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Abstract

Partitioning a sequence of length n into k coherent segments (Seg) is one of the classic optimization problems. As long

as the optimization criterion is additive, Seg can be solved exactly in O
(

n2k
)

time using a classic dynamic program.

Due to the quadratic term, computing the exact segmentation may be too expensive for long sequences, which has led to

development of approximate solutions. We consider an existing estimation scheme that computes (1 + ǫ) approximation

in polylogarithmic time. We augment this algorithm, making it strongly polynomial. We do this by first solving a

slightly different segmentation problem (MaxSeg), where the quality of the segmentation is the maximum penalty of

an individual segment. By using this solution to initialize the estimation scheme, we are able to obtain a strongly

polynomial algorithm. In addition, we consider a cumulative version of Seg, where we are asked to discover the optimal

segmentation for each prefix of the input sequence. We propose a strongly polynomial algorithm that yields (1 + ǫ)

approximation in O
(

nk2/ǫ
)

time. Finally, we consider a cumulative version of MaxSeg, and show that we can solve

the problem in O(nk log k) time.

1. Introduction

Partitioning a sequence into coherent segments is one

of the classic optimization problems, with applications in

various domains, such as discovering context in mobile de-

vices [12], similarity search in time-series databases [13],

and bioinformatics [15, 17].

More formally, we are given a sequence of length n

and a penalty function of a segment, and we are asked to

find a segmentation with k segments such that the sum

of penalties is minimized (Seg). As long as the score is

additive, Seg can be solved exactly in O
(

n2k
)

time using

a classic dynamic program [2].

Due to the quadratic term, computing the exact seg-

mentation may be too expensive for long sequences, which

has led to development of approximate solutions. Guha

et al. [10] suggested an algorithm that yields (1 + ǫ) ap-
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proximation in O
(

k3 log2 n+ k3ǫ−2 logn
)

time, if we can

compute the penalty of a single segment in constant time.1

This method assumes that we are dealing with an integer

sequence that is penalized by L2-error. Without these as-

sumptions the computational complexity deteriorates to

O
(

k3 log θ
α logn+ k3ǫ−2 logn

)

, where θ is the cost of the

optimal solution and α is the smallest possible non-zero

penalty. Consequently, without the aforementioned as-

sumptions the term O
(

θ
α

)

may be arbitrarily large, and

the method is not strongly polynomial.

In this paper we demonstrate a simple approach for

how to augment this method making it strongly polyno-

mial. The reason for having log θ
α term is that the algo-

rithm needs to first find a 2-approximation. This is done

by setting α to be the smallest non-zero cost and then in-

creasing exponentially its value until an appropriate value

1Note that Guha et al. [10] refers to this problem as histogram

construction.
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is discovered (we can verify whether the value is appro-

priate in O
(

k3 logn
)

time). Instead of using the smallest

non-zero cost, we first compute a k-approximation of the

segmentation cost, say η, and then set α = η/k. This will

free us of integrality assumptions, reducing the compu-

tation time to O
(

k3 log k log n+ k3ǫ−2 logn
)

. Moreover,

we no longer need to discover the smallest non-zero cost,

which can be non-trivial.

In order to discover k-approximation we consider a dif-

ferent segmentation problem, where the score of the whole

segmentation is not the sum but the maximum value of

a single segment (MaxSeg). We show in Section 4 that

the segmentation solving MaxSeg yields the needed k-

approximation for Seg. Luckily, we can solve MaxSeg

in O
(

k2 log2 n
)

time by using an algorithm by Guha and

Shim [7].

The method by Guha et al. [10] only computes a k-

segmentation for whole sequence. We consider a cumu-

lative variant of the segmentation problem, where we are

asked to compute an ℓ-segmentation for all prefixes and for

all ℓ ≤ k. As our second contribution, given in Section 5,

we propose a strongly polynomial algorithm that yields

(1 + ǫ) approximation in O
(

nk2/ǫ
)

time. Finally, in Sec-

tion 6 we also consider a cumulative variant of MaxSeg

problem, for which we propose an exact algorithm with

computational complexity of O(nk log k).

2. Related work

As discussed earlier, our approach is based on improv-

ing method given by Guha et al. [10], that achieves an (1+

ǫ) approximation inO
(

k3 log2 n+ k3ǫ−2 logn
)

time, under

some assumptions. Terzi and Tsaparas [20] suggested an

approximation algorithm that yields 3-approximation in

O
(

n4/3k5/3
)

time, assuming L2 error.

We also consider an algorithm for the cumulative ver-

sion of the problem. The main idea behind the algorithm

is inspired by Guha et al. [8], where the algorithm requires

O
(

nk2/ǫ logn
)

time as well as integrality assumptions. We

achieve O
(

nk2/ǫ
)

time and, more importantly, we do not

need any integrality assumptions, making the algorithm

strongly polynomial.

Fast heuristics that do not yield approximation guar-

antees have been proposed. These methods include top-

down approaches, based on splitting segments (see Shatkay

and Zdonik [18], Bernaola-Galván et al. [3], Douglas and

Peucker [4], Lavrenko et al. [14], for example), and bottom-

up approaches, based on merging segments (see Palpanas

et al. [16], for example). A different approach was sug-

gested by Himberg et al. [12], where the authors optimize

boundaries of a random segmentation.

