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Reaching a Target in the Plane with no Information

Andrzej Pelc∗

Abstract

A mobile agent has to reach a target in the Euclidean plane. Both the agent and the target
are modeled as points. At the beginning, the agent is at distance at most D > 0 from the target.
Reaching the target means that the agent gets at a sensing distance at most r > 0 from it. The
agent has a measure of length and a compass. We consider two scenarios: in the static scenario
the target is inert, and in the dynamic scenario it may move arbitrarily at any (possibly varying)
speed bounded by v. The agent has no information about the parameters of the problem, in
particular it does not know D, r or v. The goal is to reach the target at lowest possible cost,
measured by the total length of the trajectory of the agent.

Our main result is establishing the minimum cost (up to multiplicative constants) of reaching
the target under both scenarios, and providing the optimal algorithm for the agent. For the
static scenario the minimum cost is Θ((logD + log 1

r
)D2/r), and for the dynamic scenario it is

Θ((logM + log 1

r
)M2/r), where M = max(D, v). Under the latter scenario, the speed of the

agent in our algorithm grows exponentially with time, and we prove that for an agent whose
speed grows only polynomially with time, this cost is impossible to achieve.
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1 Introduction

The background and the problem. Finding a target hidden in various environments is a task

extensively studied in the literature. When the target is inert, this task is often called treasure

hunt, and when it can move, it is called pursuit. In the latter case, the target is sometimes called

the robber and the mobile agents chasing it are called cops.

The novelty of our formulation of this old problem is twofold. The environment is very simple,

it is the Euclidean plane, and the mobile agent that has to find the target has no information

whatsoever about the parameters of the problem. We ask what is the minimum cost, measured by

the total length of the trajectory of the agent to reach the target under this complete ignorance.

There is one mobile agent and the target, both modeled as points. At the beginning, the agent is

at distance at most D > 0 from the target. Reaching the target means that the agent gets at a

sensing distance at most r > 0 from it. When this happens, we say that the agent senses the target.

The agent has a measure of length and a compass showing the cardinal directions. We consider

two scenarios: in the static scenario the target is inert, and in the dynamic scenario it may move

arbitrarily at any (possibly varying) speed bounded by v. The agent has no information about the

parameters of the problem, in particular it does not know D, r or v. This total ignorance may

occur in many applications. If the target is a lost object, its position and even its distance from

the agent may be unknown. If it is a hostile agent able to move, the chasing agent may not know

any bound on its speed. Finally, the sensing distance at which the mobile agent can locate the

target may also be unknown because it may depend on factors impossible to control. For example,

if sensing is visual, the parameter r may depend on the unknown density of the fog, and if it is

chemical, it may depend on the unknown strength of the scent emitted by the target.

Our results. Our main result is establishing the minimum cost (up to multiplicative constants)

of reaching the target under both scenarios, and providing the optimal algorithm for the agent.

For the static scenario the minimum cost is Θ((logD + log 1
r
)D2/r), and for the dynamic scenario

it is Θ((logM + log 1
r
)M2/r), where M = max(D, v). Under the latter scenario, the speed of the

chasing agent in our algorithm grows exponentially with time, and we prove that for a chasing

agent whose speed grows only polynomially with time, this cost is impossible to achieve.

Related work. The problem of searching for a target by one or more mobile agents is an extensively

studied task that was investigated under many different scenarios. The environment where the

target is hidden may be a graph or a plane, the search may be deterministic or randomized, and

the target may be inert or mobile. The book [1] surveys both the search for a fixed target and

the related rendezvous problem, where the target and the finder are both mobile and their role is

symmetric: they both cooperate to meet. This book is concerned mostly with randomized search

strategies. In [9, 11] the authors study relations between the problems of treasure hunt (searching

for a fixed target) and rendezvous in graphs. By contrast, the survey [4] and the book [3] consider

pursuit-evasion games, mostly on graphs, where pursuers try to catch a fugitive trying to escape.

