
The effective entropy of next/previous larger/smaller value

queries

Dekel Tsur∗

Abstract

We study the problem of storing the minimum number of bits required to answer
next/previous larger/smaller value queries on an array A of n numbers, without storing
A. We show that these queries can be answered by storing at most 3.701n bits. Our
result improves the result of Jo and Satti [TCS 2016] that gives an upper bound of
4.088n bits for this problem.

Keywords data structures, encoding model.

1 Introduction

A recent research area in data structures is designing data structures in the encoding
model [1–4, 6–12]. In this model, the goal is to design a data structure for answering
queries on some object A, without storing A. The space complexity of the data structure
should be close to the minimum space required in order to answer the queries, without
storing A. The minimum space required to answer the queries is called the effective entropy
of the problem.

Let A be an array of n numbers. Consider the following four queries on A.

• Previous smaller value (PSV(i)): Given i, return max({j : j < i,A[j] < A[i]}∪ {0}).

• Previous larger value (PLV(i)): Given i, return max({j : j < i,A[j] > A[i]} ∪ {0}).

• Next smaller value (NSV(i)): Given i, return min({j : j > i,A[j] < A[i]} ∪ {n+ 1}).

• Next larger value (NLV(i)): Given i, return min({j : j > i,A[j] > A[i]} ∪ {n + 1}).

The effective entropy of answering one type of queries from the four types above is
2n−Θ(log n) bits. If the problem is to support more than one type of queries, the effective
entropy becomes larger. Fischer [4] showed that the effective entropy of answering both
PSV and NSV queries is log(3 + 2

√
2) · n − Θ(log n) < 2.544n bits. Gawrychowski and

Nicholson [7] showed that the effective entropy of answering both PSV and PLV queries
is at most 3n bits and at least 3n−Θ(log n) bits. For each of the two problems above, it
is possible to build a data structure that answers queries in constant time and with space
that is equal to the effective entropy plus o(n) bits [4, 7].

Jo and Satti [12] studied the problem of answering all four queries. They showed that
the effective entropy is at most 4n+o(n) bits on arrays with no consecutive equal elements,
and at most log2 17 · n + o(n) < 4.088n bits on general arrays. They also showed that
it is possible to build data structures that answer queries in constant time with space

∗Department of Computer Science, Ben-Gurion University of the Negev. Email: dekelts@cs.bgu.ac.il

1

ar
X

iv
:1

80
8.

03
65

8v
1

 [
cs

.D
S]

 1
0

A
ug

 2
01

8

0

51 6

2 3

4

7

8 9

i 1 2 3 4 5 6 7 8 9
A[i] 3 8 5 6 3 2 7 10 9

Figure 1: An example of a 2d-min heap of an array A.

complexity 4n + o(n) bits on arrays with no consecutive equal elements, and 4.585n bits
for general arrays. In this paper we improve the results of Jo and Satti. We show that
the effective entropy for answering all four queries is at most (2 + log 3)n+ o(n) < 3.585n
bits on array with no consecutive equal elements, and at most log 13 · n + o(n) < 3.701n
bits on general arrays.

2 Preleminaries

2.1 Encoding PSV queries

The 2d-min heap [5] of an array A of size n, denoted Min(A), is an ordinal tree with nodes
0, . . . , n. For every i > 0, the parent of node i is PSV(i). The children of a node i are
ordered in increasing order of their names. See Figure 1 for an example. Note that the
preorder of the nodes is 0, . . . , n. Therefore, the tree Min(A) can be encoded by just storing
its topology. Since Min(A) is an ordinal tree with n+ 1 nodes, it follows that the effective
entropy of PSV queries is at most dlogCn+1e = 2n−Θ(log n), where Cn = 1

n+1

(
2n
n

)
is the

number of ordinal trees with n nodes. We also define the 2d-max heap, denoted Max(A),
to be an ordinal tree in which the parent of node i > 0 is PLV(i).

