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Abstract

For integers n and k, the density Hales-Jewett number cn,k is defined as the maximal
size of a subset of [k]n that contains no combinatorial line. We show that for k ≥ 3 the
density Hales-Jewett number cn,k is equal to the maximal size of a cylinder intersection
in the problem Partn,k of testing whether k subsets of [n] form a partition. It follows
that the communication complexity, in the Number On the Forehead (NOF) model,
of Partn,k, is equal to the minimal size of a partition of [k]n into subsets that do not
contain a combinatorial line. Thus, the bound in [7] on Partn,k using the Hales-Jewett
theorem is in fact tight, and the density Hales-Jewett number can be thought of as
a quantity in communication complexity. This gives a new angle to this well studied
quantity.

As a simple application we prove a lower bound on cn,k, similar to the lower bound
in [19] which is roughly cn,k/k

n ≥ exp(−O(log n)1/⌈log2
k⌉). This lower bound follows

from a protocol for Partn,k. It is interesting to better understand the communication
complexity of Partn,k as this will also lead to the better understanding of the Hales-
Jewett number. The main purpose of this note is to motivate this study.

1 Introduction

For any integers n ≥ 1 and k ≥ 1, consider the set [k]n, of words of length n over the
alphabet [k]. Define a combinatorial line in [k]n as a subset of k distinct words such
that we can place these words in a k × n table so that all columns in this table belong
to the set {(x, x, . . . , x) : x ∈ [k]} ∪ {(1, 2, . . . , k)}. The density Hales-Jewett number
cn,k is defined to be the maximal cardinality of a subset of [k]n which does not contain
a combinatorial line.

Clearly, cn,k ≤ kn, and a deep theorem of Furstenberg and Katznelson [11, 12] says
that cn,k is asymptotically smaller than kn:

Theorem 1 (Density Hales-Jewett theorem) For every positive integer k and ev-
ery real number δ > 0 there exists a positive integer DHJ(k, δ) such that if n ≥
DHJ(k, δ) then any subset of [k]n of cardinality at least δkn contains a combinato-
rial line.

The above theorem is a density version of the Hales-Jewett theorem:

Theorem 2 (Hales-Jewett theorem) For every pair of positive integers k and r
there exists a positive number HJ(k, r) such that for every n ≥ HJ(k, r) and every
r-coloring of the set [k]n there is a monochromatic combinatorial line.
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Note that the density Hales-Jewett theorem implies the Hales-Jewett theorem but
not the other way around. The density Hales-Jewett theorem is a fundamental result
of Ramsey theory. It implies several well known results, such as van der Waerden’s
theorem [23], Szemerédi’s theorem on arithmetic progressions of arbitrary length [22]
and its multidimensional version [10].

The proof of Furstenberg and Katznelson used ergodic-theory and gave no explicit
bound on cn,k. Recently, additional proofs of this theorem were found [18, 2, 8]. The
proof of [18] is the first combinatorial proof of the density Hales-Jewett theorem, and also
provides effective bounds for cn,k. In a second paper [19] in this project, several values of
cn,3 are computed for small values of n. Using ideas from recent work [9, 13, 17] on the
construction of Behrend [4] and Rankin [21], they also prove the following asymptotic
bound on cn,k. Let rk(n) be the maximal size of a subset of [n] without an arithmetic
progression of length k, then:

Theorem 3 ([19]) For each k ≥ 3, there is an absolute constant C > 0 such that

cn,k ≥ Ckn
(

rk(
√
n)√
n

)k−1

= kn exp
(

−O(log n)1/⌈log2
k⌉
)

.

We show analogues of the Hales-Jewett theorem, the density Hales-Jewett theorem,
the above lower bound and other related quantities, in the communication complexity
framework. The model used is the Number On the Forehead (NOF) model [6]. In this
model k players compute together a boolean function f : X1 × · · · ×Xk → {0, 1}. The
input, (x1, x2, . . . , xk) ∈ X1×· · ·×Xk, is presented to the players in such a way that the
i-th player sees the entire input except xi. A protocol is comprised of rounds, in each of
which every player writes one bit (0 or 1) on a board that is visible to all players. The
choice of the written bit may depend on the player’s input and on all bits previously
written by himself and others on the board. The protocol ends when all players know
f(x1, x2, . . . , xk). The cost of a protocol is the number of bits written on the board, for
the worst input. The deterministic communication complexity of f , D(f), is the cost
of the best protocol for f .