If the penalty function is concave, then we can discover

the exact optimal segmentation in O(k(n+ k)) time using

the SMAWK algorithm [1, 6]. This is the case when seg-

menting a monotonic one-dimensional sequence and using

L1-error as a penalty [11, 5].

If we were to evaluate the segmentation by the max-

imum penalty of a segment, instead of the sum of all

penalties, then the problem changes radically. Guha and

Shim [7] showed that we can compute the exact solution in

O
(

n+ k2 log3 n
)

time, when using the L∞ penalty. Guha

et al. [9] also showed that we can compute the cumula-

tive version in O
(

kn log2 n
)

time,2 which we improve in

Section 6.

3. Preliminaries

Segmentation problem. Throughout the paper we will as-

sume that we are given an integer n and a penalty function

p that maps two integers 1 ≤ a ≤ b ≤ n to a positive real

number.

The most common selection for the penalty function is

an Lq distance of individual points in a sequence segment

to the optimal centroid, that is, given a sequence of real

2or in O(kn logn) time if we assume that we can compute the

penalty of a segment in constant time.
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numbers, z1, . . . , zn+1, the score is equal to

Lq(a, b) = min
µ

b−1
∑

i=a

‖zi − µ‖q . (1)

Since we do not need any notion of sequence in this paper,

we abstract it out, and speak directly only about penalty

function.

Throughout the paper, we will assume that

1. for any 1 ≤ a1 ≤ a2 ≤ b2 ≤ b1, we have p(a2, b2) ≤

p(a1, b1). Also, p(a1, a1) = 0,

2. we can compute the penalty in constant time,

3. we can perform arithmetic operations to the penalty

in constant time, as well as compare the scores.

The first assumption typically holds. For example, any

Lp-error will satisfy this assumption, as well as any log-

likelihood-based errors [19]. The third assumption is a

technicality used by the definition of strongly polynomial

time. The second assumption is the most limiting one. It

holds for L2-error: we can compute the penalty in constant

time by precomputing cumulative mean and the second

moment. It also holds for log-linear models [19]. How-

ever, for example, we need O(logn) time to compute L∞-

error [7]. In such a case, we need to multiply the running

time by the time needed to compute the penalty. We will

ignore the running time needed for any precomputation as

this depends on the used penalty.

Given an integer k and an interval [i, j], where i and

j are integers with 1 ≤ i ≤ j ≤ n, a k-segmentation B

covering [i, j] is a sequence of k + 1 integers

B = (i = b0 ≤ b1 ≤ · · · ≤ bk = j) .

We omit k and simply write segmentation, whenever k is

known from context.

Let p be a penalty function for individual segments.

Given a segmentation B, we extend the definition of p

and define p(B), the penalty for the segmentation B, as

p(B) =

k
∑

i=1

p(bi−1, bi) .

We can now state the classic segmentation problem:

Problem 3.1 (Seg). Given a penalty p and an integer k

find a segmentation B covering [1, n] that minimizes p(B).

Since the penalty score is the sum of the interval penal-

ties, we can solve Seg with a dynamic program given

by Bellman [2]. The computational complexity of this pro-

gram is O
(

n2k
)

, which is prohibitively slow for large n.

We will also consider a cumulative variant of the seg-

mentation problem defined as follows.

Problem 3.2 (AllSeg). Given a penalty function p and

an integer k find an ℓ-segmentation B covering [1, i] that

minimizes p(B), for every i = 1, . . . , n and ℓ = 1, . . . k.

Note that Bellman [2] in fact solves AllSeg, and uses

the solution to solve Seg. However, the state-of-the-art

approximation algorithm, by Guha et al. [10], solving Seg

does not solve AllSeg, hence we will propose a separate

algorithm.

Approximation algorithm. Our contribution is an addi-

tional component to the approximation algorithm by Guha

et al. [10], a state-of-the-art approximation algorithm for

estimating Seg. We devote the rest of this section to ex-

plaining the technical details of this algorithm, and what

is the issue that we are addressing.

Guha et al. [10] showed that under some assumptions

it is possible to obtain a (1 + ǫ) approximation to Seg

in O
(

k3 log2(n) + k3ǫ−2 log(n)
)

time. What makes this

algorithm truly remarkable is that it is polylogarithmic in

n, while the exact algorithm is quadratic in n. Here we

assume that we have a constant-time access to the score

p. If one uses L2 error as a penalty, then one is forced

to precompute the score, which requires additional O(n)

time. However, this term depends neither on k nor on ǫ.

The key idea behind the approach by Guha et al. [10] is

a sub-routine, oracle(δ, u), that relies on two parameters

δ and u. oracle constructs a k-segmentation with the

following property.3

3The actual subroutine is too complex to be described in compact

space. For details, we refer reader to [10].

3



Proposition 3.1. Suppose that p is a penalty function,

and k is an integer. Let θ be the cost of an optimal k-

segmentation covering [1, n]. Let δ and u be two positive

real numbers such that θ + δ ≤ u. Then oracle(δ, u)

returns a k-segmentation with a cost of τ such that τ ≤

θ + δ. oracle(δ, u) runs in O
(

k3 u2

δ2 logn
)

time.

Proposition 3.1 describes the trade-off between the ac-

curacy and computational complexity: We can achieve

good accuracy with small δ, and large enough u, but we

have to pay the price in running time.

