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PARTIAL WORDS WITH A UNIQUE POSITION

STARTING A SQUARE

JOHN MACHACEK

Abstract. We consider partial words with a unique position starting
a power. We show that over a k letter alphabet, a partial word with a
unique position starting a square can contain at most k squares. This
is in contrast to full words which can contain at most one power if a
unique position starts a power. For certain higher powers we exhibit
binary partial words containing three powers all of which start at the
same position.

1. Introduction

We consider how many powers can be contained in a partial if only one
position is allowed to start a power. For full words, it follows from the
periodicity theorem of Fine and Wilf [FW65, Theorem 1] that if only one
position starts a power in a full word, then that full word contains only one
power. We give a proof this fact and record it as Corollary 3.2. This shows
we are considering a novel phenomenon of partial words.

Enumerating powers in words and partial words is a fundamental problem
in combinatorics on words. One approach is to count the number of distinct
powers. Extremal words or partial words exhibiting greatest number of dis-
tinct powers are of theoretical interest, and they are also of practical impor-
tance due to the role repetition plays in string algorithms [CIR09, Smy13].
Another approach to enumerating powers is to look at which positions start
a power, as it was done for squares in [HKN11, BSJM+14]. Here we consider
extremal words for the constrained problem of maximizing the number of
distinct powers subject to restricting positions starting a power.

The number of distinct squares in a word of length n over any alphabet
was shown to be at most 2n by Fraenkel and Simpson [FS98]. Another proof
of this fact was given by Ilie [Ili05] who also has given an improved bound
of 2n − Θ(log n) [Ili07]. The analogous problem for partial words has also
been considered [BSMS09, BSM09, HHK10, BSJM+14]. A key insight for
counting distinct squares in full words is that at most two squares can have
their last occurrence starting at a given position regardless of alphabet size.
This is no longer true for partial words. Halava, Harju, and Kärki have
shown that in a partial word with one hole a maximum of 2k squares can
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have there last occurrence at a given position [HHK10, Theorem 2.1], and
they have given a partial word achieving the bound [HHK10, Theorem 2.5].

For our problem we also find dependence on the size of the alphabet.
We prove in Theorem 4.5 that a partial word over an alphabet of size k
with a unique position starting a square can contain at most k squares.
Furthermore, we show the existence of a partial word meeting this bound.
In Proposition 5.1 and Proposition 5.2 we construct binary partial words
with a unique position starting higher powers.

2. Preliminaries

We now give the necessary definitions for our work. A full word is a finite
sequence of letters taken from a finite set Σ called an alphabet. A partial

word is a finite sequence taken from Σ⋄ := Σ ⊔ {⋄}. Here ⋄ is called a hole

and represents a “wild card” symbol. Full words are special cases of partial
words which contain no holes. We represent partial words in bold.

If w is a partial word we denote its length by |w|. We index positions
in our partial words starting from 1. We let w[i] denote the letter or hole
in ith position of w and let w[i..j] denote the factor which is the partial
word that occupies positions i to j of w. We may write w[..j] for the prefix

w[1..j] and w[i..] for the suffix w[i..|w|]. We define the two sets

D(w) := {i : 1 ≤ i ≤ |w|,w[i] 6= ⋄}

and

H(w) := {i : 1 ≤ i ≤ |w|,w[i] = ⋄}

that keep track which positions of w are holes.
We say that a partial wordw is p-periodic ifw[i] = w[j] for all i, j ∈ D(w)

such that i ≡ j (mod p). This notion of a period in partial words is known
as a strong period. We only need the definition of periodicity for full words.
In the case w is a full word being p-periodic just means that w[i] = w[j] for
all i ≡ j (mod p) since H(w) is empty for a full word. So, it suffices for our
purposes to only consider this single definition of a period. If v and w are
two partial words with |v| = |w| and D(v) ⊆ D(w) such that v[i] = w[i]
for all i ∈ D(v), then we say v is contained in w and write v ⊂ w. Partial
words u and v are said to be compatible if there exists a third partial word
w such that u ⊂ w and v ⊂ w. In the case u and v are compatible we
write u ↑ v.