Two key definitions in the number on the forehead model are a cylinder and a cylinder
intersection. We say that C ⊆ X1 × · · · × Xk is a cylinder in the i-th coordinate
if membership in C does not depend on the i-th coordinate. Namely, for every y, y′

and x1, x2, . . . , xi−1, xi+1, . . . , xk there holds (x1, x2, . . . , xi−1, y, xi+1, . . . , xk) ∈ C iff
(x1, x2, . . . , xi−1, y

′, xi+1, . . . , xk) ∈ C. A cylinder intersection is a set C of the form
C = ∩k

i=1Ci where Ci is a cylinder in the i-th coordinate.
Every c-bit communication protocol for a function f partitions the input space into

at most 2c cylinder intersections that are monochromatic with respect to f (see [15]
for more details). Thus, one way to relax D(f) is to view it as a coloring problem.
Denote by α(f) the largest size of a 1-monochromatic cylinder intersection with respect
to f , and by χ(f) the least number of monochromatic cylinder intersections that form
a partition of f−1(1). Obviously, D(f) ≥ logχ(f), and as we shall see, for special
families of functions this bound is nearly tight, including the function Partn,k that we
are interested in. Also observe that χ(f) ≥ |f−1(1)|/α(f).

The function Partn,k : (2[n])k → {0, 1} is defined as follows, Partn,k(S1, . . . , Sk) = 1
if and only if (S1, . . . , Sk) is a partition of [n]. In [7] the Hales-Jewett theorem was used
to prove that D(Partn,k) ≥ ω(1). We observe that in fact the Hales-Jewett theorem
is equivalent to this statement. This follows from the following strong relation Partn,k
has with the Hales-Jewett number.
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Theorem 4 For every k ≥ 3 and n ≥ 1 there holds:

1. cn,k = α(Partn,k), and

2. χ(Partn,k) is equal to the minimal number of colors required to color [k]n so that
there is no monochromatic combinatorial line.

Theorem 4 entails an alternative characterization of the Hales-Jewett theorem and its
density version:

Theorem 5 (Hales-Jewett theorem) For every fixed k ≥ 3, one has D(Partn,k) =
ω(1).

Theorem 6 (Density Hales-Jewett theorem) For every k ≥ 3 there holds

lim
n→∞

α(Partn,k)/k
n = 0.

Given the central role the Hales-Jewett theorem plays in Ramsey Theory, and the
intricacy of its proof, it would be very nice to find a proof of the Hales-Jewett theorem
in the framework of communication complexity.

The relation between cn,k and communication complexity also suggests a way to
prove a lower bound on cn,k: prove an efficient communication protocol for Partn,k.

We show indeed that D(Partn,k) ≤ O (logn)
1/⌈log

2
k⌉

, and thus the lower bound follows.
We prove the relationship between cn,k and α(Partn,k) in Section 2, and the lower bound
on cn,k is proved in Section 3. Lastly, Section 4 contains a discussion on Fujimura sets,
mentioned in [19], and their communication complexity analogues.

2 A communication complexity version of Hales-Jewett

We start with the definition of a star: A star is a subset of X1 × · · · ×Xk of the form

{(x′1, x2, . . . , xk), (x1, x′2, . . . , xk), . . . , (x1, x2, . . . , x′k)},

where xi 6= x′i for each i. We refer to (x1, x2, . . . , xk) as the star’s center. Cylinder
intersections can be easily characterized in terms of stars.

Lemma 7 ([15]) A subset C ⊆ X1 × · · · ×Xk is a cylinder intersection if and only if
for every star that is contained in C, its center also belongs to C.

The function Partn,k has the property that for every S1, . . . , Sk−1 ∈ 2[n] there is at
most one set S ⊂ [n] such that Partn,k(S1, . . . , Sk−1, S) = 1. We call such a function
a weak graph function, as opposed to a graph function [3] where there is always exactly
one such S.

Graph functions have some particularly convenient properties, one of which is that
1-monochromatic cylinder intersections are characterized simply by the existence of
stars, as proved in [16]. The same proof also works for weak graph functions and gives:

Lemma 8 ([16]) Let f : X1 × · · · × Xk → {0, 1} be a weak graph function and C ⊆
f−1(1). The set C is a (1-monochromatic) cylinder intersection with respect to f if and
only if it does not contain a star.

Proof If C does not contain a star, then C is a cylinder intersection by Lemma 7.
On the other hand, if C contains a star whose center is (x1, x2, . . . , xk), then by def-
inition of a weak graph function f(x1, x2, . . . , xk) = 0. Thus, C does not contain the
center of star, and therefore C is not a cylinder intersection (again using Lemma 7).
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Proof [of Theorem 4] As in [7], define a bijection ψ from Part−1
n,k(1) to [k]n. A k-tuple

(S1, . . . , Sk) is mapped to (j1, . . . , jn) ∈ [k]n where ji is the index of the set Sji that
contains i. Since S1, . . . , Sk form a partition of [n] this map is a bijection.