We will now describe how to select u and δ in a smart

way. Let θ be the cost of an optimal k-segmentation. As-

sume that we know an estimate of θ, say η, such that

η ≤ θ ≤ 2η. Let us set

u = (2 + ǫ)η and δ = ǫη .

As θ+δ ≤ u, Proposition 3.1 guarantees that oracle(δ, u)

returns a k-segmentation with a cost of τ such that

τ ≤ θ + δ = θ + ǫη ≤ θ + ǫθ = (1 + ǫ)θ .

In other words, the resulting segmentation yields a (1+ ǫ)

approximation guarantee. The computational complexity

of oracle(δ, u) is equal to O
(

k3ǫ−2 logn
)

.

The difficult part is to discover η such that η ≤ θ ≤ 2η.

This can be also done using the oracle (see Algorithm 14).

Assume that we know a lower bound for θ, say α. We first

set η = α and check using oracle to see if η is too small.

If it is, then we increase the value and repeat.

To see why estimate works, assume that we are at a

point in the while-loop where 2η < θ. Then τ ≥ θ > 2η

and the while-loop is not terminated. This guarantees that

for the final η, we have θ ≤ 2η. Let us show that η ≤ θ.

If the while-loop is terminated while η < θ, then there is

nothing to prove. Assume otherwise, that is, at some point

4 The original pseudo-code given by Guha et al. [10] contains

a small error, and only yields η ≤ θ < 4η. Here we present the

corrected variant.

Algorithm 1: estimate(α), computes η such that

η ≤ θ ≤ 2η, where θ is the optimal cost. Requires

α ≤ θ as an input parameter.

1 η ← α;

2 τ ← the cost of the solution by oracle(η/2, 2η);

3 while τ > 2η do

4 η ← 1.5η;

5 τ ← the cost of the solution by oracle(η/2, 2η);

6 return η;

we have η ≤ θ ≤ 1.5η. Since θ+ η/2 ≤ 2η, Proposition 3.1

guarantees that τ ≤ θ + η/2 ≤ 2η, and we exit the while-

loop with η ≤ θ.

The computational complexity of a single oracle call

is O
(

k3 logn
)

, and the total computational complexity of

estimate is O
(

log( θ
α )k

3 logn
)

. At this point, Guha et al.

[10] assume (implicitly) that the penalty function is L2

error of a sequence (see Eq. 1), and the values in the se-

quence are integers encoded with a standard bit represen-

tation in at most O(logn) space. These assumptions have

two consequences: (i) we can use α = 1/2, the smallest

non-zero cost for a segmentation, and (ii) the number of

iterations O
(

log θ
α

)

is bounded by O(logn). This leads to

a computational complexity of O
(

k3 log2 n
)

.

The L2 assumption is not critical since the same ar-

gument can be done for many other cost functions, how-

ever one is forced to find an appropriate α for each case

individually. Moreover, there are penalty functions for

which this argument does not work, for example, p(a, b) =

exp (L2(a, b)), where L2 is given in Eq. 1.

The more critical assumption is that the numbers in a

sequence are integers, and this assumption can be easily

violated if we have a sequence of numbers represented in

a floating-point format. If this is the case, then we can

no longer select α = 1/2. In fact, there is no easy way of

selecting α such that (i) we are sure that α is less than the

optimal segmentation score, and (ii) the number of loops

4



needed by estimate, O
(

log θ
α

)

, is bounded by a (slowly

increasing) function of n.

In the following section, we will show how to select

α such that the number of loops in estimate remains

small. More specifically, we demonstrate how to select

α such that α ≤ θ ≤ kα. This immediately implies

that the computational complexity of estimate reduces

to O
(

k3 log(k) log(n)
)

. More importantly, we do not need

any awkward assumptions about having a sequence of only

integer values, making this algorithm strongly polynomial.

Moreover, this procedure works on any penalty function,

hence a finding appropriate αmanually is no longer needed.

4. Strongly polynomial scheme for segmentation

To find α, the parameter for estimate, we consider a

different optimization problem, where the segmentation is

evaluated by its most costly segment.

Problem 4.1 (MaxSeg). Given a penalty p and an in-

teger k, find a k-segmentation B covering [1, n] that min-

imizes

pmax(B) = max
1≤j≤k

p(bj−1, bj) .

The next proposition states why solvingMaxSeg helps

us to discover α.

Proposition 4.1. Suppose that p is a penalty function,

and k is an integer. Let B be a solution to Seg, and let

B′ be a solution to MaxSeg. Then

p(B′) /k ≤ p(B) ≤ p(B′) .

Proof. To prove the first inequality write

p(B′) =

k
∑

i=1

p
(

b′i−1, b
′
i

)

≤ k max
1≤i≤k

p
(

b′i−1, b
′
i

)

= kpmax(B
′) ≤ kpmax(B) ≤ kp(B) .

The claim follows as the second inequality is trivial.

By solving MaxSeg and obtaining a solution B′, we

can set α = p(B) /k for estimate. The remaining prob-

lem is how to solve MaxSeg in sub-linear time.

Here we can reuse an algorithm given by Guha and

Shim [7]. This algorithm is designed to solve an instance

of MaxSeg, where the penalty function is L∞, which is

p(a, b) = min
µ

b−1
∑

i=a

|xi − µ| .

