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A probabilistic algorithm for verifying polynomial middle product in linear time

Pascal Giorgi

LIRMM, University of Montpellier, CNRS, Montpellier, FRANCE

Abstract

Polynomial multiplication and its variants are a key ingredient in effective computer algebra. While verifying a polynomial
product is a well known task, it was not yet clear how to do a similar approach for its middle product variant. In this
short note, we present a new algorithm that provides such a verification with the same complexity and probability that
for the classical polynomial multiplication. Furthermore, we extend our algorithm to verify any operations that compute
only a certain chunk of the product, which is the case for instance of the well known short product operation.
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1. Introduction

Polynomial multiplication is a fundamental tool in com-
puter algebra as it often plays a central role in most effi-
cient algorithms. In some cases, one may not need to com-
pute the whole result of the product and this can be taken
into account to speed up the computation. For instance,
when dealing with truncated power series one need to only
compute the lowest part of the polynomial multiplication.
The latter operation is also referenced as short product in
[1]. Another situtation occurs within polynomial division
or inversion where only the middle terms of a specific prod-
uct are needed [2, 3, 4]. This specific operation is called
the middle product in [2].

Let F,G ∈ K[X] be two polynomials defined over a
field K such that degF = s − 1,degG = 2s − 2. The
middle product of FG denoted by MPs(F,G) corresponds
to the coefficients of degree s − 1 to 2s − 2 from the
product FG. Let FG =

∑3s−3
i=0 hiX

i then MPs(F,G) =
hs−1 + hsX + hs+1X

2 + · · · + h2s−2X
s−1. Let M(n) de-

note the complexity function for the multiplication of two
polynomials of K[X] of degree at most n. Computing
MPs(F,G) through a full product requires 2M(s) + O(s)
operations in K. As shown in [2], dedicated algorithms can
compute MPs(F,G) twice faster. One remarkable prop-
erty of middle product is to be the transposed problem
of polynomial multiplication using the Tellegen principle
[5]. This strong result tells us that every polynomial mul-
tiplication algorithm can be turned into an algorithm for
middle product with the same asymptotic complexity, i.e.
M(s) + O(s). Since the seminal work of Karatsuba [6],
many fast polynomial multiplication algorithms have been
designed in order to reach a quasi-linear time complexity
[7, Chapter 8]. As of today, the best result over finite
fields is O(d log d 8log∗ d log p) operations1 for the product
of degree d polynomials [8]. A common feature of all these
algorithms is to be much more complex than the naive

1log∗ is the iterated logarithm function

product, meaning their implementation could be compli-
cated and errors prone. Using Tellegen principle to derive
a middle product algorithm introduces another level of dif-
ficulty that might further complicate its implementations.

A classic way to check computations is to use a pos-
teriori verification. The idea is to provide an algorithm
that can check the result with an asymptotically better
complexity than the operation itself. The simplicity of
the algorithm must ensure its implementation’s robust-
ness. Such a verification is of great interest when one wants
to check a computation from an untrusted cloud server. In
order to check a polynomial product FG one can pick a
random point α and check that F (α)G(α) = (FG)(α). If
not, it is clear that the product is wrong. If the results
agree, it is well known through Zippel-Schwartz-Lipton-
DeMillo lemma [9, 10, 11] that the product FG is correct
with a probability greater than 1− d

N where N corresponds
to the number of sampling points for α and degFG < d.
Assuming N > d, one can decrease the probability to

1 − dk

Nk by picking k different points. One advantage of
this verification is that polynomial evaluation has a linear
time complexity and can be implemented easily through
Horner’s rules.

To the best of our knowledge, the verification of the
middle product has not been investigated yet and we pro-
vide a similar linear time algorithm for it. One motivation
of this work came from our experiment to compute the ker-
nel of a large sparse matrix arising in discrete logarithm
computation. In particular, one part of the computation
was relying on polynomial middle product with matrix
coefficients [12]. Unfortunately, our code failed to pro-
duce correct results when polynomial degrees were above
500 000. Since quadratic time verification was not feasi-
ble, we decided to develop a fast approach. Note that our
algorithm might also be of interest for the recent Middle-
Product Learning With Error problem [13].

We start the next section by giving a matrix interpre-
tation to the verification of polynomial product. Using
this interpretation, we will define in the following sections
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our probabilistic verification for the middle product. Fi-
nally, in the last section we show how our method easily
extends to the short product and any other operations that
compute any partial chunk of a polynomial product.

