
ar
X

iv
:1

51
0.

07
46

2v
2

 [
cs

.C
C

]
 5

 J
an

 2
01

7

Recognizing Union-Find trees is NP-complete✩

Kitti Gelle1, Szabolcs Iván1

aUniversity of Szeged, Hungary

Abstract

Disjoint-Set forests, consisting of Union-Find trees are data structures having a widespread practical appli-
cation due to their efficiency. Despite them being well-known, no exact structural characterization of these
trees is known (such a characterization exists for Union trees which are constructed without using path
compression). In this paper we provide such a characterization by means of a simple push operation and
show that the decision problem whether a given tree is a Union-Find tree is NP-complete.

1. Introduction

Disjoint-Set forests, introduced in [10], are fun-
damental data structures in many practical algo-
rithms where one has to maintain a partition of
some set, which support three operations: creat-
ing a partition consisting of singletons, querying
whether two given elements are in the same class of
the partition (or equivalently: finding a representa-
tive of a class, given an element of it) and merging
two classes. Practical examples include e.g. build-
ing a minimum-cost spanning tree of a weighted
graph [4], unification algorithms [17] etc.
To support these operations, even a linked list
representation suffices but to achieve an almost-
constant amortized time cost per operation,
Disjoint-Set forests are used in practice. In this
data structure, sets are represented as directed
trees with the edges directed towards the root; the
create operation creates n trees having one node
each (here n stands for the number of the ele-
ments in the universe), the find operation takes
a node and returns the root of the tree in which the
node is present (thus the same-class(x, y) opera-
tion is implemented as find(x) == find(y)), and
the merge(x, y) operation is implemented by merg-
ing the trees containing x and y, i.e. making one of
the root nodes to be a child of the other root node
(if the two nodes are in different classes).
In order to achieve near-constant efficiency, one has
to keep the (average) height of the trees small.

✩This research was supported by NKFI grant number
K108448.

There are two “orthogonal” methods to do that:
first, during the merge operation it is advisable to
attach the “smaller” tree below the “larger” one. If
the “size” of a tree is the number of its nodes, we
say the trees are built up according to the union-by-
size strategy, if it’s the depth of a tree, then we talk
about the union-by-rank strategy. Second, during
a find operation invoked on some node x of a tree,
one can apply the path compression method, which
reattaches each ancestor of x directly to the root
of the tree in which they are present. If one ap-
plies both the path compression method and either
one of the union-by-size or union-by-rank strategies,
then any sequence of m operations on a universe
of n elements has worst-case time cost O(mα(n))
where α is the inverse of the extremely fast grow-
ing (not primitive recursive) Ackermann function
for which α(n) ≤ 5 for each practical value of
n (say, below 265535), hence it has an amortized
almost-constant time cost [22]. Since it’s proven [9]
that any data structure has worst-case time cost
Ω(mα(n)), the Disjoint-Set forests equipped with
a strategy and path compression offer a theoreti-
cally optimal data structure which performs excep-
tionally well also in practice. For more details see
standard textbooks on data structures, e.g. [4].

Due to these facts, it is certainly interesting both
from the theoretical as well as the practical point of
view to characterize those trees that can arise from
a forest of singletons after a number of merge and
find operations, which we call Union-Find trees in
this paper. One could e.g. test Disjoint-Set imple-
mentations since if at any given point of execution

Preprint submitted to Elsevier September 26, 2021

http://arxiv.org/abs/1510.07462v2

a tree of a Disjoint-Set forest is not a valid Union-
Find tree, then it is certain that there is a bug in
the implementation of the data structure (though
we note at this point that this data structure is
sometimes regarded as one of the “primitive” data
structures, in the sense that is is possible to imple-
ment a correct version of them that needs not be
certifying [20]). Nevertheless, only the characteri-
zation of Union trees is known up till now [2], i.e.
which correspond to the case when one uses one of
the union-by- strategies but not path compression.
Since in that case the data structure offers only a
theoretic bound of Θ(logn) on the amortized time
cost, in practice all implementations imbue path
compression as well, so for a characterization to be
really useful, it has to cover this case as well.
In this paper we show that the recognition prob-
lem of Union-Find trees is NP-complete when the
union-by-size strategy is used (and leave open the
case of the union-by-rank strategy). This confirms
the statement from [2] that the problem “seems
to be much harder” than recognizing Union trees
(which in turn can be done in low-degree polyno-
mial time).
Related work. There is an increasing inter-
est in determining the complexity of the recog-
nition problem of various data structures. The
problem was considered for suffix trees [16, 21],
(parametrized) border arrays [14, 19, 8, 13, 15], suf-
fix arrays [1, 7, 18], KMP tables [6, 12], prefix ta-
bles [3], cover arrays [5], and directed acyclic word-
and subsequence graphs [1].

2. Notation

A tree is a tuple t = (Vt,roott, parentt) with Vt

being the finite set of its nodes, roott ∈ Vt its
root and parentt : (Vt − {roott}) → Vt mapping
each non-root node to its parent (so that the graph
of parentt is a directed acyclic graph, with edges
being directed towards the root).
For a tree t and a node x ∈ Vt, let children(t, x)
stand for the set {y ∈ Vt : parentt(y) = x} of its
children and children(t) stand as a shorthand for
children(t,roott), the set of depth-one nodes of
t. Two nodes are siblings in t if they have the same
parent. Also, let x �t y denote that x is an ancestor
of y in t, i.e. x = parent

k
t (y) for some k ≥ 0

and let size(t, x) = |{y ∈ Vt : x �t y}| stand for
the number of descendants of x (including x itself).
Let size(t) stand for size(t,roott), the number of
nodes in the tree t. For x ∈ Vt, let t|x stand for

the subtree (Vx = {y ∈ Vt : x �t y}, x, parentt|Vx
)

of t rooted at x. When x, y ∈ Vt, we say that x
is lighter than y in t (or y is heavier than x) if
size(t, x) < size(t, y).