Luckily, the same algorithm and the proof of correctness,

see Lemma 3 in [7], is valid for any monotonic penalty.5

The algorithm runs in O
(

k2 log2 n
)

time. Thus, the to-

tal running time to obtain a segmentation with (1 + ǫ)

approximation guarantee is

O
(

k2 log2(n) + k3 log(k) log(n) + k3ǫ−2 log(n)
)

.

5. Strongly polynomial and linear-time scheme for

cumulative segmentation

In this section we present a strongly polynomial algo-

rithm that approximates AllSeg in O
(

nk2/ǫ
)

time. Let

o[i, ℓ] be the cost for an optimal ℓ-segmentation covering

[1, i]. The optimal segmentation is computed with a dy-

namic program based on the identity

o[i, ℓ] = min
j≤i

o[j, ℓ − 1] + p(j, i) .

The integer j yielding the optimal cost will be the starting

point of the last segment in an optimal segmentation. To

speed-up the discovery of j, we will not test every j ≤ i,

but instead we will use a small set of candidates, say A.

So, instead of computing a single entry in O(n) time, we

only need O(|A|) time.

The set A depends on i and ℓ, and we update it as we

change i and ℓ. The key point here is to keep A very small,

in fact, |A| ∈ O(k/ǫ), while having enough entries to yield

the approximation guarantee.

5For the sake of completeness, we revisit this algorithm in sup-

plementary material.
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Our approach works as follows (see Algorithm 2 for

the pseudo-code): the algorithm loops over ℓ and i with i

being the inner for-loop, and maintains a set of candidates

A. There are 3 main steps inside the inner for-loop:

(1) Test the current candidates A.

(2) Test a = 1 + maxA, and add a to A. Repeat

this step until a = i or if the current score s[i, ℓ] becomes

smaller than s[a, ℓ − 1]. In the latter case, we can stop

because s[a′, ℓ − 1] ≥ s[i, ℓ] for any a′ > a, so we know

that there are no candidates that can improve s[i, ℓ].

(3) For every consecutive triplet aj , aj+1, aj+2 ∈ A

such that s[aj+2, ℓ − 1]− s[aj , ℓ − 1] ≤ s[i, ℓ] ǫ
k+ℓǫ , remove

aj (see Algorithm 3). This will keep |A| small for the next

round while yielding the approximation guarantee.

Algorithm 2: all-dp(k, ǫ), computes a table s such

that s[i, ℓ] is a (1+ ǫ) approximation of the cost of an

optimal ℓ-segmentation covering [1, i].

1 s[i, 1]← p(1, i) for i = 1, . . . , n;

2 foreach ℓ = 2, . . . , k do

3 A← {1};

4 foreach i = 1, . . . , n do

5 s[i, ℓ]← mina∈A s[a, ℓ− 1] + p(a, i);

6 a← 1 + maxA;

7 while a ≤ i and s[a, ℓ− 1] ≤ s[i, ℓ] do

8 s[i, ℓ]← min(s[i, ℓ], s[a, ℓ− 1] + p(a, i));

9 insert a to A;

10 a← a+ 1;

11 A← sparsify(A, s[i, ℓ] ǫ
k+ℓǫ , ℓ);

12 return s;

Our next step is to prove the correctness of all-dp.

Proposition 5.1. Let o[i, ℓ] be the cost of an optimal ℓ-

segmentation covering [1, i]. Let s = all-dp(k, ǫ) be the

solution returned by the approximation algorithm. Then

for any i = 1, . . . , n and ℓ = 1, . . . , k,

s[i, ℓ] ≤ o[i, ℓ]

(

1 +
ǫℓ

k

)

.

Algorithm 3: sparsify(A, δ, ℓ), sparsifies A =

a1, . . . , a|A| using s[ai, ℓ− 1] and δ.

1 j ← 1;

2 while j ≤ |A| − 2 do

3 if s[aj+2, ℓ− 1]− s[aj , ℓ− 1] ≤ δ then

4 remove aj+1 from A, and update the indices;

5 else

6 j ← j + 1;

Before proving the claim, let us introduce some nota-

tion that will be used throughout the remainder of the sec-

tion. Assume that ℓ is fixed, and let Ai be the set A at the

beginning of the ith round of all-dp. Let mi = maxAi.

The entries in Ai are always sorted, and we will often re-

fer to these entries as aj . Let us write A′
i to be the set A

which is given to sparsify during the ith round.

To prove the claim, we need two lemmas. First we

show that the score is increasing as a function of i.

Lemma 5.1. The score is monotone, s[i, ℓ] ≤ s[i+ 1, ℓ].

Proof. We will prove the lemma by induction on ℓ. The

ℓ = 1 case holds since s[i, ℓ] = p(1, i). Assume that the

lemma holds for ℓ− 1.

Algorithm 2 uses the indices in A′
i (Lines 5 and 8) for

computing s[i, ℓ], that is,

s[i, ℓ] = min
a∈A′

i

s[a, ℓ− 1] + p(a, i) . (2)

Let B be the ℓ-segmentation corresponding to the cost

s[i + 1, ℓ]. Let b be the starting point of the last segment

of B. If b ≤ mi+1, then b was selected during Line 5, that

is, b ∈ Ai+1 ⊆ A′
i, so Eq. 2 implies that

s[i, ℓ] ≤ s[b, ℓ− 1] + p(b, i)

≤ s[b, ℓ− 1] + p(b, i+ 1) = s[i+ 1, ℓ] .