2. Certifying Polynomial Multiplication

Let F,G ∈ K[X] where F = f0+f1X+· · ·+fm−1X
m−1

and G = g0 +g1X+ · · ·+gn−1X
n−1. Assuming F is fixed,

the product H = FG =
∑m+n−2

i=0 hiX
i can be described

through a linear application from Kn to Km+n. The ma-
trix for this application corresponds to a Toeplitz matrix
built from the coefficients of F . Let us denote AF such a
matrix, the product of F by G correspond to the following
matrix-vector product :

f0

f1
. . .

...
. . . f0

fm−1 f1
. . .

...
fm−1


︸ ︷︷ ︸

AF

×


g0
g1
...

gn−1


︸ ︷︷ ︸

vG

=



h0

h1

...

hm+n−2


︸ ︷︷ ︸

vH

(1)

where AF ∈ K(m+n−1)×n, vG ∈ Kn and vH ∈ Km+n−1.
A classic way to certify the product H = FG is to

choose a random α from a finite subset S ⊂ K and to check
H(α) = F (α)G(α). Of course, some values of α may lead
to a positive answer while H 6= FG. However, the num-
ber of such α is at most degH as they correspond to the
roots of the polynomial (H − FG) 6= 0 over the field K.
The probability of success is then greater than 1 − deg H

|S| ,

which corresponds exactly to the Zippel-Schwartz-Lipton-
DeMillo lemma [9, 10, 11] on univariate polynomials. This
approach reduces the verification to three polynomial eval-
uations and one product and thus has a linear time com-
plexity of O(degF + degG+ degH).

Using the matrix version for polynomial product de-
picted in Equation (1), this latter approach corresponds
exactly to multiplying both parts of the equation on the
left by the row vector ~α = [1, α, α2, . . . , αm+n−2]. By
definition of vH , we clearly have ~α · vH = H(α). Using
the Toeplitz structure of the matrix AF we have ~αAF =
F (α)[1, α, . . . , αn−1], which gives (~αAF ) ·vG = F (α)G(α).
The probability result can be retrieved with the specific
Freivalds certificate for matrix multiplication given in [14].

3. Certifying Middle Product

In order to illustrate our strategy we start this section
with an example. Let A,B be two polynomials of K[X] of
degree respectively 3 and 6, with A = a0 + a1X + a2X

2 +
a3X

3 and B = b0+b1X+b2X
2+b3x

3+b4X
4+b5X

5+b6X
6.

We want to compute CM = c3 +c4X+c5X
2 +c6X

3 where
C = AB =

∑9
i=0 ciX

i. Using Equation (1) one can easily

remark that the middle product operation corresponds to
using only certain rows of the linear application for the
full multiplication by A. Equation (2) illustrates this re-
mark on our example. The grey area highlights the rows
used by the middle product operation. One may note that
this is an important observation in Tellegen transposition
principle for the middle product [5].



a0

a1 a0

a2 a1 a0

a3 a2 a1 a0

a3 a2 a1 a0

a3 a2 a1 a0

a3 a2 a1 a0

a3 a2 a1

a3 a2

a3


×



b0
b1
b2
b3
b4
b5
b6


︸ ︷︷ ︸

vB

=



c0
c1
c2
c3
c4
c5
c6
c7
c8
c9


(2)

In order to certify the coefficients of the middle product
MP4(A,B) = c3 + c4X + c5X

2 + c6X
3, one can multiply

the grey part of equation (2) with the vector [1, α, α2, α3]
with α ∈ K. In particular, this corresponds to certifying
that [1, α, α2, α3] · [c3, c4, c5, c6]T = cM (α) is equal to

γ =


1
α
α2

α3


T

×


a3 a2 a1 a0

a3 a2 a1 a0

a3 a2 a1 a0

a3 a2 a1 a0

 vB . (3)

More generally, let F,G,H ∈ K[X] such that degF =
degH = s − 1, degG = 2s − 2 and H = MPs(F,G). As
for polynomial multiplication, fixing the polynomial F , we
can define the middle product as a linear application from
K2s−1 to Ks with the matrix BF ∈ Ks×2s−1 such that

BF =

 fs−1 fs−2 . . . f0

. . .
. . .

. . .

fs−1 fs−2 . . . f0

 .

Let vG and vH be the vector of the coefficients of G and
H. By definition of the middle product we have vH =
BF vG. To certify this middle product it suffices to pick
a random α from a finite subset S ⊂ K and set ~αs =
[1, α, . . . , αs−1] ∈ K1×s, then check the following equation:

H(α) = (~αsBF ) · vG (4)

Lemma 3.1. For a random α ∈ S ⊂ K, the probability
Equation 4 is correct while H 6= MPs(F,G) is strictly less
than s

|S| .