Two operations on trees are that of merg-
ing and collapsing. Given two trees
t = (Vt,roott, parentt) and s =
(Vs,roots, parents) with Vt and Vs be-
ing disjoint, their merge merge(t, s) (in this
order) is the tree (Vt ∪ Vs,roott, parent)
with parent(x) = parentt(x) for x ∈ Vt,
parent(roots) = roott and parent(y) =
parents(y) for each non-root node y ∈ Vs of
s. Given a tree t = (V,root, parent) and a
node x ∈ V , then collapse(t, x) is the tree
(V,root, parent′) with parent

′(y) = root

if y is a non-root ancestor of x in t, and
parent

′(y) = parent(y) otherwise. For ex-
amples, see Figure 1.

The class of Union trees is the least class of trees
satisfying the following two conditions: every sin-
gleton tree (having exactly one node) is a Union
tree, and if t and s are Union trees with size(t) ≥
size(s), then merge(t, s) is a Union tree as well.

Analogously, the class of Union-Find trees is the
least class of trees satisfying the following three con-
ditions: every singleton tree is a Union-Find tree, if
t and s are Union-Find trees with size(t) ≥ size(s),
then merge(t, s) is a Union-Find tree as well, and
if t is a Union-Find tree and x ∈ Vt is a node of t,
then collapse(t, x) is also a Union-Find tree.

We’ll frequently sum the size of “small enough” chil-
dren of nodes, so we introduce a shorthand also for
that: for a tree t, a node x of t, and a thresholdW ≥
0, let sumsize(t, x,W) stand for

∑

{size(t, y) : y ∈
children(t, x), size(t, y) ≤ W}. We say that a
node x of a tree t satisfies the Union condition if
for each child y of x we have sumsize(t, x,W) ≥ W
where W = size(t, y) − 1. Otherwise, we say that
x violates the Union condition (at child y). Then,
the characterization of Union trees from [2] can be
formulated in our terms as follows:

Theorem 1. A tree t is a Union tree if and only
if each node x of t satisfies the Union condition.

Equivalently, x satisisfies the Union condition if and
only if whenever x1, . . . , xk is an enumeration of
children(t, x) such that size(t, xi) ≤ size(t, xi+1)
for each i, then

∑

j<i size(t, xj) ≥ size(t, xi) − 1
for each i = 1, . . . , k. (In particular, each non-leaf
node has to have a leaf child.)

2

3. Structural characterization of Union-Find
trees

Suppose t and s are trees on the same set V of nodes
and with the same root r. We write t � s if x �t y
implies x �s y for each x, y ∈ V . For an example,
consult Figure 1. There, t′′′ � t′′ (e.g. r �t′′′ x and
also r �t′′ x); the reverse direction does not hold
since e.g. y �t′′ z but y 6�t′′′ z. Also, the reader is
encouraged to verify that t′′′ � t′ � t′′ also holds.
Clearly, � is a partial order on any set of trees
(i.e. is a reflexive, transitive and antisymmetric re-
lation). It is also clear that t � s if and only if
parentt(x) �s x holds for each x ∈ V −{r} which
is further equivalent to requiring parentt(x) �s

parents(x) since parentt(x) cannot be x.
Another notion we define is the (partial) operation
push on trees as follows: when t is a tree and
x 6= y ∈ Vt are siblings in t, then push(t, x, y)
is defined as the tree (Vt,roott, parent

′) with

parent
′(z) =

{

y if z = x,

parentt(z) otherwise
, that is,

we “push” the node x one level deeper in the tree
just below its former sibling y. (See Figure 1.)
We write t ⊢ t′ when t′ = push(t, x, y) for
some x and y, and as usual, ⊢∗ denotes the
reflexive-transitive closure of ⊢. Observe that when
t′ = push(t, x, y), then size(t′, y) = size(t, y) +
size(t, x) > size(t, y) and size(t′, z) = size(t, z)
for each z 6= y, hence ⊢∗ is also a partial ordering
on trees. This is not a mere coincidence:

Proposition 1. For any pair s and t of trees, t � s
if and only if t ⊢∗ s.