On the other hand, if b > mi+1, then, due to the while-loop

in all-dp, either

s[i, ℓ] < s[mi+1 + 1, ℓ− 1] (3)

6



or i = mi+1 ∈ A′
i, and so Eq. 2 implies that

s[i, ℓ] ≤ s[i, ℓ− 1] = s[mi+1, ℓ− 1] . (4)

Due to the induction hypothesis on ℓ, the right-hand sides

of Eqs. 3–4 are bound by s[b, ℓ− 1]. Since,

s[b, ℓ− 1] ≤ s[b, ℓ− 1] + p(b, i+ 1) = s[i+ 1, ℓ],

we have proved the claim.

The second lemma essentially states that Ai is dense

enough to yield an approximation. To state the lemma,

let δi = s[i, ℓ] × ǫ/(k + ℓǫ) be the value of δ in sparsify

during the ith round. For simplicity, we also define δ0 = 0.

Lemma 5.2. For every b ∈ [1,mi], there is aj ∈ Ai s.t.

s[aj , ℓ− 1] + p(aj , i) ≤ s[b, ℓ− 1] + p(b, i) + δi−1 .

Proof. We say that a sorted list of indicesX = x1, . . . , x|X|

with x1 = 1 is δ-dense if s[xj , ℓ − 1] ≤ δ + s[xj−1, ℓ − 1]

or xj = xj−1 + 1 for any xj ∈ Xi. Note that if X is δ-

dense, then so is sparsify(X, δ, ℓ) due to the if-condition

in Algorithm 3.

We claim that Ai is δi−1-dense. We will prove this by

induction on i. This is vacuosly true for i = 1. Assume

that Ai−1 is δi−2-dense. It is trivial to see that A′
i−1 =

Ai−1 ∪ [mi−1 + 1,mi], thus A
′
i−1 is δi−2-dense. Since δi =

s[i, ℓ]× ǫ/(k+ ℓǫ), Lemma 5.1 guarantees that δi−2 ≤ δi−1,

so A′
i−1 is δi−1-dense. Finally, Ai is δi−1-dense, since Ai =

sparsify(A′
i−1, δi−1, ℓ).

Let aj ∈ Ai be the smallest index that is larger than or

equal to b. If b = aj , then the lemma follows immediately.

If b < aj , then j > 1 and

s[aj , ℓ− 1] ≤ δi−1 + s[aj−1, ℓ− 1] ≤ δi−1 + s[b, ℓ− 1],

where the second inequality follows from the fact that b >

aj−1 and Lemma 5.1.

The result follows as p(a, i) ≤ p(b, i), for any a ≥ b.

We can now prove the main result.

Proof of Proposition 5.1. Write γ = 1 + ǫ(ℓ−1)
k .

We will prove the claim using induction on ℓ and i.

The ℓ = 1 or i = 1 cases is trivial.

To prove the general case, letB be an optimal ℓ-segmentation

covering [1, i], and let b be the starting point of the last

segment of B. We consider two cases.

Case (i): Assume that b ≤ mi, then according to

Lemma 5.2, there is a ∈ Ai for which

s[a, ℓ− 1] + p(a, i) ≤ s[b, ℓ− 1] + p(b, i) + δi−1 . (5)

Recall that δi−1 = s[i− 1, ℓ] ǫ
k+ℓǫ , due to Line 11 in Alg. 2.

Using the induction hypothesis on i, we can bound δi−1,

δi−1 = s[i− 1, ℓ]
ǫ

k + ℓǫ
≤ o[i− 1, ℓ]

(

1 + ǫ
ℓ

k

)

ǫ

k + ℓǫ

= o[i − 1, ℓ]
ǫ

k
≤ o[i, ℓ]

ǫ

k
.

(6)

We can now combine the previous inequalities and the in-

duction hypothesis on ℓ, which gives us

s[i, ℓ] ≤ min
x∈Ai

s[x, ℓ− 1] + p(x, i) (Line 5 in Alg. 2)

≤ s[a, ℓ− 1] + p(a, i) (a ∈ Ai)

≤ s[b, ℓ− 1] + p(b, i) + o[i, ℓ]
ǫ

k
(Eqs. 5–6)

≤ o[b, ℓ− 1]γ + p(b, i) + o[i, ℓ]
ǫ

k
(induction)

≤ o[b, ℓ− 1]γ + p(b, i)γ + o[i, ℓ]
ǫ

k
(γ ≥ 1)

= o[i, ℓ]γ + o[i, ℓ]
ǫ

k
= o[i, ℓ]

(

1 +
ǫℓ

k

)

.

Case (ii): Assume that b > mi. If b ∈ A′
i, then

s[i, ℓ] = min
x∈A′

i

s[x, ℓ−1]+p(x, i) ≤ s[b, ℓ−1]+p(b, i) . (7)

Assume b /∈ A′
i. This is only possible if the second condi-

tion in the while-loop failed, that is, there is a ≤ b with

s[i, ℓ] ≤ s[a, ℓ−1] ≤ s[b, ℓ−1] ≤ s[b, ℓ−1]+p(b, i) . (8)
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In both cases, the induction hypothesis on ℓ gives us

s[i, ℓ] ≤ s[b, ℓ− 1] + p(b, i) (Eqs. 7–8)

≤ o[b, ℓ− 1]γ + p(b, i) (induction)

≤ o[b, ℓ− 1]γ + p(b, i)γ (γ ≥ 1)

= o[i, ℓ]γ ≤ o[i, ℓ]

(

1 +
ǫℓ

k

)

.