The authors of [2] studied the task of finding a fixed point on the line and in the grid, and initiated

the study of the task of searching for an unknown line in the plane. This research was continued,
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e.g., in [6, 8]. In [10] the authors concentrated on game-theoretic aspects of the situation where

multiple selfish pursuers compete to find a target, e.g., in a ring. The main result of [7] is an optimal

algorithm to sweep a plane in order to locate an unknown fixed target, where locating means to

get the agent originating at point O to a point P such that the target is in the segment OP . In

[5] the authors consider the generalization of the search problem in the plane to the case of several

searchers. To the best of our knowledge, the problem of efficient search for a fixed or a moving

target in the plane, under complete ignorance of the searching agent, has never been studied before.

2 The static scenario

In this section we assume that the target is inert. Our algorithms produce a trajectory of the

mobile agent which is a polygonal line whose segments are parallel to the cardinal directions. For

any positive real x, the instruction (N,x) (resp. (E, x), (S, x) , and (W,x)) has the meaning “go

North (resp. East, South, and West) at distance x”. Juxtaposition is used for concatenation of

trajectories, and T denotes the trajectory reverse with respect to trajectory T . For any positive

real y, let Q(y) denote the square with side y centered at the starting point of the mobile agent.

For any positve integers k and j, the spiral S(k, j) is the trajectory resulting from the following

sequence of instructions: (E, 2−j), (S, 2−j), (W, 2·2−j), (N, 2·2−j), (E, 3·2−j), (S, 3·2−j), (W, 4·2−j),

(N, 4 · 2−j), ..., (E, (2k + 1) · 2−j), (S, (2k + 1) · 2−j), (W, (2k + 2) · 2−j), (N, (2k + 2) · 2−j). Note

that, during the traversal of the spiral S(k, j), the mobile agent gets at distance less than 2−j from

every point of the square Q(2k · 2−j). Denote by Π(k, j) the trajectory S(k, j)S(k, j).

Consider the infinite matrix A whose rows are numbered by consecutive positive integers and

whose columns are numbered by consecutive positive even integers. The term A(i, j) in row i and

column j is the trajectory Π(2i+j , j). For any positive integer i, denote by ∆[i] the concatenation

Π(2i+2, 2)Π(2i+3, 4), . . .Π(21+2i, 2i) of trajectories in the ith diagonal of the matrix.

Now the algorithm can be succinctly formulated as follows.

Algorithm Static

Follow the trajectory ∆[1]∆[2]∆[3] . . . until sensing the target.

Theorem 2.1. The cost of Algorithm Static is O((logD + log 1
r
)D2/r), where D is an upper

bound on the initial distance of the agent from the target and r is the sensing distance.

Proof. Let a = ⌈logD⌉ and let b be the smallest even integer greater or equal to ⌈log 1
r
⌉. Thus

b ≤ ⌈log 1
r
⌉ + 1. The term A(i, j) of the matrix A is in the (i + j

2 − 1)th diagonal. During the

traversal of the spiral S(2a+b, b) the agent reaches the target. Hence it reaches the target while

following the trajectory ∆[a+ b
2 − 1].

The length of Π(k, j) is 4(1 + 2 + · · ·+ (2k + 2))2−j = 2(2k + 2)(2k + 3)2−j ≤ 40k22−j . Hence the

length of the trajectory ∆[i] is at most 40i22i+2. The cost of the algorithm is at most the sum of

lengths of trajectories ∆[1], ∆[2], ..., ∆[a+ b
2 − 1], which is at most 80i22i+2, where i = a+ b

2 − 1.
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This is O((logD + log 1
r
)D2/r).

The following result shows that Algorithm Static has cost optimal up to multiplicative constants.

Theorem 2.2. The cost of any algorithm for reaching a fixed target, with unknown bound D on

the initial distance and unknown sensing distance r, is at least 1
16((logD + log 1

r
)D2/r), for some

couple of parameters D and r, for which this value is arbitrarily large.

Proof. First observe that the cost of reaching a target in any polygon of area P , with sensing

distance r, is at least (P − πr2)/(2r) because for any trajectory of length x, the set of points that

are at distance at most r from some point of the trajectory has area at most 2rx+ πr2.