Proof. For ⊢∗ implying � it suffices to show that
⊢ implies � since the latter is a partial order. So
let t = (V, r, parent), and x 6= y ∈ V be siblings in
t with the common parent z, and s = push(t, x, y).
Then, since parentt(x) = z = parents(y) =
parents(parents(x)), we get parentt(x) �s x,
and by parentt(w) = parents(w) for each node
w 6= x, we have t � s.
It is clear that � is equality on singleton trees, thus
� implies ⊢∗ for trees of size 1. We apply induction
on the size of t = (V, r, parent) to show that when-
ever t � s = (V, r, parent′), then t ⊢∗ s as well.
Let X stand for the set children(t) of depth-one
nodes of t and Y stand for children(s). Clearly,
Y ⊆ X since by t � s, any node x of t having
depth at least two has to satisfy parent(x) �s

parent
′(x) and since parent(x) 6= r for such

nodes, x has to have depth at least two in s as
well. Let {x1, . . . , xk} stand for X − Y . Now for
any node xi ∈ X − Y there exists a unique node
yi ∈ Y such that yi �s xi. Let us define the
trees t0 = t, ti = push(ti−1, xi, yi). Then t ⊢∗ tk,
children(tk) = Y = children(s) and for each
y ∈ Y , tk|y � s|y. Applying the induction hypothe-
sis we get that tk|y ⊢∗ s|y for each y ∈ Y , hence the
immediate subtrees of tk can be transformed into
the immediate subtrees of s by repeatedly applying
push operations, hence t ⊢∗ s as well.

The relations � and ⊢∗ are introduced due to their
intimate relation to Union-Find and Union trees:

Theorem 2. A tree t is a Union-Find tree if and
only if t ⊢∗ s for some Union tree s.

Proof. Let t be a Union-Find tree. We show the
claim by structural induction. For singleton trees
the claim holds since any singleton tree is a Union
tree as well. Suppose t = merge(t1, t2). Then by
the induction hypothesis, t1 ⊢∗ s1 and t2 ⊢∗ s2
for the Union trees s1 and s2. Then, for the tree
s = merge(s1, s2) we get that t ⊢∗ s. Finally,
assume t = collapse(t′, x) for some node x. Let
x = x1 ≻ x2 ≻ . . . ≻ xk = roott′ be the ancestral
sequence of x in t′. Then, defining t0 = t, ti =
push(ti−1, xi, xi+1) we get that t ⊢∗ tk−1 = t′ and
t′ ⊢∗ s for some Union tree applying the induction
hypothesis, thus t ⊢∗ s also holds.
Now assume t ⊢∗ s (equivalently, t � s by Propo-
sition 1) for some Union tree s. Let X stand
for the set children(t) of depth-one nodes of t
and Y stand for children(s). By t � s we get
that Y ⊆ X . Let {x1, . . . , xk} stand for the set
X − Y . Then for each xi there exists a unique
yi ∈ Y with yi �s xi. Let us define the sequence
t = t0 ⊢ t1 ⊢ . . . ⊢ tk with ti = push(ti−1, xi, yi).
Then, tk � s holds. Moreover, as children(tk) =
children(s) = Y , we get that tk|y � s|y for each
y ∈ Y . Applying the induction hypothesis we have
that each subtree tk|y is a Union-Find tree. Now
let us define the sequence t′0, t

′
1, . . . , t

′
k of trees as

follows: t′0 is the singleton tree with root roott,
and t′i = merge(t′i−1, tk|y′

i
) where Y = {y′1, . . . , y

′
ℓ}

is an enumeration of the members of Y such that
size(s, y′i) ≤ 1+

∑

j<i

size(s, y′j) for each i = 1, . . . , ℓ.

(Such an ordering exists as s is a Union tree.) Since
size(t′i−1) = 1 +

∑

j<i

size(s, y′j), we get thet each t′i

is a Union-Find tree as well.

3

Finally, the tree t results from the tree t′k
constructed above by applying successively one
collapse operation on each node in X − Y , hence
t is a Union-Find tree as well.

4. Complexity

In this section we show that the recognition of
Union-Find trees is NP-complete. Note that mem-
bership in NP is clear by Theorem 2 and that the
possible number of pushes is bounded above by n2:
upon pushing x below y, the size of y increases,
while the size of the other nodes remains the same.
Since the size of any node is at most n, the sum of
the sizes of all the nodes is at most n2 in any tree.
LetH > 0 be a parameter (which we call the “heav-
iness threshold parameter” later on) to be speci-
fied later and t = (V,root, parent) be a tree.
We call a node x light if size(t, x) ≤ H , heavy if
size(t, x) > H , and a basket if it has a heavy child
in t. Note that every basket is heavy. A particular
type of basket is an empty basket which is a node
having a single child of size H + 1. (Thus empty
baskets have size H + 2.)
Let us call a tree t0 flat if it satisfies all the following
conditions:

1. There are K > 0 depth-one nodes of t0 which
are empty baskets.

2. There is exactly one non-basket heavy depth-
one node of t0, with size H + 1.

3. The total size of light depth-one nodes is (K+
1)·H . That is, sumsize(t0,roott0 , H) = (K+
1) ·H .

4. The light nodes and non-basket heavy nodes
have only direct children as descendants, thus
in particular, the subtrees rooted at these
nodes are Union trees.

See Figure 2.
The fact that the push operation cannot decrease
the size of a node has a useful corollary:

Proposition 2. If t ⊢∗ t′, and x is a heavy (basket,
resp.) node of t, then x is a heavy (basket, resp.)
node of t′ as well. Consequently, if x is light in t′,
then x is light in t as well.

Proof. Retaining heaviness simply comes from
size(t, x) ≤ size(t′, x). When x is a basket node
of t, say having a heavy child y, then by x �t y
and t ⊢∗ t′ (that is, t � t′) we get x �t′ y
as well, hence x has a (unique) child z which is

an ancestor of y in t′ (alliwing y = z), thus by
size(t′, z) ≥ size(t′, y) ≥ size(t, y) we get that z is
heavy in t′ hence x is a basket of t′ as well.