This proves the induction step and the proposition.

Finally, let us prove the running time of all-dp.

Proposition 5.2. all-dp(k, ǫ) needs O
(

k2

ǫ n
)

time.

We will adopt the same notation as with the proof of

Proposition 5.1. For simplicity, we also define s[0, ℓ] = 0

for any ℓ = 1, . . . , k.

To prove the result we need two lemmas. The first

lemma will be used to prove the second lemma.

Lemma 5.3. s[mi, ℓ−1] ≤ s[i−1, ℓ], where mi = maxAi.

Proof. We prove the lemma using induction on i. The

case i = 1 is trivial since A1 = {1} and s[1, ℓ − 1] =

(ℓ − 1)p(1, 1) = 0 = s[0, ℓ].

Assume that the claim holds for i−1. Now, Lemma 5.1

guarantees that s[mi−1, ℓ−1] ≤ s[i−2, ℓ] ≤ s[i−1, ℓ]. The

while-loop condition in all-dp guarantees that s[m, ℓ −

1] ≤ s[i − 1, ℓ], for m = maxA′
i−1. Since sparsify never

deletes the last element, we have m = mi, which proves

the lemma.

Next, we bound the number of items in Ai.

Lemma 5.4. |Ai| ≤ 2 + 2(k + ℓǫ)/ǫ ∈ O(k/ǫ).

Proof. Let r = ⌊(|Ai| + 1)/2⌋ be the number of entries in

Ai with odd indices. Due to sparsify, Ai cannot contain

two items, say aj and aj+2, such that s[aj+2, ℓ − 1] ≤

s[aj , ℓ − 1] + δi−1. Using this inequality on entries with

odd incides we conclude that s[mi, ℓ − 1] ≥ (r − 1)δi−1.

Lemma 5.3 allows us to bound r with

r − 1 ≤
s[mi, ℓ− 1]

δi−1
≤

s[i− 1, ℓ]

δi−1
=

k + ℓǫ

ǫ
∈ O

(

k

ǫ

)

.

Since |Ai| ≤ 2r, the lemma follows.

We can now prove the main claim.

Proof of Proposition 5.2. Computing s[i, ℓ] in all-dp re-

quires at most |A′
i| comparisons, and sparsify requires

at most |A′
i| while-loop iterations. We have |A′

i| = |Ai| +

mi+1−mi. For a fixed ℓ, Lemma 5.4 implies that the total

number of comparisons is

n
∑

i=1

|A′
i| =

n
∑

i=1

|Ai|+mi+1 −mi

≤ n+

n
∑

i=1

|Ai| ∈ O

(

nk

ǫ

)

.

The result follows since ℓ = 1, . . . , k.

The idea behind this approach is similar to the algo-

rithm suggested by Guha et al. [8]. The main difference

is how the candidate list is formed: Guha et al. [8] con-

structed the candidate list by only adding new entries to

it, whereas we are also deleting the values allowing us to

keep A much smaller.

6. A linear-time algorithm for

cumulative maximum segmentation

In previous section, we presented a technique for com-

puting a cumulative segmentation. Our final contribution

is a fast algorithm to solve cumulative version of the max-

imum segmentation problem MaxSeg.

Problem 6.1 (AllMaxSeg). Given a penalty function p

and an integer k, find an ℓ-segmentation B covering [1, i]

that minimizes

pmax(B) = max
1≤j≤ℓ

p(bj−1, bj) ,

for every i = 1, . . . , n and every ℓ = 1, . . . , k.

We should point out that we can apply the algorithm

by Guha and Shim [7] used to solve MaxSeg for every i

and ℓ, which would give us the computational complexity

of O
(

nk3 log2 n
)

. Alternatively, we can use an algorithm

8



Algorithm 4: all-ms(k), solves AllMaxSeg.

1 bi ← 1, for i = 0, . . . , k;

2 bk+1 ← n; {sentinel, discarded in the end}

3 τ ← 0;

4 s[1, ℓ]← 0, for ℓ = 1, . . . , k;

5 while b1 ≤ n do

6 ℓ← arg min
1≤j≤k

{p(bj−1, bj + 1) | bj < bj+1};

7 bℓ ← bℓ + 1;

8 τ ← max(τ, p(bℓ−1, bℓ));

9 s[bℓ, ℓ]← τ ;

10 return s;

given by Guha et al. [9] that provides us with the com-

putational complexity of O(kn logn).6 We will present a

faster algorithm, running in O(nk log k) time, making the

algorithm linear-time with respect to n.

Our algorihm works as follows (see Algorithm 4): We

start with a k-segmentation B = (b0 = 1, . . . , bk = 1). It

turns out that we can choose bℓ so that an ℓ-segmentation,

say B′ = (b′0 = b0, . . . , b
′
ℓ−1 = bℓ−1, b

′
ℓ = bℓ + 1) is an

optimal ℓ-segmentation covering [1, b′ℓ]. We increase value

of bℓ by 1, and repeat until there are no indices that cannot

be moved right, that is, b1 = n. At this point, every

bℓ has visited every integer between 1 and n, so we have

discovered all optimal segmentations.

