
Accepted Manuscript

Analyzing linearizability violations in the presence of read-modify-write operations

H. Fan, W. Golab

PII: S0020-0190(18)30129-7
DOI: https://doi.org/10.1016/j.ipl.2018.06.004
Reference: IPL 5706

To appear in: Information Processing Letters

Received date: 30 August 2014
Revised date: 23 November 2017
Accepted date: 5 June 2018

Please cite this article in press as: H. Fan, W. Golab, Analyzing linearizability violations in the presence of read-modify-write operations,
Inf. Process. Lett. (2018), https://doi.org/10.1016/j.ipl.2018.06.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.ipl.2018.06.004 © 2018. This manuscript version is made 
available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.ipl.2018.06.004
http://dx.doi.org/10.1016/j.ipl.2018.06.004
http://creativecommons.org/licenses/by-nc-nd/4.0/


Highlights

• We focus on “black-box” testing of the consistency of distributed system.
• It uses as input histories of read, write and RMW operations invoked by clients.
• We present a novel algorithm for computing � metric of inconsistency in histories.
• We characterize linearizability violation to handle read-modify-write operations.



Analyzing Linearizability Violations in the Presence of
Read-Modify-Write Operations

H. Fana,∗, W. Golaba,1,∗∗

aDepartment of Electrical and Computer Engineering, University of Waterloo
200 University Ave. West, Waterloo, Ontario, N2L 3G1, Canada

Abstract

We consider an algorithmic problem related to analyzing consistency anomalies

in distributed storage systems. Specifically, given a history of read, write, and

read-modify-write operations applied by clients, we quantify how far the history

deviates from the “gold standard” of linearizability (Herlihy and Wing, 1990).

Our solution generalizes a known algorithm that considers reads and writes only.

Keywords: distributed storage, consistency, linearizability, verification

1. Introduction

Distributed storage systems support essential online services including web

search, social networking, and cloud file sharing. To meet stringent demands

for high availability and low latency, such systems maintain multiple replicas of

data, often in geographically distributed data centers. Storage operations are

therefore executed using distributed protocols that ensure crucial correctness

properties in a highly concurrent, failure-prone environment. Reasoning about

the correctness of such protocols is notoriously difficult, especially for systems

that support lightweight transactions (e.g., conditional write operations, incre-

ments) and latency-reducing optimizations (e.g., eventual consistency).

∗Principal corresponding author (1-519-888-4567 x31773).
∗∗Corresponding author (1-519-888-4567 x32029).

Email addresses: h27fan@uwaterloo.ca (H. Fan), wgolab@uwaterloo.ca (W. Golab)
1Author supported by the Google Faculty Research Awards Program and the Natural

Sciences and Engineering Research Council (NSERC) of Canada, Discovery Grants Program.

Preprint submitted to Elsevier June 15, 2018



In this paper we focus on “black-box” testing of the consistency of a dis-

tributed storage system. The input is a history of operations applied to the

system, and the output is a number that quantifies how far the history deviates

from Herlihy andWing’s linearizability property [1]. Violations of linearizability,

such as stale reads that fail to return the last updated value, can be quantified in

units of time using the recently proposed Γ (Gamma) metric [2]. Such tests are

more broadly applicable than rigorous proofs of correctness and model checking

techniques, both of which assume knowledge of the system’s internals and apply

to an abstract model that may differ from the practical implementation.

Our contribution is an efficient algorithm for computing Γ given a history of

read, write, and read-modify-write (e.g., conditional write) operations. The al-

gorithm has time complexity O(n2) for a history of n operations, and generalizes

a solution of Golab et al. for histories of reads and writes [2]. The simpler prob-

lem of deciding linearizability, which is equivalent to deciding whether Γ equals

zero, was solved earlier by Misra [3] and by Gibbons and Korach [4]. Known

algorithms for computing Γ and deciding linearizability efficiently assume a read

mapping : for every operation that reads a value, the operation that wrote this

value can be identified uniquely. Deciding linearizability is NP-complete other-

wise [4], and solvable using state space exploration [5].

2. Preliminaries

Similarly to [1, 4], we formalize the observed behavior of a storage system as

a history—a sequence of events representing invocations and responses of opera-

tions. Linearizability is a widely-adopted correctness condition for histories [1].

Informally, it states that one can assign for each operation a distinct lineariza-

tion point (LP) between its invocation and response where it “appears to take

effect.” More precisely, if operations on a given object are ordered according to

their LPs, their responses must be consistent with some sequence of state tran-

sitions permitted by the object’s sequential specification. For example, updates

appear to take effect serially, and reads always return the last updated value.