We will frequently sum the sizes of the light chil-
dren of nodes, so for a tree t and node x of t, let
sumlight(t, x) stand for sumsize(t, x,H), the to-
tal size of the light children of x in t.
We introduce a charge function c as follows: for a
tree t and node x ∈ Vt, let the charge of x in t,
denoted c(t, x), be

c(t, x) =

{

0 if x is a light node of t,

sumlight(t, x) −H otherwise.

It’s worth observing that when x is a non-basket
heavy node of t, then sumlight(t, x) = size(t, x)−
1 (since by being non-basket, each child of x is
light).
Note that in particular the charge of a node is com-
putable from the multiset of the sizes of its children
(or, from the multiset of the sizes of its light chil-
dren along with its own size). Let t′ = push(t, x, y)
and let z = parentt(y) be the common parent
of x and y in t. Then, c(t, w) = c(t′, w) for each
node w /∈ {y, z} since for those nodes this multi-
set does not change. We now list how c(t′, y) and
c(t′, z) vary depending on whether y and x are light
or heavy nodes. Note that size(t′, z) = size(t, z)
(thus the charge of z can differ in t and t′ only if
z is heavy and sumlight(t′, z) 6= sumlight(t, z))
and size(t′, y) = size(t, x) + size(t, y).

i) If x and y are both light nodes with size(t, x)+
size(t, y) ≤ H (i.e. y remains light in t′ after
x is pushed below y) then sumlight(t′, z) =
sumlight(t, z) hence c(t, z) = c(t′, z) and
c(t′, y) = c(t, y) = 0 since y is still light in
t′.

ii) If x and y are both light nodes with size(t, x)+
size(t, y) > H (i.e. y becomes heavy due to
the pushing), then z is heavy as well (both in
t and in t′ since size(t, z) = size(t′, z)). Then
since sumlight(t′, z) = sumlight(t, z) −
(size(t, x) + size(t, y)), we get c(t′, z) =
c(t, z) − (size(t, x) + size(t, y)) and c(t′, y) =
size(t, y)+ size(t, x)− (H+1) since y is heavy
in t′ having only light children (by the assump-
tion, x is still light and each child of y already
present in t have to be also light since y itself
is light in t).

iii) If x is heavy and y is in light in t, then af-
ter pushing, y becomes heavy as well (and z

4

is also heavy). Then, by sumlight(t′, z) =
sumlight(t, z) − size(t, y) (since the child y
of z loses its status of being light) we have
c(t′, z) = c(t, z) − size(t, y) and in t′, y is a
heavy node with light children of total size
size(t, y)− 1, hence c(t′, y) = size(t, y)− (H+
1) (while c(t, y) = 0 since y is light in t).

iv) If x is light and y is heavy in t, then z is heavy
as well, z loses its light child x while y gains the
very same light child, hence c(t′, z) = c(t, z)−
size(t, x) and c(t′, y) = c(t, y) + size(t, x).

v) Finally, if both x and y are heavy, then z is
heavy as well, and since neither z nor y loses
or gains a light child, c(t′, z) = c(t, z) and
c(t′, y) = c(t, y).

Observe that in Cases i), iv) and v) we have
∑

x∈Vt

c(t, x) =
∑

x∈Vt

c(t′, x) while in Cases ii) and iii)

it holds that
∑

x∈Vt

c(t, x) >
∑

x∈Vt

c(t′, x) (namely, the

total charge decreases by H+1 in these two cases).
Now for a flat tree t0 it is easy to
check that

∑

x∈Vt0

c(t0, x) is zero: we have

sumlight(t0,roott0) = (K + 1) · H by as-
sumption, hence the root node is in particular
heavy and c(t0,roott0) = K · H , the empty
baskets (having no light node at all) have charge
−H each and there are K of them, finally, all the
heavy nodes of size H + 1 have charge zero as well
as each light node, making up the total sum of
charges to be zero.
The charge function we introduced turns out to be
particularly useful due to the following fact:

Proposition 3. If t is a Union tree, then c(t, x) ≥
0 for each node of t.

Proof. If x is a light node of t, then c(t, x) = 0
and we are done.
If x is a heavy node which is not a basket, then all of
its children are light nodes, thus sumlight(t, x) =
size(t, x) − 1, making c(t, x) = size(t, x) − (H +
1) which is nonnegative since size(t, x) > H by x
being heavy.
Finally, if x is a basket node of t, then it has at
least one heavy child. Let y be a lightest heavy
child of x. Since t is a Union tree, we have
sumsize(t, x, size(t, y) − 1) ≥ size(t, y) − 1. By
the choice of y, every child of x which is lighter
than y is light itself, thus sumsize(t, x, size(t, y)−
1) = sumsize(t, x,H) = sumlight(t, x), more-
over, size(t, y) − 1 ≥ H since y is heavy,

thus sumlight(t, x) ≥ H yielding c(t, x) =
sumlight(t, x) − H ≥ 0 and the statement is
proved.

Thus, since a flat tree has total charge 0 while in a
Union tree each node has nonnegative charge, and
the push operation either decreases the total charge
in Cases ii) and iii) above, or leaves the total charge
unchanged in the other cases, we get the following:

Lemma 1. Suppose t0 ⊢∗ t for a flat tree t0 and a
Union tree t. Then for any sequence of push opera-
tions transforming t0 into t, each push operation is
of type i), iv) or v) above, i.e.