Now consider a 1-monochromatic star (S′
1, . . . , Sk), . . . , (S1, . . . , S

′
k) with respect to

Partn,k. Since this star is 1-monochromatic, it implies that in each of the families
(S′

1, . . . , Sk), . . . , (S1, . . . , S
′
k), all subsets are pairwise disjoint. As a result, because

k ≥ 3, we get that the subsets (S1, . . . , Sk) are also pairwise disjoint. This determines
S′
j uniquely: S′

j = Sj ∪ ([n] \ (∪k
i=1Si)), for every j = 1, . . . , k. Therefore, if we consider

ψ(S′
1, . . . , Sk), . . . , ψ(S1, . . . , S

′
k) and place them in a k × n table, then the columns

of this table all belong to {(x, x, . . . , x) : x ∈ [k]} ∪ {(1, 2, . . . , k)}. The i-th column
of this table is in {(x, x, . . . , x) : x ∈ [k]} if i ∈ Sj for some j ∈ [k] and otherwise
the i-th column is equal to (1, 2, . . . , k). Thus the stars in Part−1

n,k(1) are mapped to
combinatorial lines in [k]n.

On the other hand, consider a combinatorial line in [k]n given by a k × n matrix
L. Let L1, . . . , Lk be the rows of L, then it is not hard to check that similarly to the
above, ψ−1(L1), . . . , ψ

−1(Lk) form a 1-monochromatic star with respect to Partn,k.
The center of this star is (S1, . . . , Sk) where Sj contains all indices of columns that are
equal to (j, j, . . . , j).

Hence the stars in Part−1
n,k(1) are in one-to-one correspondence with combinatorial

lines in [k]n. It follows that cn,k = α(Partn,k), and that χ(Partn,k) is equal to the
minimal number of colors required to color [k]n so that there is no monochromatic com-
binatorial line.

It is left to show the equivalence between Theorem 5 and the Hales-Jewett theorem,
and Theorem 6 with its density version. The latter equivalence follows immediately
from part 1 of Theorem 4. The equivalence of Theorem 5 to the Hales-Jewett theorem
follows from part 2 of Theorem 4, and the following theorem:

Theorem 9 ([16]) For every weak graph function f : X1 × · · · × Xk → {0, 1}, there
holds

logχ(f) ≤ D(f) ≤ ⌈logχ(f)⌉+ k.

Theorem 9 was proved in [16] for graph functions. The same proof with a minor change
works for weak graph functions. For completeness we add the proof.

Proof The lower bound is standard and holds for every function, thus it is only required
to prove the upper bound. Fix a χ(f)-coloring of f−1(1) where every color class is star-
free. On input x1, x2, . . . , xk−1, y, the last player first checks and announces whether
there is a value y′ such that f(x1, x2, . . . , xk−1, y

′) = 1, using 1 bit. If y′ exists, the last
player then computes and publishes the color b of (x1, x2, . . . , xk−1, y

′). If y′ does not
exist, the protocol ends with value 0. Note that since f is a weak graph function, if y′

exists then it is unique.
Then, for each i = 1, . . . , k − 1, player Pi checks whether there is a value x′i such

that f(x1, x2, . . . , xi−1, x
′
i, xi+1, .., y) = 1 and (x1, x2, . . . , xi−1, x

′
i, xi+1, .., y) is colored

b. He writes 1 on the board if such an x′i exists and writes 0 otherwise. The protocol’s
value is 1 if and only if all players wrote 1 on the board.

The total number of bits communicated in this protocol is ⌈logχ(f)⌉+k. We turn to
prove that the protocol is correct. When f(x1, x2, . . . , xk−1, y) = 1, the protocol clearly
outputs 1. Now suppose that it outputs 1, even though f(x1, x2, . . . , xk−1, y) = 0. This
means that there is a choice of x′1, x

′
2, . . . , y

′ for which

f(x′1, x2, . . . , xk−1, y) = f(x1, x
′
2, . . . , xk−1, y) = . . . = f(x1, x2, . . . , xk−1, y

′) = 1,

and all points are in the same color set. But then this color set in f−1(1) cannot con-
stitute a star-free set, a contradiction.
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3 A lower bound on cn,k

In this section we prove the following lower bound, similar to that of [19]:

Theorem 10 For each k ≥ 3, there is an absolute constant C > 0 such that

cn,k ≥ Ckn
rk(kn)

kn log kn
= kn exp

(

−O(log n)1/⌈log2
k⌉
)

.