We now give the definition we are primarily concerned with. An rth power

is a partial wordw such that w ⊂ xr for some full word x. Often 2nd powers
are called squares while 3rd powers are commonly referred to as cubes.

To review the definitions in this section consider as an example the partial
word

w = a ⋄ b a c ⋄ a c b
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where the alphabet is Σ = {a, b, c}. Here |w| = 9 while H(w) = {2, 6}. The
factor w[1..3] = a ⋄ b is contained in a c b. In fact all the factors w[3i− 2..3i]
for 1 ≤ i ≤ 3 are all contained in a c b. This makes w ⊂ (a c b)3 a cube.

3. Unique power position full words

Let us now show that any full word with multiple powers starting at the
same position must contain a power starting at another position. We first
recall the periodicity theorem of Fine and Wilf.

Theorem 3.1 ([FW65, Theorem 1]). Let w be a full word with periods p
and q. If |w| ≥ p+ q − gcd(p, q), then w has period gcd(p, q).

We can now prove a corollary of this theorem. This corollary solves our
problem of maximizing the number of powers subject to constraint that a
unique position may start a power in the case of full words.

Corollary 3.2. If w is a full word with two rth powers starting at position

i, then there exists a position j > i which starts an rth power.

Proof. It suffices to consider a full word w such that w is an rth power and
a proper prefix of it is also an rth power. Hence w = xr for some x with
|x| = p > 1 and w[1..rk] = yr for some y with 0 < |y| = q < p. We must
show that some rth power starts at position j > 1. If rq ≤ p, then position
p+ 1 starts an rth power equal to yr. So, we may assume that rq > p.

Furthermore, if r = 2 and 2q > p, then y = uv where x = yu and
|u| > 0. Thus, x2 = uvu2vu and there is a square starting at a position
j > 1. Hence, we may also assume r > 2.

If q divides p and rq > p, then it follows that p = r′q for some 0 < r′ < r.
This means x = yr′ and so w = yrr′ . In particular, this means j = q + 1
starts an rth power equal to yr. So, we may also assume q does not divide
p.

In the case rq ≥ p+ q− gcd(p, q), by Theorem 3.1 it follows that w[1..rq]
is gcd(p, q)-periodic. Since q does not divide p we have gcd(p, q) < q and
j = 2 starts an rth power.

In the only remaining case we have p < rq < p+ q − gcd(p, q). It follows
that |yr| = rq < 2p = |x2|. Thus we see that x2 contains the rth power yr.
Recalling that we are assuming r > 2 we conclude that position j = p + 1
starts an rth power equal to yr. �

4. Unique square position partial words

We now turn our attention to partial words having established that full
words cannot contain multiple powers if a single position is allowed to start
a power. Let us now characterize how many squares a partial word may
contain if only one position starts a square. We first prove some results
which we use to deduce our main theorem on squares.
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u v

x y x′ x′′ y x′

x′ y x′

u v

x x′ y x′′ x′ x′

Figure 1. Partial words in proof of Lemma 4.3.

Lemma 4.1. If w is a partial word which contains more than one square

but only has one position that starts a square, then H(w) = {1}.

Proof. If w[i] = ⋄ for 1 < i < |w|, then w[i − 1..i] and w[i..i + 1] are both
squares starting at different positions. If w[n] = ⋄ where n = |w|, then
position n − 1 starts a square. However, position n − 1 can only start the
single squarew[n−1..n]. By Corollary 3.2 no full word can have the property
that it contains more than one square but only has a single position which
starts a square. Hence, H(w) 6= ∅ and it follows that H(w) = {1}. �

Remark 4.2. We now see that if a single position in a partial word starts a
square and multiple squares start at this position, then the unique position
starting the square must be the first position. This can be helpful to keep in
mind. We typically say something like “partial words with a unique position
starting a square” rather than “partial words that have all squares starting
on the first position” since the former is more general and implies the latter
when multiple squares are present.