2



To quantify linearizability violations in units of time, we generalize the def-

inition of a history from [1] by assuming that events are ordered by explicit

timestamps. The invocation and response timestamp of an operation op are

denoted as inv(op) and rsp(op), respectively. The time interval for such an

op is the closed interval [inv(op), rsp(op)]. The Γ-relaxation of a history is ob-

tained by shifting the invocation and response times by −Γ/2 and +Γ/2 time

units, respectively. The Γ-value of a history is the minimum Γ for which the

Γ-relaxation of the history is linearizable [2].

Because linearizability is a local property [1], the Γ-relaxation of a history is

linearizable if and only if, for each object x, the subhistory of the Γ-relaxation

comprising operations applied to x is linearizable. Therefore, to compute the Γ-

value of a history H it suffices to compute the Γ-value of each subhistory where

all operations are applied to a common object, and then obtain the maximum.

The subhistory that requires the greatest Γ-relaxation determines the Γ-value

of H.

In this paper, we consider three types of operations on objects: a read of

value v is denoted (R, v); a write of value v is denoted (W, v); and a read-modify-

write (RMW) that atomically reads vr and then writes vw, vw �= vr, is denoted

(RW, vr, vw).
2 An operation (W, vw) or (RW, vr, vw) is called dictating with

respect to an operation (R, v′r) or (RW, v′r, v
′
w) if vw = v′r.

We make several assumptions regarding histories: (A1) following [2, 4], each

operation has both an invocation and a response event; (A2) the history begins

with a write operation that assigns the initial value of the shared object, and

that does not overlap in time with any other operation; (A3) each write or

RMW operation assigns a unique value; (A4) each read or RMW operation has

exactly one dictating operation; and (A5) two RMW operations never read the

same value. Assumption A4 establishes the read mapping and circumvent NP-

completeness. Assumptions A1, A4 and A5 ensure that the history can be made

linearizable by way of Γ-relaxation alone, as opposed to by adding or removing

2An unsuccessful Compare-And-Swap operation is represented by a read.

3



operations, and this implies that the Γ value of the history is well-defined.

To express our result, we borrow a number of definitions from [4]. For any

value v, the cluster for v, denoted Cv, is the set of all operations that read value

v, as well as their unique dictating operation.3 The zone for a cluster Cv, de-

noted Zv, is the closed interval of time between Zv.minrsp = minop∈Cv rsp(op)

and Zv.maxinv = maxop∈Cv
inv(op). Intuitively, Zv is a minimal subset of

points in time where the LPs of operations in Cv may be chosen. A zone Zv is

called forward if Zv.minrsp < Zv.maxinv, meaning that the object had value

v continuously from time Zv.minrsp to time Zv.maxinv. Zv is called backward

if Zv.minrsp ≥ Zv.maxinv, meaning that all operations in Cv overlap over the

zone, and so the object had value v at least at some point inside the zone.

Gibbons and Korach characterize linearizability for histories of reads and

writes as the absence of conflicts among pairs of zones [4]. Conflicts occur

when two forward zones overlap, or when a backward zone is contained entirely

within a forward zone. For histories that contain RMW operations, the clusters

are first arranged into cluster sequences of the form S = Cv1Cv2 . . . Cvk where

(W, v1) ∈ Cv1 and (RW, vi−1, vi) ∈ Cvi for 1 < i ≤ k.4 A zone is defined for each

cluster sequence S as the interval between Sminrsp = minop∈Ci,Ci∈S rsp(op) and

Smaxinv = maxop∈Ci,Ci∈S inv(op). The history is linearizable if and only if: (i)

there are no conflicts among pairs of zones representing cluster sequences; and

(ii) each cluster sequence is linearizable. The interval structure makes it possible

to decide linearizability in O(n log n) time for a history of n operations [4].

3. Results

In this section we present our novel algorithm for computing Γ in histories

of read, write and RMW operations. The main technical challenge lies in char-

acterizing linearizability solely in terms of conflicts among zones; this reduces

the problem of computing Γ to deciding the minimum Γ-relaxation required to

3An RMW operation is always part of two clusters under assumption A4.
4Assumption A2 ensures that (W, v1) exists to form the cluster sequence.

4



remove every conflict [2]. Because Gibbons and Korach’s verification algorithm

(discussed at the end of Section 2) is only partially zone-based, we first modify it

by introducing a new conflict type—descendant-precedence—to model conflicts

within a single cluster sequence. Following [2], we also consider the conflict of a

zone with itself when a value is read before it is written. The final Γ algorithm

based upon these ideas appears in Section 3.2.

3.1. Linearizability verification using conflict detection

We first characterize linearizability for reads, writes and RMW operations in

terms of zone conflicts alone. We say that a zone Zv precedes a zone Zv′ , (v �= v′),

denoted by Zv ≺ Zv′ , if and only if Zv.maxinv < Zv′ .minrsp. The negation of

Zv ≺ Zv′ (i.e., does not precede) is denoted by Zv �≺ Zv′ . Intuitively, Zv ≺ Zv′

means that for some choice of LPs, all the operations in Cv take effect before

any of the operations in Cv′ ; while Zv �≺ Zv′ implies that for every choice of

LPs, some operation in Cv must take effect after some operation in Cv′ .