We first give an efficient protocol for Partn,k, and then explain how it implies Theo-
rem 10.

Lemma 11 For every fixed k ≥ 3 it holds that

D(Partn,k) ≤ O

(

log
kn log kn

rk(kn)

)

= O(log n)1/⌈log2
k⌉.

Proof The protocol uses a known reduction to the Exactly-n function, see e.g. [5, 7].

Define Exactlyn,k(x1, . . . , xk) = 1 if and only if
∑k

i=1 xi = n, where (x1, . . . , xk) are
non-negative integers. The reduction is simple, given an instance (S1, . . . , Sk) to be
computed, the players do the following:

1. The k-th player checks whether S1, . . . , Sk−1 are pairwise disjoint. If they are not
pairwise disjoint then the protocol ends with rejection.

2. The first player checks whether S2, . . . , Sk−1 are each disjoint from Sk. If this is
not the case then the protocol ends with rejection.

3. The second player checks whether S1 ∩ Sk = ∅ and rejects if not.

4. The players use a protocol for Exactlyn,k to determine whether
∑k

i=1 |Si| = n.
The protocol accepts if and only if equality holds, and the sum is exactly n.

The first three steps of the above protocol require three bits of communication,
and the last part uses a protocol for Exactlyn,k. Chandra, Furst and Lipton [6] gave

a surprising protocol for Exactlyn,k with at most O(log kn log kn
rk(kn)

) bits of communica-

tion. It was later observed by Beigel, Gasarch and Glenn [5] that when plugging in the
bounds on rk(n) given by the construction of Rankin [21] one gets O(log kn log kn

rk(kn)
) =

O(log n)1/⌈log2
k⌉.

Proof [of Theorem 10] As mentioned before logχ(f) ≤ D(f) holds for every function
f, combined with Lemma 11 this gives

χ(Partn,k) ≤ exp (D(Partn,k)) ≤ O

(

kn log kn

rk(kn)

)

= exp
(

O(log n)1/⌈log2
k⌉
)

.

Since α(f) ≥ |f−1(1)|/χ(f) holds also for every f and |Part−1
n,k(1)| = kn, we get

α(Partn,k) ≥
kn

χ(Partn,k)
≥ Ω

(

kn
rk(kn)

kn log kn

)

= kn exp
(

−O(logn)1/⌈log2
k⌉
)

.

The lower bound on cn,k now follows from part 1 of Theorem 4.

4 Fujimura sets

The following definitions are from [19]. Let ∆n,k denote the set of k-tuples (a1, . . . , ak) ∈
N

k such that
∑k

i=1 ai = n. Define a simplex to be a set of k points in ∆n,k of the form
(a1+r, a2, . . . , ak), (a1, a2+r, . . . , ak), . . . , (a1, a2, . . . , ak+r) for some 0 < r ≤ n. Define
a Fujimura set to be a subset B ⊂ ∆n,k that contains no simplices.

Theorem 10 actually proves a lower bound on the maximal size of a Fujimura set in
∆n,k, similarly to the proof in [19]. In fact
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• ∆n,k = (Exactlyn,k)
−1(1).

• A simplex in ∆n,k is equivalent to a star.

• α(Exactlyn,k) is equal to the maximal size of a Fujimura set in ∆n,k, which is
denoted by cµn,k in [19].

The proof of Theorem 10 gives essentially a lower bound for α(Exactlyn,k) via an
efficient protocol for Exactly-n, and the lower bound for cn,k is implied from the fact that
D(Partn,k) ≤ D(Exactlyn,k) + 3. It is an interesting question whether this bound is
tight, or is it the case that D(Partn,k) can be significantly smaller than D(Exactlyn,k).
This is equivalent to asking whether lower bounds on the density Hales-Jewett number
via bounds on the maximal size of a Fujimura set can be tight, or close to tight. In
this respect it is interesting to note the following characterization of the communication
complexity of Exactlyn,k in the language of Partn,k.

Let m ≥ n be natural numbers, define the function Partm,k,n : (2[m])k → {0, 1} as
follows, Partm,k,n(S1, . . . , Sk) = 1 if and only if (S1, . . . , Sk) are pairwise disjoint and
|S1 ∪ S2 ∪ . . . ∪ Sk| = n. Clearly, Partn,k = Partn,k,n and as we observe in the next
theorem D(Exactlyn,k) is also equivalent to the complexity of some function in this
family.

We call a map g : [n]k → (2[m])k sum preserving if the following two properties hold
for every (a1, . . . , ak) ∈ ([n])k: (i) |g(a1, . . . , ak)i| = ai, (ii) g(a1, . . . , ak) are pairwise

disjoint whenever
∑k

i=1 ai = n.