Proof. The correctness of Equation 4 comes from the fol-
lowing equality H(α) = ~α · vH = ~α(BF · vG). The proof of
Lemma 3.1 is a direct consequence of the Zippel-Schwartz-
Lipton-DeMillo lemma [9, 10, 11] remarking that both
sides of Equation 4 are distinct polynomials in α with de-
grees bounded by s.
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The computation of (~αsBF ) ·vG does not correspond to
the product of evaluations involving both F and G. How-
ever, using the Toeplitz structure of BF , we are able to
derive a simple algorithm that only need a linear number
of operations, as explained in the next section.

4. Toeplitz Matrix-Vector Product with powers

Let F ∈ K[X] of degree s − 1, we denote LF and UF

the following triangular Toeplitz matrices:


fs−1 fs−2 . . . f0

. . .
. . .

...
. . . fs−2

fs−1


︸ ︷︷ ︸

UF

,


f0

f1
. . .

...
. . .

. . .

fs−1 . . . f1 f0


︸ ︷︷ ︸

LF

where F = f0 +f1X+ · · ·+fs−1X
s−1 and UF , LF ∈ Ks×s.

Lemma 4.1. Let ~αs = [1, α, . . . , αs−1] ∈ K1×s. The
matrix-vector products ~αsUF and ~αsLF can be computed
in O(s) operations in K.

Proof. It obvious that the lemma is correct for s = 1. Let
us assume the lemma correct for dimension s−1 and write
F = f0 +XF̂ , with f0 ∈ K and F̂ ∈ K[X] of degree s− 2.
One can rewrite UF as follow:

UF =

UF̂ f0

...
fs−1

 .

There, multiplying a vector ~αs by UF is equivalent to com-
pute the row vector [ ~αs−1UF̂ , ~αs · [f0, . . . , fs−1]T ].

From the Toeplitz structure of UF it is easy to see that
~αs · [f0, . . . , fs−1]T is equal to αy + f0 where y is the last
column of ~αs−1UF̂ . By induction, it follows immediately
that the complexity is linear in the matrix dimension s.
For the matrix LF the proof is similar remarking that

LF =

 f0

...
fs−1 L(F mod Xs−1)


and that ~αs · [f0, . . . , fs−1]T = α−1y + αs−1fs−1 where
y = ~αs−1L(F mod Xs−1).

One may remark that computing ~αUF performs exactly
the same operations as calculating f(α) using Horner’s
rule. The same remark applied for ~αLF but with the eval-
uation of the polynomial αs−1F (1/X)Xs−1 in X = 1/α.

Corollary 4.2. The transposed operations UF ~α
T and LF ~α

T

can also be computed in O(s) operations in K.

Indeed, by transposed matrix product we have (UF ~α
T )T =

~αLrev(F ) and (LF ~α
T )T = ~αUrev(F ) where rev(F ) is the

polynomial reversal of F i.e. rev(F ) = F (1/X)Xdeg F .

Corollary 4.3. Let TF be a full Toeplitz matrix, one can
compute TF ~α

T or ~αTF in O(s) operations rather thanM(s)
operations with the classical fast approach [15].

5. A linear time verification algorithm

Let F,G,H ∈ K[X] such that degF = degH = s− 1,
degG = 2s− 2. The following algorithm provides a prob-
abilistic verification for H = MPs(F,G) that requires a
linear number of operations.

Algorithm VerifyMP(F,G,H) :

1. choose a random α from a finite subset S ⊂ K and
set ~αs ← [1, α, . . . , αs−1]

2. y1 ← (~αsUF ) · [g0, . . . , gs−1]T

3. y2 ← α(~αs−1L(F mod Xs−1)) · [gs, . . . , g2s−2]T

4. return true if H(α) = y1 + y2, false otherwise

Lemma 5.1. Algorithm VerifyMP(F,G,H) ensures that
H = MPs(F,G) with a probability greater or equal to 1 −
s/|S|. The algorithms uses O(s) operations in K and dlog2 |S|e
random bits.

Proof. The correctness of algorithm VerifyMP comes from
the definition of MPs(F,G) as a linear application when F
is fixed. Indeed, this corresponds to a linear application
from K2s−1 −→ Ks where its matrix representation in the
canonical basis of K[X] is:

BF =


fs−1 fs−2 . . . f0

. . .
. . .

...
. . . fs−2

fs−1︸ ︷︷ ︸
UF

f0

...
. . .

fs−2 . . . f0


︸ ︷︷ ︸

L(F mod Xs−1)

.

Let vH = BF [g0, g1, . . . , g2s−2]T , one can read the co-
efficients of H = MPs(F,G) from vH . Splitting BF and G
in two parts, we get

vH = UF

 g0

...
gs−1

+

(
0 . . . 0
L(f mod Xs−1)

) gs
...

g2s−2


Therefore, multiplying this equation on the left by ~αs gives
H(α) = y1+y2 and proves the correctness of our algorithm.
Using Lemma 3.1, the probability that H(α) = y1 + y2

when H 6= MPs(F,G) is less than s
|S| , which then gives

a probability of success greater than 1 − s
|S| as promised.