To guarantee that (b′0, . . . , b
′
ℓ) is optimal, we need to

select ℓ carefully. Here, we choose ℓ to be the index mini-

mizing p(bℓ−1, bℓ + 1). The main reason for choosing such

a value comes from the next lemma.

Lemma 6.1. Assume an ℓ-segmentation B = b0, . . . , bℓ

covering [1, i]. Let τ be such that τ ≤ p(bc−1, bc + 1), for

every c = 1, . . . , ℓ. Let B′ be an ℓ-segmentation covering

[1, j] with j > i. Then pmax(B
′) ≥ τ .

6Analysis by Guha et al. [9] states that the computational com-

plexity is O
(

kn log2 n
)

but the additional logn term is due to the

O(logn) oracle used to compute the segment cost.

Proof. Assume that pmax(B
′) < τ . We claim that b′c ≤ bc

for every c = 1, . . . , ℓ, and this claim leads to j = b′ℓ ≤

bℓ = i, which is a contradiction.

We will prove the claim by induction. To prove the

induction base, note that b′1 ≤ b1, as otherwise p(b
′
0, b

′
1) ≥

p(b0, b1 + 1) ≥ τ . To prove the induction step, assume

that b′c−1 ≤ bc−1. Then, b
′
c ≤ bc, as otherwise p

(

b′c−1, b
′
c

)

≥

p(bc−1, bc + 1) ≥ τ .

The lemma can be used as follows: Assume a cur-

rent k-segmentation B = (b0 = 1, . . . , bk = 1), and let

ℓ be the index minimizing τ = p(bℓ−1, bℓ + 1). Let B′ =

(b′0 = b0, . . . , b
′
ℓ−1 = bℓ−1, b

′
ℓ = bℓ + 1) be the resulting

ℓ-segmentation. Assume that pmax(B
′) = τ . Lemma 6.1

implies that there is no segmentation with cost smaller

than τ covering [1, b′ℓ]. This makes automatically B′ opti-

mal. The proof for the case pmax(B
′) < τ is more intricate,

and it is handled in the next proposition.

Proposition 6.1. all-ms(k) solves AllMaxSeg.

Proof. Define τi to be the value of τ at the end of the

ith iteration. Let also Bi = bi1, . . . , b
i
k be the values of

b1, . . . , bk at the end of the ith iteration.

Fix i and assume that during the ith iteration we up-

dated bℓ. Let τ∗ be the optimal cost for ℓ-segmentation

covering [1, biℓ]. Since bi0, . . . , b
i
ℓ covers [1, biℓ] and the cost

of individual segments is bounded by τi, we have τ∗ ≤ τi.

To prove the optimality of bi0, . . . , b
i
ℓ, we need to show

that τ∗ ≥ τi. Let j be the largest index such that τj < τi.

If such value does not exist, then τi = 0 ≤ τ∗. Clearly,

j < i. Assume that we update bℓ′ during the (j + 1)th

iteration. Then, by definition of ℓ′,

p
(

bjc−1, b
j
c + 1

)

≥ p
(

bjℓ′−1, b
j
ℓ′ + 1

)

= τj+1 = τi,

for any c = 1, . . . , ℓ. Since bjℓ ≤ bi−1
ℓ < biℓ, Lemma 6.1

implies that an ℓ-segmentation covering [1, biℓ] must have

a cost of a least τi. This proves the proposition.

We finish with the computational complexity analysis.

9



Proposition 6.2. all-ms runs in O(nk log k) time.

Proof. Since bj can move only to the right, the while-loop

is evaluated at most O(kn) times. Computing j at each

iteration can be done by maintaining a priority queue of

size O(k). After updating bj , updating the queue can be

done in O(log k) time.
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segmentation
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Abstract

In this supplementary material we revisit an algorithm proposed by Guha and Shim [1], and show that this algorithm
can be used to solve the maximum segmentation problem.

1. Maximum segmentation

Problem 1.1 (MaxSeg). Given a penalty p and an in-

teger k, find a k-segmentation B covering [1, n] that min-

imizes

pmax(B) = max
1≤j≤k

p(bj−1, bj) .

This optimization problem can be solved with an algo-
rithm given by Guha and Shim [1]. This algorithm is de-
signed to solve an instance of MaxSeg, where the penalty
function is L∞ is

p(a, b) = min
µ

b−1
∑

i=a

|xi − µ| .

Luckily, the same algorithm and the proof of correctness,
see Lemma 3 in [1], is valid for any monotonic penalty.

For the sake of completeness we present this algorithm
in Algorithms 1–2.

The main idea is based on the following observation.
LetB be the optimal segmentation with the cost of pmax(B) =
τ . Then p(b0, b1) = τ or pmax(B

′) = τ , where B′ =
b1, . . . , bk is a (k− 1)-segmentation covering [b1, n]. In the
first case, we can safely assume that b1 = c, where c is the
smallest index for which there is a (k − 1)-segmentation
covering [b1, n] with a maximum cost of p(b0, b1). In the
second case, we can safely assume that b1 = c− 1, that is,
the largest index for which there is no (k−1)-segmentation
covering [b1, n] with a maximum cost of p(b0, b1).