Theorem 12 Let n, k and m be natural numbers, if there exists a sum preserving map
g : [n]k → (2[m])k. Then

D(Exactlyn,k) ≤ D(Partm,k,n) ≤ D(Exactlyn,k) + 3.

Proof Similarly to the case m = n, given an instance (S1, . . . , Sk) to be computed,
the protocol is:

1. The players check whether S1, . . . , Sk are pairwise disjoint, using three bits of
communication. If they are not pairwise disjoint then the protocol ends with a
rejection.

2. The players use a protocol for Exactlyn,k to determine whether
∑k

i=1 |Si| = n.
The protocol accepts if and only if equality holds, and the sum is equal to n.

It follows that D(Partm,k,n) ≤ D(Exactlyn,k) + 3. Note that Partm1,k,n ≤ Partm2,k,n

whenever m1 ≤ m2. Therefore the minimal value of D(Partm,k,n) is achieved when
m = n, i.e. for Partn,k.

On the other direction, to get a protocol for Exactlyn,k the players decide before
hand on a sum preserving map g : [n]k → (2[m])k. Then, given an instance (a1, . . . , ak)
to Exactlyn,k the players solve the instance g(a1, . . . , ak) using an optimal protocol for
Partm,k,n. Since g is sum preserving this reduction always gives the correct answer.
We conclude that D(Exactlyn,k) ≤ D(Partm,k,n).

Therefore, the question of separating D(Partn,k) from D(Exactlyn,k) is actually a
question of separating D(Partm,k,n) for different values of m. Notice that for m = kn
there already exists a sum preserving map g : [n]k → (2[m])k, simply take g(a1, . . . , ak) =
({1, . . . , a1}, {n+ 1, . . . , n+ a2}, . . . , {(k − 1)n+ 1, . . . , (k − 1)n+ ak}).

Thus the ranges of m we are interested in are m ≤ kn. This can be improved
to m ≤ ⌈kn

2 ⌉, by pairing adjacent entries and considering the map g(a1, . . . , ak) =
({1, . . . , a1}, {n− 1, . . . , n−a2}, {n+1, . . . , n+a3}, {2n− 1, . . . , 2n−a4}, . . .). The sets
in this case might intersect, but if they do it implies that the sum

∑

ai is greater than
n and the value 0 is correct. For k = 3 this gives m ≤ 2n and the question is to separate
D(Partn,k,n) from D(Part2n,k,n).
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5 Discussion and open problems

The relation between the NOF model of communication complexity and Ramsey theory
and related areas of mathematics was evident already in the initial paper of Chandra,
Furst and Lipton [6]. Since then, the breadth and profoundness of this relation is better
understood, see e.g. [20, 5, 7, 1, 16]. This note offers another strong bridge, showing
that the Hales-Jewett theorem, a pillar of Ramsey theory, and related questions, are
naturally formulated in this model of communication complexity.

We already know that the NOF model is rich enough to formulate many interesting
questions in the theory of computer science, e.g. proving lower bounds on the size of
ACC0 circuits [14]. The new relations that we find give yet another proof to the richness
and significance of this model, not only in computer science. For these relations to bear
fruit though, it is not enough to describe the problems in communication complexity
language, we need to also develop the tools to handle them in this setting. The main
purpose of this note was to further motivate this study. Some interesting open questions
in the context of the problems described here, are:

1. Find a protocol for Partn,k that does not rely on the construction of Behrend [4]
and Rankin [21].

2. Find more efficient protocols for Partn,k, and thus improve the lower bound on
the density Hales-Jewett number. For k > 3 we believe that the protocol described
here is not optimal.

3. Prove a lower bound for the communication complexity of Partn,k using communi-
cation complexity tools, e.g. via a reduction. Currently the tools of communication
complexity do not seem to even give Dk(Partn,k) → ∞.

4. Determine the relation between Dk(Partn,k) and Dk(Exactlyn,k). From the point
of view of communication complexity it makes sense to believe that these two are
closely related, since determining whether pairwise disjoint sets S1, . . . , Sk form a
partition of [n] essentially amounts to verifying that |S1|+ |S2|+ · · ·+ |Sk| = n. It
is therefore reasonable to make the following conjecture (see Section 4 for further
discussion):

Conjecture 13 Dk(Partn,k) = Θ(Dk(Exactlyn,k)).

If the above conjecture is true, it in particular gives a strong proof of the Hales-
Jewett theorem as well as deep insight into the relation between the Hales-Jewett
theorem and multidimensional Szemerédi theorems.
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