Lemma 4.3. Let u = ⋄u′ for a full word u′. Let v be any full word com-

patible with u, and set w = uv. If w[1..2k] is a square and |u| < 2k < |w|,
then there exists a position 1 < i < |w| which starts a square in w.

Proof. A diagram depicting the partial words in this proof can be found
in Figure 1. Assume that w[1..2k] is a square and |u| < 2k < |w|. If
3k/2 ≤ |u| < 2k, then we must have

w[1..(|u| + k)] = xyx′x′′yx′yx′

where x′ and x′′ are nonempty full words compatible with the partial word
x where H(x) = {1}. Here |x| = |x′| = |x′′| = 2k − |u| while |y| = k − 2|x|.
Under the assumption 3k/2 ≤ |u| < 2k it follows that 0 < |x| ≤ k/2. In
particular, x, x′, and x′′ are all nonempty. Thus, w contains the square
yx′yx′ starting at a position greater than 1.

If |u| ≤ 3k/2, then

w[1..(3|u| − 2k)] = xx′yx′′x′x′

where x′ and x′′ are nonempty full words compatible with the partial word
x where H(x) = {1}. Here |x| = |x′| = |x′′| = |u| − k while |y| = k − 2|x|.
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Since 2k < |w| we have k < |u|. Under the assumption |u| ≤ 3k/2 we find
that 0 < |x| ≤ k/2. Thus, x, x′, and x′′ are all nonempty. In this case w

contains the square x′x′ starting at a position greater than 1 and the proof
is complete. �

Lemma 4.4. Let u = ⋄u′ for a full word u′. Let v be any full word com-

patible with u, and set w = uv. If w[1..2k] is a square with 2k ≤ |u| such
that w[k+ 1] = v[1], then v contains a square. Hence, w contains a square

starting at position 1 < i < |w|.

Proof. Let x = w[1..k] and y = w[k + 1..2k]. Then H(x) = {1}, y is a full
word, and x[2..k] = y[2..k]. If v[1] = w[k + 1] = y[1], then v[1..k] = y.
Therefore, v[1..2k] = y2 and v contains a square. �

Theorem 4.5. Any partial word over an alphabet of size k with a unique

position starting a square contains at most k squares. Furthermore, for any

k there exists a partial word over an alphabet of size k with a unique position

starting a square containing exactly k squares.

Proof. Consider a partial work over an alphabet Σ of size k with a unique
position starting a square. Let w = w[1..2n] be a longest square. By
Lemma 4.1 we must have H(w) = {1}. Assume the lengths of the squares
starting at position 1 in w are 2ℓ1 < 2ℓ2 < · · · < 2ℓm = 2n. Then by
Lemma 4.3 it follows that 2ℓi ≤ ℓi+1. By Lemma 4.4 it follows that w[ℓi +
1] 6= w[ℓj +1] for any i < j. In particular, w[ℓ1+1],w[ℓ2+1], . . . ,w[ℓm+1]
must all be distinct letters of Σ. However, since |Σ| = k it must be that
m ≤ k. Therefore such a partial word w can contain at most k squares.

We now construct a partial word meeting the bound we have just proven.
Given an alphabet Σ = {a1, a2, . . . , ak} start with w0 = ⋄. Then put wi+1 =
wiai+1wi[2..] for 1 ≤ i ≤ k. By construction we see that |wi| = 2i for each
1 ≤ i ≤ k and that wk[1..2

j ] is a square for each 1 ≤ j ≤ k. It only remains
to show that wk[i..j] is not a square for any i 6= 1.