• either a light node is pushed into a light node,
yielding still a light node;

• or some node (either heavy or light) is pushed
into a heavy node.

Moreover, the charge of each node of t has to be
zero.

In particular, a heavy node x has charge 0 in a tree
t if and only if sumlight(t, x) = H yielding also
that each non-basket heavy node of t has to be of
size exactly H + 1. It’s also worth observing that
by applying the above three operations one does
not create a new heavy node: light nodes remain
light all the time. Moreover, if for a basket node
sumlight(t, x) = H in a Union tree t, then there
has to exist a heavy child of x in t of size exactly
H + 1 (by x being a basket node, there exists a
heavy child and if the size of the lightest heavy child
is more than H + 1, then the Union condition gets
violated).
Recall that in a flat tree t0 with K empty baskets,
there are K + 1 baskets in total (the depth-one
empty baskets and the root node), and there are
K +1 non-basket heavy nodes (one in each basket,
initially), each having size H + 1, and all the other
nodes are light.
Thus if t0 ⊢∗ t for some Union tree t, then the set
of non-basket heavy nodes coincide in t0 and in t,
and also in t, the size of each such node x is still
H + 1. In particular, one cannot increase the size
of x by pushing anything into x.
Summing up the result of the above reasoning we
have:

Lemma 2. Suppose t0 ⊢∗ t for some flat tree t0
and some Union tree t. Then for any pushing se-
quence transforming t0 into t, each step ti ⊢ ti+1 of

5

the push chain with ti+1 = push(ti, x, y) has to be
one of the following two forms:

• x and y are light in ti and in ti+1 as well.

• y is a basket in ti (and in ti+1 as well).

We can even restrict the order in which the above
operations are applied.

Lemma 3. If t0 ⊢∗ t for some flat tree t0 and
Union tree t, then there is a push sequence t0 ⊢
t1 ⊢ . . . ⊢ tk = t with ti+1 = push(ti, xi, yi) and an
index ℓ such that for each i ≤ ℓ, yi is a basket node
and for each i > ℓ, both xi and yi are light nodes
with size(ti, xi) + size(ti, yi) ≤ H.

Proof. Indeed, assume ti+1 = push(ti, x, y) for
the light nodes x and y of ti with size(ti, x) +
size(ti, y) ≤ H and ti+2 = push(ti+1, z, w) for the
basket w of ti+1. Then we can modify the sequence
as follows:

• if z = y, then we can get ti+2 from ti by push-
ing x and y into the basket w first, then push-
ing x into y;

• otherwise we can simply swap the two push op-
erations since w cannot be either x or y (since
light nodes are not baskets), nor descendants
of x or y, thus z and w are already siblings in
ti as well, hence z can be pushed into w also
in ti, and afterwards since x and y are siblings
in the resulting tree, x can be pushed into y.

Applying the above modification finitely many
times we arrive to a sequence of trees satisfying the
conditions of the Lemma. Thus if t0 ⊢∗ t for some
flat tree t0 and Union tree t, we can assume that
first we push nodes into baskets, then light nodes
into light nodes, yielding light nodes.

However, it turns out the latter type of pushing
cannot fix the Union status of the trees we consider.

Proposition 4. Suppose t is a tree with a basket
node x violating the Union condition, i.e. for some
child y of x it holds that sumsize(t, x, size(t, y) −
1) < size(t, y) − 1. Then for any tree t′ =
push(t, z, w) with z and w being light nodes with
total size at most H we have that x still violates
the Union condition in t′.

Proof. If z (and w) are not children of x, then
children(t, x) = children(t′, x) (since in par-
ticular w 6= x by w being light and x being a

basket) and each child of x also has the same
size in t′ as in t, hence the Union condition is
still violated. Now assume z and w are chil-
dren of x. Upon pushing, x loses a child of size
size(t, z) and a child of size size(t, w) and gains a
child of size size(t, z) + size(t, w). It is clear that
sumsize(t, x,W) ≥ sumsize(t′, x,W) for each pos-
sible W then (equality holds when W ≥ size(t, z)+
size(t, w) or W < min{size(t, w), size(t, z)} and
strict inequality holds in all the other cases). It
is also clear that there is at least one child y′

of x in t′ such that size(t, y) ≤ size(t′, y′): if
y 6= z then y′ = y suffices, otherwise y′ = w
is fine. Now let y0 be such a child with W =
size(t′, y0) being the minimum possible. Then
sumsize(t′, x,W − 1) = sumsize(t′, x, size(t, y) −
1) ≤ sumsize(t, x, size(t, y)− 1) < size(t, y)− 1 ≤
size(t′, y0) − 1 and thus x still violates the Union
condition in t′ as well.

Hence we have:

Proposition 5. Suppose t0 is a flat tree. Then, t0
is a Union-Find tree if and only if t0 ⊢ t1 ⊢ . . . ⊢
tk for some Union tree tk such that at each step
ti ⊢ ti+1 of the chain with ti+1 = push(ti, x, y), the
node y is a basket node in ti (and consequently, in
all the other members of the sequence as well).

Proof. Observe that initially in any flat tree t0,
only basket nodes violate the Union condition.
Moreover, by pushing arbitrary nodes into baskets
only the baskets’ Union status can change (namely,
upon pushing into some basket x, the status of x
and its parent can change, which is also a basket).
Thus, after pushing nodes into baskets we either al-
ready have a Union tree, or not, but in the latter
case we cannot transform the tree into a Union tree
by pushing light nodes into light nodes by Proposi-
tion 4.