We say that a zone Zv′ inherts from zone Zv, denoted Zv → Zv′ , if and

only if the RMW operation (RW, v, v′) exists in the history. In that case, Zv

and Zv′ are called parent zone and child zone, respectively. Inheritance is a

transitive property. We use Zv →+ Zv′ (transitive closure of →) to denote that

Zv is an ancestor of Zv′ , and Zv′ is a descendant of Zv, meaning that either (1)

Zv → Zv′ ; or (2) ∃Zv′′ s.t. Zv →+ Zv′′ and Zv′′ → Zv′ .

Lemma 1. For any linearizable history H, if Zv →+ Zv′ , then Zv ≺ Zv′ .

Proof. Without loss generality, we represent Zv →+ Zv′ as Zv1 → . . . → Zvn

(v1 = v, vn = v′). We prove Zv1 ≺ Zvn by induction on n. (1) Basis: in

a linearizable history, the RMW operation (RW, a, b) must take effect before

every other operation in Cb, and after every other operation in Ca. Hence,

except for the common RMW operation, all operations in the parent cluster

take effect before all operations in the child cluster. If n = 2, then Zv1
≺ Zv2

because Zv1 is the parent zone of Zv2
. (2) Assume that Zv1 ≺ Zvk−1

(2 < k ≤ n),

then all operations in C1 must take effect before (RW, vk−2, vk−1). Based on

5



Zvk−1
→ Zvk , all operations in Ck must take effect after (RW, vk−2, vk−1).

Combining these two orders, we can conclude Zv1 ≺ Zvk (i.e., Zv ≺ Zv′). �

We define a descendant-precedence conflict if two zones representing clusters

satisfy Zv →+ Zv′ , but Zv �≺ Zv′ . By Lemma 1, any history H containing such

a conflict is not linearizable. To facilitate presentation, we label all the conflicts

under consideration as follows, with examples shown in Figure 1:

C1. The above descendant-precedence conflict (Zv →+ Zv′ but Zv �≺ Zv′).

C2. The intra-cluster conflict defined in [2] (in a given cluster Cv, Zv.minrsp

is less than the start time of the dictating operation for Cv).

C3. The inter-cluster-sequence conflict defined in [4] for zones representing

cluster sequences (two forward zones overlap, or a backward zone is en-

closed entirely in a forward zone).5

time

(W,5) (R,5)

Z5

(W,6) (R,6)

Z6

(C3)

(W,1) (RW,1,2)(RW,2,3) (R,3)

Z1
Z2

Z3

(C1)

(R,4) (W,4)

Z4

(C2)

(R,8)(RW,7,8)

(W,9)

(W,7)

(R,9)

Zs7,8

Z9

Zone for cluster or 
cluster sequence:

forward
backward

Operation:

Figure 1: Examples of the three categories of conflicts.

Lemma 2. Let H be a history composed of operations of a cluster sequence

S = Cv1Cv2 . . . Cvk . If H is free of conflicts C1 and C2, then H is linearizable.

5A cluster without any RMW operations has a cluster sequence of length one.

6



Proof. S can be represented as Zv1 → Zv2 → . . . Zvk
. Then ∀i, j ∈ [1, k] (i <

j), Zvi →+ Zvj by definition. Because there is no conflict C1, Zvi ≺ Zvj

holds. Then Zvi .maxinv < Zvj .minrsp by the definition of ≺, and so there

is no conflict among Zvi and Zvj . History H can be linearized as follows: in

a forward zone Zv, the dictating operation takes effect at Zv.minrsp, and the

remaining operations (except the RMW that is shared with the next cluster in

S) take effect within Zv; in a backward zone Zv, operations take effect after any

operations of ancestor zones and before any operations of descendant zones, at

points where the backward zone does not overlap with any forward zone. �

Theorem 3. If a history H is free of conflicts C1, C2, and C3, then H is

linearizable.

Proof. Absence of C1 and C2 implies that operations within each cluster se-

quence are linearizable by Lemma 2, and may take effect in the order described

in the proof of Lemma 2. As there is no conflict C3 for any pair of cluster

sequences, the operations of a cluster sequence S can be linearized throughout

the interval [S.minrsp, S.maxinv] if S has a forward zone, and around one point

in the interval [S.maxinv, S.minrsp] where the backward zone does not overlap

with any forward zone if S has a backward zone. Thus, H is linearizable. �

3.2. Γ computation for read, write, RMW operations history

Because RMW operations introduce the new challenge of dealing with con-

flict C1, the Γ computation algorithm in [2] does not work “out of the box” for

a history of read, write, and RMW operations. For example, if we apply this

algorithm to the example C1 in Figure 1, the result is a Γ-value of 0 as there

is no conflict C2 or C3. However, the example is not linearizable. We propose

a novel Γ computation algorithm, generalizing the previous technique [2] to ac-

commodate RMW operations. The main idea is testing each type of conflict in

the history and deciding on the minimum Γ necessary to resolve that conflict

by way of Γ-relaxation. The pseudo-code is presented in Algorithm 1.