For any positive integer i, consider couples of integers (Dj , rj), where Dj = 2j and rj = 2−2(i−j+1),

for j = 1, 2, . . . , i. Denote R1 = Q(2) and Rk = Q(2k) \ Q(2k−1), for k > 1. The area of the

polygon Rj is larger than D2
j/2, and all points of it are at distance smaller than Dj from the origin

of the mobile agent. Suppose that the target is hidden in polygon Rj , with sensing distance rj ,

where j = 1, 2, . . . , i. Hence the cost of any algorithm for reaching the target in Rj is at least
D2

j

4rj
−

πrj
2 ≥

D2
j

8rj
= 1

22
2i. Since polygons Rj are pairwise disjoint, the cost of any algorithm for

reaching the target in every polygon Rj, with sensing distance rj, is at least

1

2
i22i =

1

8
(logDj +

1

2
log

1

rj
− 1)

D2
j

rj
≥

1

16
(logDj + log

1

rj
)
D2

j

rj
.

3 The dynamic scenario

In this section we consider the scenario of a target moving arbitrarily at possibly varying speed

bounded by some constant v. Neither the bound D on the initial distance to the target, nor the

sensing distance r, nor the bound v on the speed of the target are known to the mobile agent.

The proposed algorithm is a simple modification of Algorithm Static that specifies the speeds at

which the mobile agent traverses the consecutive diagonals.

Algorithm Dynamic

Follow the trajectory ∆[1]∆[2]∆[3] . . . , using speed 25i on trajectory ∆[i], until sensing the target.

Theorem 3.1. The cost of Algorithm Dynamic is O((logM +log 1
r
)M2/r), where M = max(D, v),

D is an upper bound on the initial distance of the agent from the target, v is an upper bound on

the speed of the moving target, and r is the sensing distance.

Proof. As calculated in the proof of Theorem 2.1, the length of the trajectory ∆[i] is at most

40i22i+2. Hence it is at most 23i, for i ≥ 11. Since the trajectory ∆[i] is traversed by the agent at
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speed 25i, it follows that the time ti of traversing ∆[i] is at most 2−2i, for i ≥ 11, and consequently

the total time of traversing all trajectories ∆[i] is bounded by some constant q.

Let a = ⌈logD⌉ and let b be the smallest even integer greater or equal to ⌈log 1
r
⌉. Thus b ≤

⌈log 1
r
⌉+1. Let c = ⌈qv⌉. Let D′ = D+ qv. This is the maximum distance from the starting point

of the mobile agent that the target can get. Let a′ = max(a, c) + 1. Hence D′ ≤ 2a
′

. The term

A(a′, b) is in the yth diagonal of the matrix A, where y = a′ + b
2 − 1. If ty ≤ 1

v·2b+1 , then the target

is reached by the time the agent traverses the trajectory ∆y. Indeed, if this inequality is satisfied,

the agent traverses the spiral S(2a
′+b, b) faster than the target can traverse the distance 1

2b+1 , and

hence it must get at distance at most r from the target during the traversal of this spiral. Since

2y ≥ b+ c, we get ty ≤ 1
22y

≤ 1
2b+c ≤ 1

v·2b+1 , for y ≥ 11.

If y ≤ 10 then the cost of the algorithm is O(1), hence we may assume y ≥ 11. In this case the cost

of the algorithm is at most the sum of lengths of trajectories ∆[1], ∆[2], ..., ∆[a′ + b
2 − 1], which is

at most 80y22y+2, where y = a′ + b
2 − 1. This is O((logM + log 1

r
)M2/r).

The following result shows that Algorithm Dynamic has cost optimal up to multiplicative constants,

if the adversary can choose the parameters D, r and v.

Theorem 3.2. The cost of any algorithm for reaching a moving target, with unknown bound D

on the initial distance, unknown bound v on the speed of the target, and unknown sensing distance

r, is at least c((logM + log 1
r
)M2/r), where c is some positive constant and M = max(D, v), for

some triple of parameters D, v and r, for which this value is arbitrarily large.

Proof. If D ≥ v, then the theorem follows immediately from Theorem 2.2, with the target choosing

speed 0 ≤ v, i.e., being inert. Hence we may assume that v > D. It is enough to show the lower

bound c((log v+log 1
r
)v2/r) on the cost of any algorithm for reaching the target, for some constant

c > 0, when the initial distance is D = 1. Let O be the starting point of the mobile agent and let P

be the starting point of the moving target. Let S(O,x) denote the disc of radius x centered at O.