We show by induction that wi does not have any squares which do not
start at position 1. The base case for w0 is clear. Now assume the claim
for wi and consider wi+1. Take the factor wi+1[j1..j2] for some j1 6= 1. If
j2 < 2i, then this is a factor of wi and thus not a square by induction. If
j2 ≥ 2i, then the factor is a full word containing exactly one occurrence
of the letter ai+1 and hence not a square. Therefore wk is a partial word
containing k squares all of which start at position 1. �

Examples of partial words constructed in the proof of Theorem 4.5 are

w0 = ⋄

w1 = ⋄ a

w2 = ⋄ a b a

w3 = ⋄ a b a c a b a

w4 = ⋄ a b a c a b a d a b a c a b a
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with the alphabet Σ = {a, b, c, d}.

5. Conclusion and future work

In this section we begin the investigation of partial words with a unique
position starting an rth power for r > 2. Unlike for the r = 2 case we do not
completely solve the problem for r > 2. We first show that we can always
find a binary partial word with two rth powers starting at position 1 such
that position 1 is the only position which starts an rth power.

Proposition 5.1. If r ≥ 2, then the partial word

w = ⋄r−1aba⋄r−2

contains exactly two rth powers both of which start at position 1.

Proof. We first see that w[1..r] is an rth power contained in ar. Also,
w[1..2r] is an rth power contained in (ba)r if r is even or otherwise contained
in (ab)r if r is odd. For any i > 1, w[i..i+ r] cannot be an rth power since it
always contains both the letters a and b. The proposition is now proven since
w is too short to contain any other rth powers of length 2r or greater. �

For r > 2 the situation is more complicated than for squares. Partial
words with a unique position starting an rth power can contain more than
a single hole when r > 2. Also in contrast to the case of squares, there are
partial words over an alphabet of size k containing more than k cubes. Over
Σ = {a, b} the partial words

v = ⋄ ⋄ a b a ⋄ b a a

w = ⋄ ⋄ a b a ⋄ b a ⋄

both contain three cubes all of which start at the first position. Let us now
give a generalization of the construction of w = ⋄ ⋄ a b a ⋄ b a a.

Proposition 5.2. Assume that r is odd and r ≡ 0 (mod 3). Then the

partial word

w = ⋄r−1aba ⋄r−2 ba2⋄r−3

contains exactly three rth powers all of which start at position 1.

Proof. We first note that w[1..r] is an rth power contained in ar. Next we
see that w[1..2r] is an rth power (ab)r since r is odd. The third rth power
starting at position 1 is w = w[1..3r] which is contained in (ba2)r where we
have used that r ≡ 0 (mod 3).

Now w can contain no other rth power of length r since w[i..i + r − 1]
always contains both the letters a and b for i > 1. Any other rth power of
length 2r must be v = w[i..i + 2r − 1] where i > 1. So, b = w[r + 1] =
v[r + 2− i] and b = w[2r + 1] = v[2r + 2− i]. Since r is odd we see that b
occurs in positions with opposite parity in v. It follows that v cannot be an
rth power since v also contains an a. Therefore the proof is complete since
w is too short to contain any other rth powers of length 3r or greater. �
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We let M(r, k) denote the maximum possible number of rth powers con-
tained in any partial word over an alphabet of size k with a unique position
starting an rth power. In Theorem 4.5 we have shown that M(2, k) = k. It
is clear that M(r, k) ≤ M(r, k + 1). Proposition 5.1 shows that M(r, 2) ≥ 2
while Proposition 5.2 shows that M(3(2s+1), 2) ≥ 3. We pose the following
problem.

Problem 5.3. Compute M(r, k) for r > 2 and k > 1.

This problem appears more difficult for higher powers than it is for
squares. For higher powers multiple holes can be present, but the par-
tial word can still contain a unique position which starts a power. One can
further generalize the problem and look for the maximum possible number
of rth powers contained in a word over a k letter alphabet where at most
t positions are allowed to begin rth powers. The problem we considered in
this article is recovered when t = 1.
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in a partial word with one hole. Theor. Inform. Appl., 43(4):767–774, 2009.

[BSMS09] F. Blanchet-Sadri, Robert Mercaş, and Geoffrey Scott. Counting distinct
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