7



Algorithm 1: Γ computation for read, write, and RMW operations.

Input: History H that satisfies assumptions A1, A2, A3, A4 and A5

Output: Γ value of H

1 Process the history H into clusters Cv1 , . . . , Cvm and identify the zone for

each cluster as Zvi (1 ≤ i ≤ m).

2 If any zone Zvi from step 1 has conflict C2, define the Γ score for vi as

ΓC2(vi, H) = (inv(dictating op. of Cvi)− Zvi .minrsp) to overcome the

conflict; otherwise ΓC2(vi, H) = 0. Let ΓC2(H) = maxi∈[1,m] ΓC2(vi, H).

3 Organize the clusters from step 1 into cluster sequences S1, . . . , Sk and

identify the zone for each cluster sequence.

4 For any cluster sequence Si, if any pair of clusters

Cx, Cy ∈ Si, (Zx →+ Zy) has a conflict C1, define the Γ score

ΓC1(x, y,H) = (Zx.maxinv − Zy.minrsp) to overcome the conflict,

otherwise let ΓC1(x, y,H) = 0. Define the Γ score for cluster sequence

Si as ΓC1(i,H) = maxCx,Cy∈Si
ΓC1(x, y,H).

Let ΓC1(H) = maxi∈[1,k] ΓC1(i,H).

5 If any pair of zones Zi, Zj for cluster sequences Si, Sj identified in step 3

has a conflict C3, define the Γ score for the pair Si, Sj as

ΓC3(i, j,H) = min(Si.maxinv − Sj .minrsp, Sj .maxinv − Si.minrsp) to

overcome the conflict, otherwise let ΓC3(i, j,H) = 0.

Let ΓC3(H) = maxi,j∈[1,k](i�=j) ΓC3(i, j,H).

6 Return Γ(H) = max (ΓC1(H),ΓC2(H),ΓC3(H)).

Theorem 4. Algorithm 1 returns the Γ value of history H in O(n2) running

time, where n denotes the number of operations in H.

Proof. Assume the algorithm outputs value γ for history H. Based on steps

2, 4 and 5 of the algorithm, there is no conflict C1, C2, C3 in the history H ′,

which is the γ-relaxation of H. By Theorem 3, H ′ is linearizable.

To prove that γ is optimal, suppose for contradiction that there exists a

γ′ < γ such that the γ′-relaxation of H is linearizable. Since Algorithm 1

8



returns γ, step 2, 4 or 5 of the algorithm detects a conflict in H that requires a γ-

relaxation to resolve. A γ′-relaxation cannot resolve this conflict, contradicting

the assumption that Algorithm 1 outputs the Γ-value of H.

Running time: Step 1 takes O(n log n) running time as in [2]. As the max-

imum number of zones is n, and comparing Z.minrsp and dictating operation

takes O(1) time, step 2 takes O(n) time. Step 3 can chain clusters into cluster

sequences in O(n2) time by repeatedly checking for parent-child cluster pairs.

The zone pairs check in step 4 and step 5 takes O(n2) time, and the step 6 takes

O(1) time. Thus, the total running time of the algorithm is O(n2), which is the

same as the algorithm for histories of reads and writes [2]. �

4. Discussion and Conclusions

To our knowledge, this is the first paper that considers efficient computation

of the Γ metric for histories containing RMW operations in addition to reads and

writes. RMW operations such as conditional updates are an emerging feature in

storage systems that support a mixture of weak and strong consistency models,

and are currently supported in Apache Cassandra 3.0 and Amazon’s SimpleDB.

References

[1] M. P. Herlihy, J. M. Wing, Linearizability: A correctness condition for con-

current objects, ACM Trans. Program. Lang. Syst. 12 (3) (1990) 463–492.

[2] W. Golab, M. R. Rahman, A. AuYoung, K. Keeton, I. Gupta, Client-centric

benchmarking of eventual consistency for cloud storage systems, in: Proc.

of the 34th ICDCS, 2014, pp. 493–502.

[3] J. Misra, Axioms for memory access in asynchronous hardware systems,

ACM Trans. Program. Lang. Syst. 8 (1) (1986) 142–153.

[4] P. B. Gibbons, E. Korach, Testing shared memories, SIAM J. Comput. 26 (4)

(1997) 1208–1244.

[5] K. Kingsbury, Knossos, https://github.com/aphyr/knossos, accessed:

2017-11-20 (2017).

9