Hence we arrive to the following characterization:

Proposition 6. Assume t0 is a flat tree having K
empty baskets. Then, t0 is a Union-Find tree if and
only if the set L of its depth-one light nodes can
be partitioned into sets L1, . . . , LK+1 such that for
each 1 ≤ i ≤ K +1,

∑

x∈Li
size(t0, x) = H and for

each y ∈ Li,
∑

z∈Li,size(t0,z)<size(t0,y)
size(t0, z) ≥

size(t0, y)− 1.

Proof. Recall that non-basket nodes of a flat tree
satisfy the Union condition. Assume the set L

6

of the depth-one light nodes of t0 can be parti-
tioned into sets Li, i = 1, . . . ,K + 1 as above. Let
y1, . . . , yK be the empty basket nodes of t0. Then
by pushing every member of Li into the basket yi
(and leaving members of LK+1 at depth one) we
arrive to a tree t whose basket nodes satisfy the
Union condition (their light children do not violate
the condition due to the assumption on Li, and
their only heavy child having size H + 1 does not
violate the condition either since sumlight(t, x) =
∑

x∈Li
size(t0, x) = H due also to the assumption

on Li. Finally, the root node has K children (the
initially empty baskets) of size 2H + 2 but since it
has light children of total size H and a heavy child
of size H + 1, their sizes summing up to 2H + 1,
the depth-one baskets also do not violate the Union
condition. Hence t0 ⊢∗ t for some Union tree t, thus
is a Union-Find tree.
For the other direction, assume t0 is a Union-Find
tree. Then since t0 is also a flat tree, it can be trans-
formed into a Union tree t by repeatedly pushing
nodes into baskets only. Since the pushed nodes’
original parents are baskets as well (since they are
parents of the basket into which we push), a node
is a child of a basket node in t if and only if it is
a child of a (possibly other) basket node in t0. We
also know that the charge of each node in the Union
tree we gain at the end has to be zero, in particu-
lar, each basket x still has to have a heavy child of
size exactly H + 1 and sumlight(t, x) = H has to
hold. Let y1, . . . , yK+1 stand for the basket nodes
of t0 (and of t as well): then, defining Li as the set
of light children of yi in t suffices.

At this point we recall that the following problem 3-
Partition is NP-complete in the strong sense [11]:
given a list a1, . . . , a3m of positive integers with the

value B =
∑

3m
i=1

ai

m
being an integer, such that for

each 1 ≤ i ≤ 3m we have B
4 < ai < B

2 , does
there exist a partition B = {B1, . . . , Bk} of the
set {1, . . . , 3m} satisfying

∑

i∈Bj
ai = B for each

1 ≤ j ≤ k?
(Here “in the strong sense” means that the prob-
lem remains NP-complete even if the numbers are
encoded in unary.)
Observe that by the condition B

4 < ai <
B
2 each set

Bj has to contain exactly three elements (the sum
of any two of the input numbers is less than B and
the sum of any four of them is larger than B), thus
in particular in any solution above k = m holds.
Note also that for any given instance I =
a1, . . . , a3m of the above problem and any given

offset c ≥ 0, the instance I ′ = a′1, . . . , a
′
3m with

a′i = ai + c for each i and with B′ = B + 3c, the
set of solutions of I and I ′ coincide. Indeed, the
instance I ′ still satisfies

B′

4
=

B + 3c

4
=

B

4
+

3

4
c <

B

4
+ c < ai + c = a′i

= ai + c <
B

2
+

3

2
c =

B + 3c

2
=

B′

2
,

hence each solution B′ = {B′
1, . . . , B

′
k} of I ′ still

contains triplets and
∑

i∈B′

j
a′i = 3c +

∑

i∈B′

j
ai

which is B′ if and only if
∑

i∈B′

j
ai = B, thus any

solution of I ′ is also a solution of I, the other di-
rection being also straightforward to check.

Thus, by setting the above offset to c = ⌈(1 +
max{2⌈logB⌉, 24}−B)/3⌉ (in which caseB′ = 2D+d
for some suitable integers D > 3 and d ∈ {1, 2, 3})
we get that the following problem is also strongly
NP-complete:

Definition 1 (3-Partition’). Input: A sequence
a1, . . . , a3m of positive integers such that B =
∑

3m
i=1

ai

m
is a positive integer of the form 2D + d

for some integer D > 3 and d ∈ {1, 2, 3} and
B
4 < ai <

B
2 for each i = 1, . . . , 3m.

Output: Does there exist a partition B =
{B1, . . . , Bk} of the set {1, . . . , 3m} satisfying
∑

i∈Bj
ai = B for each j ∈ {1, . . . , k}?

Observe that in any solution, k = m and each Bj

consists of exactly three elements.

We are now ready to show the NP-completeness of
the recognition of Union-Find trees via a (logspace,
many-to-one) reduction from the 3-Partition’
problem to it. To each instance I = a1, . . . , a3m
of the 3-Partition’ problem we associate the fol-
lowing flat tree t(I):

• The number K of empty baskets in t(I) is m−
1.

• The heaviness threshold parameter H of the
tree is B + 2D−1 − 1 where B = 2D + d is the

target sum
∑

3m
i=1

ai

m
withD > 3 being an integer

and d ∈ {1, 2, 3}.