From Lemma 4.1 and the cost of dot product, one can
deduce the complexity of O(s). Since the bitsize of α is
less than log2 |S|, this concludes the proof.

Remark 1. Assuming |S| > 2s, one can run k times Al-
gorithm VerifyMP(F,G,H) on same inputs to raise the
probability to 1− 1

2k .
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6. A more general result

Following our approach we generalize our algorithm to
certify any operations that compute only a certain consec-
utive chunk of a polynomial product. This is for instance
the case for the so-called short product operation [1, 16].

Let F,G ∈ K[X] of degree s − 1, the short product of
F and G is denoted by SPs(F,G) = FG mod Xs. Simi-
larly, one can define the high short product of F and G
to be HPs(F,G) = FG divXs−1, corresponding to the s
highest terms of the product FG. Assuming F is fixed,
one can define these two operations as linear applications
from Ks → Ks with the matrix LF for SPs(F,G) and the
matrix UF for HPs(F,G). As before, picking a random
element α ∈ S ⊂ K, one can check the two short product
operations by checking respectively H(α) = (~αLF ) · vG or
H(α) = (~αUF ) · vG. Indeed, using Lemma 4.1 one can
achieve a complexity of O(s) operations in K and a prob-
ability of success greater than 1− s/|S|.

Without loss of generality, assuming that degF = m ≥
degG = n and s | n. One can define a partial product op-
eration on F and G as PPs(F,G, i) = (FG divXi) mod
Xs. This operation corresponds to extracting the s con-
secutive terms of the product FG starting from the mono-
mial Xi. Assuming F is fixed, this operation is a linear
application from Kn → Ks where its matrix has the form

CF =
(
TF̄0

TF̄1
. . . TF̄n/s−1

)
∈ Ks×n

such that each TF̄k
∈ Ks×s for k ∈ [0, . . . , n/s − 1] is a

Toeplitz matrix formed from the coefficients of the poly-
nomial F . More precisely, we have

TF̄k
=


fi−ks fi−ks−1 . . . fi−(k+1)s+1

fi−ks+1
. . .

. . .
...

...
. . .

. . . fi−ks−1

fi−(k−1)s−1 . . . fi−ks+1 fi−ks


with fj = 0 when j < 0 or j > m and fj is the coefficient of
the polynomial F at Xj otherwise. Let H = PPs(F,G, i)
and vG, vH be the vector of the coefficients of the polyno-
mial G and H. By definition of CF we have vH = CF vG.
Here again, applying a vector ~α to this equality provides
us a way to certify the partial product operation. The fol-
lowing algorithm provides a probabilistic verification for
H = PPs(F,G, i) with a complexity of O(n):

Algorithm VerifyPP(F,G,H, s, i) :

1. choose a random α from a finite subset S ⊂ K and
set ~αs ← [1, α, . . . , αs−1]

2. for k from 0 to n/s
yk ← (~αsTF̄k

) · [gks, . . . , g(k+1)s−1]T

3. return true if H(α) =
∑n/s−1

k=0 yk, false otherwise

Lemma 6.1. Algorithm VerifyPP(F,G,H, s, i) ensures
that H = PPs(F,G, i) with a probability greater or equal to
1− s/|S|. The algorithms uses O(n) operations in K and
dlog2 |S|e random bits.

Proof. From the definition of CF we know that vH = CF vG
corresponds to the partial product operation PPs(F,G, i).
There, multiplying both side of the equation gives ~α ·vH =

H(α) = (~αCF ) · vG. Since
∑n/s−1

k=0 yk corresponds, in our
algorithm, exactly to (~αCF )·vG, this proves the correctness
of our algorithm. Assuming H 6= PPs(F,G, i), the value
H(α)−(~αCF )·vG is a non zero polynomial of K[α] of degree
less than s. Hence, such polynomial can be zero only for s
values of α ∈ S ⊂ K which gives the expected probability.
Finally, the complexity of our algorithm is dominated by
step 2. Each loop costs exactly O(s) operations in K by
using Corollary 4.3. Since the size of the loop is n/s, the
final complexity is O(n) as promised.

For some specific cases, one is able to reduce the com-
plexity of PPs(F,G, i). Indeed, depending on the value
of i some Toeplitz matrices TF̄k

will be zero. Using the
structure of CF , one can prove that the number of non
zero matrices is given by d ise if i < n and dm−is e if i > m.

For such cases, the complexity drops down to O(sd ise) and

O(sdm−is e) which are below O(n).
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