This gives rise to the main loop: compute c, and record
∆1 = p(b0, c), then recurse and discover the best (k − 1)
segmentation covering [c − 1, n], with a cost of, say, ∆2.
Then, the correct cost is min(∆1,∆2). For the complete
proof of correctness see Lemma 3 in [1].1

For completeness, we provide the proof of correctness.
In order to do so, let us first define

f(b; i, k) = [greedy(b, k − 1, p(i, b)) = n],

Email address: nikolaj.tatti@aalto.fi (Nikolaj Tatti)
1In pseudo-code given in [1], an incorrect step, i ← c, is used.

However, in the proof of correctness, Lemma 3, correct value is used.

returning true or false depending whether the statement
inside the brackets is valid.

Algorithm 1: greedy(b, k, τ) computes the largest
index that can be reached with a k-segmentation
starting from b with a cost pmax ≤ τ .

1 foreach ℓ = 1, . . . , k do

2 b← maxj {b ≤ j ≤ n | p(b, j) ≤ τ};
{use binary search}

3 return b;

Algorithm 2: ms-fast(k), computes the cost of k-
segmentation solving MaxSeg.

1 ∆←∞;
2 i← 1;
3 foreach ℓ = k, . . . , 1 do

4 c← min {b ≥ i | greedy(b, ℓ− 1, p(i, b)) = n};
{use binary search}

5 ∆← min(∆, p(i, c));
6 if i = c then return ∆;
7 i← c− 1;

8 return ∆;

Proposition 1.1. f(b; i, k) returns true if and only if

there is a k-segmentation B covering [i, n] with pmax(B) ≤
p(i, b).

Proof. The only if direction is trivial.
To prove the if direction, assume that B satisfies the

conditions of the proposition, and let C be the segmen-
tation constructed by greedy(b, k − 1, p(i, b)). Note that
b1 ≤ c1. If b1 < c1, then we can move b1 to the right, with-
out violating the conditions. Thus, we can safely assume
that b1 = c1. By doing this recursively, we can safely as-
sume that bi = ci. This guarantees that f returns true.
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Proposition 1.2. ms-fast returns the cost of the optimal

segmentation.

Proof. Let us write iℓ, cℓ to be the values of variables
during the foreach-loop of ms-fast. Note that ℓ goes from
k to 1, or terminated early.

Write τℓ = p(iℓ, cℓ). Define Cℓ to be the segmentation
discovered by greedy(cℓ, ℓ− 1, p(iℓ, cℓ)) preceding by the
segment (iℓ, cℓ).

Let Bℓ be the optimal segmentation covering [iℓ, n]
with the cost of ρℓ. Define C′

ℓ to be Bℓ−1 preceding by
the segment (iℓ, cℓ − 1) = (iℓ, iℓ−1).

By definition of cℓ, τℓ = p(iℓ, cℓ) = pmax(Cℓ). Since Cℓ

covers [iℓ, n], we also have

τℓ = p(iℓ, cℓ) = pmax(Cℓ) ≥ ρℓ .

By the minimality of cℓ, p(iℓ, cℓ − 1) < pmax(Bℓ−1),
and since C′

ℓ covers [iℓ, n], we also have

ρℓ−1 = pmax(Bℓ−1) = pmax(C
′
ℓ) ≥ ρℓ .

Assume that the for-loop is terminated early due to the
iℓ = cℓ condition. Then 0 = τℓ ≥ ρℓ ≥ ρk, that is, there
is a k-segmentation covering [1, n] with zero cost. Since
the algorithm outputs 0, this proves the special case, so
we can safely assume that the for-loop is not terminated
early.

Define ηℓ = minj≤ℓ τj . Note that ηk is the output of
the algorithm, so to prove the result, we claim that ηℓ = ρℓ
which we will prove by induction on ℓ. The case ℓ = 1 is
trivial.

Fix ℓ and let b be the ending point of the first segment
in Bℓ. We consider two cases.

Assume that f(b; iℓ, ℓ) is true. Then we must have
cℓ ≤ b. Thus, τℓ = p(iℓ, cℓ) ≤ p(iℓ, b) ≤ ρℓ. So, τℓ = ρℓ.
The induction hypothesis states that ηℓ−1 = ρℓ−1 ≥ ρℓ.
Hence, ηℓ = min(ηℓ−1, τℓ) = ρℓ.

Assume that f(b; iℓ, ℓ) is false. Then we must have
c−1 ≥ b. In other words, Bℓ−1 need to cover less than the
remaining segments of Bℓ. Thus ρℓ−1 ≤ ρℓ. Since, τℓ ≥ ρℓ
and ρℓ−1 ≥ ρℓ, the induction hypothesis implies that

ηℓ = min(τℓ, ηℓ−1) = min(τℓ, ρℓ−1) = min(τℓ, ρℓ) = ρℓ,

this proves the induction step.

To show the computational complexity, note that for a
fixed ℓ we need O(logn) evaluations of greedy to com-
pute c, each evaluation requiring O(k logn) time. Thus,
computing a single c requires O

(

k log2 n
)

. We need to re-
peat this O(k) times, which gives us a total running time
of O

(

k2 log2 n
)

.
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