• There are 3m+(D− 1)m light nodes of depth
one in t(I): first, to each member ai of the
input a light node xi of size ai is associated,
and to each index 1 ≤ i ≤ m and 0 ≤ j < D−1,
a light node yji of size wj

i = 2j is associated.

7

Note that since the 3-Partition’ problem is
strongly NP-complete we can assume that the in-
put numbers ai are encoded in unary, thus the tree
t(I) can be indeed built in logspace (and in poly-
time).

(See Figure 3 for an example.)

In order to ease notation we say that a member ai
of some sequence (or multiset) a1, . . . , an satisfies
the Union condition if the sum of the members of
the sequence that are less than ai is at least ai − 1,
i.e.

∑

aj<ai

aj ≥ ai − 1. In addition we say that the

sequence itself satisfies the Union condition if each
of its elements does so. It is clear that a node x of
a tree t satisfies the Union condition if and only if
the multiset {size(t, y) : y ∈ children(t, x)} does
so.

The following lemma states that the above con-
struction is indeed a reduction:

Lemma 4. For any instance I of the 3-
Partition’ problem, I has a solution iff t(I)
is a Union-Find tree.

Proof. For one direction, assume {B1, . . . , Bm} is
a solution of the instance I = a1, . . . , a3m. Then
the multiset of the sizes of the light nodes can be
partitioned into sets L = (L1, . . . , Lm) as Li = {aj :

j ∈ Bi} ∪ {wj
i : 0 ≤ j < D − 1}. It is clear that

∑

ℓ∈Li
ℓ = B + 2D−1 − 1 = H . Thus, by Propo-

sition 6 we only have to show that each Li satis-
fies the Union condition. For the elements wj

i of

size 2j it is clear since
∑j−1

j′=0 w
j′

i = 2j − 1. Now
let a be the smallest element of Bi. Then, since
Bi consists of three integers summing up to B, we
get that a ≤ B

3 . On the other hand, B
4 < a by

the definition of the 3-Partition’ problem. Recall
that B = 2D + d for some d ∈ {1, 2, 3}: we get
that 2D−2 < a, thus in particular each weight wj

i

is smaller than a. Summing up all these weights
we get

∑D−2
j=0 wj

i = 2D−1 − 1. We claim that

a ≤ B
3 = 2D+d

3 < 2D−1 − 1. Indeed, multiplying
by 3 we get 2D + d < 2D + 2D−1 − 3, subtract-
ing 2D and adding 3 yields d + 3 < 2D−1 which
holds since d ≤ 3 and D > 3. Thus we have that
a satisfies the Union condition as well. Then, if
b > a is also a member of Bi, then it suffices to
show a+

∑D−2
j=0 wj

i ≥ b−1 but since a ≥ B
4 > 2D−2

and
∑D−2

j=0 wj
i = 2D−1 − 1, we get the left sum ex-

ceeds 2D−1 + 2D−2 − 1 which is at least b− 1 since
b < B

2 = 2D+d
2 ≤ 2D−1 + 2D−2 (since d ≤ 3 and

2D−2 ≥ 2 if D ≥ 3). Thus by Proposition 6, t(I) is
indeed a Union-Find tree. (See Figure 4.)
For the other direction, suppose t(I) is a Union-
Find tree. Then by Proposition 6, the multiset of
the sizes of the light nodes can be partitioned into
sets L = {L1, . . . , Lm} such that each Li sums up
exactly to H = B + 2D−1 − 1 and each Li satisfies
the Union condition.
First we show that each Li contains exactly one
“small” weight wj

k for each j = 0, . . . , D− 2. (Note
that each aj exceeds 2D−2 hence the name of these
weights.) We prove this by induction on j. The
claim holds for j = 0 since in a Union-Find tree
each inner node has a leaf child. By induction, the
smallest j members of Li have sizes 2

0, 21, . . . , 2j−1,
summing up to 2j − 1. Since all the weights ak
are larger than 2D−2 as well as the weights wj′

k for
j′ > j, none of these can be the (j + 1)th smallest
integer in Li without violating the Union condition.
Thus, each set Li has to have some wj

ki
as its j +

1th smallest element, and since both the number
of these sets and the number of the small weights
of size 2j are m we get that each set Li contains
exactly one small weight of size 2j .
Thus, the small weights sum up exactly to 2D−1−1
in each of the sets Li, hence the weights ai have to
sum up exactly to H − (2D−1 − 1) = 2D + d =
B in each of these sets, yielding a solution to the
instance (a1, . . . , a3m) of the 3-Partition’ problem
and concluding the proof.

Thus, since the strongly NP-complete 3-
Partition’ problem reduces to the problem
of deciding whether a flat tree is a Union-Find
tree, and moreover, if a flat tree is a Union-Find
tree, then it can be constructed from a Union tree
by applying finitely many path compressions (all
one has to do is to “move out” the light nodes from
the baskets by calling a find operation on each of
them successively), we have proven the following:

Theorem 3. It is NP-complete already for flat
trees to decide whether

i) a given (flat) tree is a Union-Find tree and

ii) whether a given (flat) tree can be constructed
from a Union tree by applying a number of path
compression operations.