Consider any algorithm for the mobile agent, with speed f(t) at time t. Let t0 be the constant

for which
∫ t0
0 f(t)dt = 1

2 . During the time interval [0, t0] the mobile agent must be inside the disc

S(O, 12). Suppose that, during the time interval [0, t0], the target moves at speed at most v on the

line OP away from the point O. Since the point P can be anywhere at distance 1 from O, it follows

that at time t0 the target can be at any point of the set S(O, 1+vt0)\S(O, 1). In particular, it can

be at any point Q of a square Z of size 1
2vt0 contained in this set. From time t0 on, the adversary

keeps the target inert at point Q. Thus the cost of the algorithm is at least the cost of the best

algorithm in the static scenario, where the inert target is in Z.

Since the area of the square Z is
t2
0

4 v
2, by a similar argument as in the proof of the Theorem 2.2, we

get that this cost is at least
t2
0

128 ((log v + log 1
r
)v2/r), for some sensing distance r and some bound

v on the speed of the target that make this value arbitrarily large.

While Algorithm Dynamic has been proved to have cost optimal up to multiplicative constants, its

downside is the fact that the speed of the mobile agent grows exponentially with time. Hence it is
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natural to ask if the same cost can be achieved with the speed of the mobile agent growing only

polynomially. Our final result shows that this is impossible.

Theorem 3.3. There does not exist an algorithm for reaching a moving target at cost optimal up

to multiplicative constants, with the speed of the mobile agent growing polynomially in time.

Proof. Let O be the starting point of the mobile agent and let P be the starting point of the

moving target. Suppose that the distance between O and P is D = 1 and that the target moves at

speed at most v ≥ 1 on the line OP away from the point O. Let S(O,x) denote the disc of radius

x centered at O. Suppose that there exists an algorithm for reaching the target at cost at most

C(v, r) = d((log v + log 1
r
)v2/r), for some constant d > 0, where r is the sensing distance, and the

mobile agent moves at speed at most tc at time t, for some positive integer constant c.

Let t be the earliest time at which the agent reaches the target. At this time the target can

be anywhere in the set Z = S(O, 1 + vt) \ S(O, 1), and the trajectory of the agent has length

at most
∫ t

0 t
cdt = tc+1

c+1 . Since the area of the set Z is π(1 + vt)2 − π > π(vt)2, we must have
tc+1

c+1 ≥ π(vt)2−πr2

2r > (vt)2

2r , for sufficiently large v and sufficiently small r. Thus we must have
tc−1

c+1 > v2

2r , which implies t > ( (c+1)v2

2r )
1

c−1 . It follows that the cost of the algorithm at time t is

larger than 1
c+1(

(c+1)v2

2r )
c+1

c−1 , which is α(v
2

r
)β, for some constants α > 0 and β > 1. However, we

have C(v, r) = d((log v+log 1
r
)v2/r) ≤ d(log v2

r
)v

2

r
< α(v

2

r
)β, for sufficiently large v and sufficiently

small r, which is a contradiction.

4 Conclusion

We established the optimal cost (up to multiplicative constants) of reaching a target in the plane

by a mobile agent ignorant of the parameters of the problem, which are a bound D on the initial

distance from the target, the sensing distance r, and a bound v on the speed of the target.

Our assumption about the target was that it moves at a bounded (although possibly varying) speed,

and our assumption about the mobile agent was that it has a compass and a measure of length. Is

it possible to weaken or eliminate these assumptions? Notice that without any assumption on the

speed of the target, the adversary could assign it the same speed as that of the agent at all times

(which is possible if the agent does not know anything about the speed of the target) and make it

go away from the agent, (on the extension of the segment between the initial positions of the agent

and of the target) which clearly precludes reaching the target. As for the assumption about the

capabilities of the agent, having a measure of distance seems necessary, as otherwise no meaningful

algorithm to move in the plane can be formulated. On the other hand, the availability of a compass

could be removed. In our algorithms the only needed features are the possibility of going straight

at some chosen distance in a chosen direction, and forming right angles in the plane. Thus, e.g.,

an arbitrarily distorted compass with a fixed distortion, e.g., always showing South-East as North,

would be sufficient. In fact, since drawing right angles is possible with an available measure of

distance, no compass is needed, as long as the agent has the ability of going straight (which is
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difficult in dense fog, but easy on a clear day on the snow).
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