selection for
multi-cluster data, in: Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data min-
ing, ACM, 2010, pp. 333–342.

[9] G. H. Ball, D. J. Hall, A clustering technique for summarizing
multivariate data, Behavioral science 12 (1967) 153–155.

[10] J. MacQueen, et al., Some methods for classification and anal-
ysis of multivariate observations, in: Proceedings of the fifth
Berkeley symposium on mathematical statistics and probability,
Vol. 1, Oakland, CA, USA., 1967, pp. 281–297.

[11] B. Mirkin, Clustering: a data recovery approach, CRC Press,
2012.

[12] R. C. De Amorim, B. Mirkin, Minkowski metric, feature
weighting and anomalous cluster initializing in k-means clus-
tering, Pattern Recognition 45 (3) (2012) 1061–1075.

[13] B. Mirkin, Clustering: A Data Recovery Approach, Computer
Science & Data Analysis, Chapman & Hall/CRC, 2012.

[14] M. M.-T. Chiang, B. Mirkin, Intelligent choice of the number
of clusters in k-means clustering: an experimental study with
different cluster spreads, Journal of classification 27 (1) (2010)
3–40.

[15] R. C. de Amorim, An empirical evaluation of different initializa-
tions on the number of k-means iterations, in: Mexican Interna-
tional Conference on Artificial Intelligence, Springer, 2012, pp.
15–26.

[16] R. L. Melvin, R. C. Godwin, J. Xiao, W. G. Thompson, K. S.
Berenhaut, F. R. Salsbury Jr, Uncovering large-scale conforma-
tional change in molecular dynamics without prior knowledge,
Journal of Chemical Theory and Computation.

[17] I. Guyon, A. Elisseeff, An introduction to variable and feature
selection, Journal of machine learning research 3 (Mar) (2003)
1157–1182.

[18] H. Liu, H. Motoda, R. Setiono, Z. Zhao, Feature selection: An
ever evolving frontier in data mining., FSDM 10 (2010) 4–13.

[19] G. Chandrashekar, F. Sahin, A survey on feature selection meth-
ods, Computers & Electrical Engineering 40 (1) (2014) 16–28.

[20] J.-C. Lamirel, P. Cuxac, K. Hajlaoui, A novel approach to fea-
ture selection based on quality estimation metrics, in: Advances
in Knowledge Discovery and Management, Springer, 2017, pp.
121–140.

[21] J.-C. Lamirel, I. Falk, C. Gardent, Federating clustering and

9



cluster labelling capabilities with a single approach based on
feature maximization: French verb classes identification with
igngf neural clustering, Neurocomputing 147 (2015) 136–146.

[22] J. G. Dy, Unsupervised feature selection, Computational meth-
ods of feature selection (2008) 19–39.

[23] S. Alelyani, J. Tang, H. Liu, Feature selection for clustering: A
review., Data Clustering: Algorithms and Applications 29.

[24] M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral tech-
niques for embedding and clustering., in: NIPS, Vol. 14, 2001,
pp. 585–591.

[25] A. Y. Ng, M. I. Jordan, Y. Weiss, et al., On spectral clustering:
Analysis and an algorithm, Advances in neural information pro-
cessing systems 2 (2002) 849–856.

[26] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, et al., Least an-
gle regression, The Annals of statistics 32 (2) (2004) 407–499.

[27] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical
learning: data mining, inference, and prediction, Springer Series
in Statistics, Springer, 2009.

[28] C. Blake, C. J. Merz, {UCI} repository of machine learning
databases.

[29] W. M. Rand, Objective criteria for the evaluation of cluster-
ing methods, Journal of the American Statistical association
66 (336) (1971) 846–850.

[30] L. Hubert, P. Arabie, Comparing partitions, Journal of classifi-
cation 2 (1) (1985) 193–218.

[31] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. PéRez, I. Per-
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