5. Conclusion, future directions

We have shown that unless P = NP, there is no
efficient algorithm to check whether a given tree

8

is a valid Union-Find tree, assuming union-by-size
strategy and usage of path compression, since the
problem is NP-complete. A natural question is
whether the recognition problem remains NP-hard
assuming union-by-rank strategy (and of course
path compression)? Since the heights of merged
trees do not add up, only increase by at most one,
there is no “obvious” way to encode arithmetic into
the construction of these trees, and even the charac-
terization by the push operation is unclear to hold
in that case (since in that setting, path compression
can alter the order of the subsequent merging).

References

[1] H. Bannai, S. Inenaga, A. Shinohara, and M. Takeda.
Inferring strings from graphs and arrays. Lecture
Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2747:208–217, 2003. cited By 15.

[2] Leizhen Cai. The recognition of union trees. Inf. Pro-
cess. Lett., 45(6):279–283, 1993.

[3] Julien Clément, Maxime Crochemore, and Giuseppina
Rindone. Reverse engineering prefix tables. In Susanne
Albers and Jean-Yves Marion, editors, 26th Interna-
tional Symposium on Theoretical Aspects of Computer
Science, STACS 2009, February 26-28, 2009, Freiburg,
Germany, Proceedings, volume 3 of LIPIcs, pages 289–
300. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, Germany, 2009.

[4] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest,
and Charles E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition, 2001.

[5] M. Crochemore, C.S. Iliopoulos, S.P. Pissis, and G. Tis-
chler. Cover array string reconstruction. Lecture
Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 6129 LNCS:251–259, 2010. cited
By 8.

[6] J.-P. Duval, T. Lecroq, and A. Lefebvre. Efficient vali-
dation and construction of border arrays and validation
of string matching automata. RAIRO - Theoretical In-
formatics and Applications, 43(2):281–297, 2009. cited
By 12.

[7] J.-P. Duval and A. Lefebvre. Words over an ordered
alphabet and suffix permutations. Theoretical Infor-
matics and Applications, 36(3):249–259, 2002. cited By
19.

[8] Jean-Pierre Duval, Thierry Lecroq, and Arnaud Lefeb-
vre. Border array on bounded alphabet. J. Autom.
Lang. Comb., 10(1):51–60, January 2005.

[9] M. Fredman and M. Saks. The cell probe complexity of
dynamic data structures. In Proceedings of the Twenty-
first Annual ACM Symposium on Theory of Comput-
ing, STOC ’89, pages 345–354, New York, NY, USA,
1989. ACM.

[10] Bernard A. Galler and Michael J. Fisher. An improved
equivalence algorithm. Commun. ACM, 7(5):301–303,
May 1964.

[11] Michael R. Garey and David S. Johnson. Comput-
ers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman & Co., New York, NY,
USA, 1979.

[12] P. Gawrychowski, A. Jez, and L. Jez. Validating the
knuth-morris-pratt failure function, fast and online.
Theory of Computing Systems, 54(2):337–372, 2014.
cited By 7.

[13] Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. Counting parameterized border ar-
rays for a binary alphabet. In Language and automata
theory and applications, volume 5457 of Lecture Notes
in Comput. Sci., pages 422–433. Springer, Berlin, 2009.

[14] Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. Verifying and enumerating param-
eterized border arrays. Theoretical Computer Science,
412(50):6959 – 6981, 2011.

[15] Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. Verifying and enumerating pa-
rameterized border arrays. Theoret. Comput. Sci.,
412(50):6959–6981, 2011.

[16] Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. Inferring strings from suffix trees
and links on a binary alphabet. Discrete Applied Math-
ematics, 163, Part 3:316 – 325, 2014. Stringology Algo-
rithms.

[17] Kevin Knight. Unification: A multidisciplinary survey.
ACM Comput. Surv., 21(1):93–124, March 1989.

[18] Gregory Kucherov, Lilla Tóthmérész, and Stéphane
Vialette. On the combinatorics of suffix arrays. Infor-
mation Processing Letters, 113(22–24):915 – 920, 2013.

[19] Weilin Lu, P. J. Ryan, W. F. Smyth, Yu Sun, and
Lu Yang. Verifying a border array in linear time. J.
Comb. Math. Comb. Comput, 42:223–236, 2000.

[20] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and
Pascal Schweitzer. Certifying algorithms. Computer
Science Review, 5(2):119–161, 2011.

[21] Tatiana Starikovskaya and Hjalte Wedel Vildhøj. A
suffix tree or not a suffix tree? Journal of Discrete
Algorithms, 32:14 – 23, 2015. StringMasters 2012 2013
Special Issue (Volume 2).

[22] Robert Endre Tarjan. Efficiency of a good but not lin-
ear set union algorithm. J. ACM, 22(2):215–225, April
1975.

9

s: t:

x

z

r y

(a) Trees s and t

x y

z

r

(b) t′ = merge(s, t)

x

y

z

r

(c) t′′ = push(t′, x, y)

xy z

r

(d) t′′′ = collapse(t′′, z)

Figure 1: Merge, collapse and push.

Figure 2: A flat tree with H = 9, K = 3. The six depth-one light nodes’ sizes sum up to 4× 9 = 36.

Figure 3: Illustrating the reduction: t(I) for I = (5, 5, 5, 5, 5, 6, 6, 7, 7), m = 3, B = 17. Then D = 4, d = 1
and H = 24. Small weights wj

i are of size 1, 2, 4.

Figure 4: The Union tree corresponding to a solution of the instance on Figure 3.

10

	1 Introduction
	2 Notation
	3 Structural characterization of Union-Find trees
	4 Complexity
	5 Conclusion, future directions