2.2 Encoding PSV/NSV queries

In order to encode both PSV and NSV queries, Fischer [4] defined the colored 2d-min
heap of an array A, denoted cMin(A), to be the tree Min(A) with the following coloring
of its nodes. If node i has right siblings and A[i] 6= A[j], where j is the immediately
right sibling of i, then i is colored red. Otherwise, i is colored blue. See Figure 2 for
an example. Fischer showed that if cMin(A) is known, both PSV and NSV queries on A
can be answered without storing A. Since cMin(A) is a Schröder tree, it follows that the
effective entropy of PSV/NSV queries is at most log(3 + 2

√
2) · n−Θ(log n) bits [13].

2.3 Encoding PSV/PLV queries

To answer both PSV and PLV queries, we can store both Min(A) and Max(A). Gawrychowski
and Nicholson [7] showed that for an array A with no consecutive equal elements, Min(A)
and Max(A) can be encoded using 3n − 1 bits. The proof of this result is based on the
following claim.

Claim 1. If A has no consecutive equal elements, then for every 0 < i < n, i is a leaf in
Min(A) if and only if i is an internal node of Max(A)

2

0

51 6

2 3

4

7

8 9

i 1 2 3 4 5 6 7 8 9
A[i] 3 8 5 6 3 2 7 10 9

Figure 2: An example of a colored 2d-min heap of an array A.

0

51 6

2 3

4

7

8 9
(a) Min(A)

0

21 8

3 4

5

97

6
(b) Max(A)

i 0 1 2 3 4 5 6 7 8 9
A[i] 3 8 5 6 3 2 7 10 9
U 0 1 0 1 1 0 0 1

TMin(A) 110 10 0 0 10

TMax(A) 110 110 0 0 0

Figure 3: An example of the trees Min(A) and Max(A) of an array A and the encoding
of these trees using 3n− 1 bits.

Proof. Since A has no consecutive equal elements, we have that either A[i] < A[i + 1] or
A[i] > A[i + 1]. In the former case, PSV(i + 1) = i. Therefore, i + 1 is a child of i in
Min(A), and thus i is an internal node in Min(A). Additionally, PLV(i + 1) < i, so i + 1
is not a child of i in Max(A). Since the names of the nodes of Max(A) are according to
their ranks in the preorder, the descendants of an internal node j are j+1, . . . , j′ for some
j′. Since i + 1 is not a descendant of i in Max(A), it follows that i is a leaf in Max(A).

The proof for the case when A[i] > A[i + 1] is analogous and thus omitted.

The encoding Min(A) and Max(A) consists of three binary strings U , TMin(A), and
TMax(A). The string U is a string of length n − 1 in which U [i] = 1 if and only if i is a
leaf in Min(A). The strings TMin(A) and TMax(A) are defined as follows. Start with empty
strings TMin(A) and TMax(A). Then, for i = 0, 1, . . . , n− 1, if i = 0 or U [i] = 0 (namely, i is

an internal node in Min(A)), append the string 1di−10 to TMin(A), where di is the number
of children of node i in Min(A). Additionally, if i = 0 or U [i] = 1, append the string
1d
′
i−10 to TMax(A), where d′i is the number of children of node i in Max(A). See Figure 3

for an example.
By Claim 1, the trees Min(A) and Max(A) can be reconstructed from the strings

U, TMin(A), TMax(A). It is easy to show that |TMin(A)|+ |TMax(A)| = 2n. Therefore, the total
size of this encoding is 3n− 1 bits.

3

3 Arrays with no consecutive equal elements

Theorem 2. The effective entropy of PSV/PLV/NSV/NLV queries on arrays with no
consecutive equal elements is at most (2 + log 3)n + o(n) < 3.585n.

Proof. To answer PSV/PLV/NSV/NLV queries, it suffices to encode the trees cMin(A)
and cMax(A). We will show that this can be done using (2+log 3)n+o(n) bits. To reduce
the size of the encoding, we use the following claim.

Claim 3. If i is a leaf in cMin(A) (resp., cMax(A)) and i has right siblings then i is red
in cMin(A) (resp., cMax(A)).

Proof. Since i is a leaf, the immediate right sibling of i is i + 1. Due to the assumption
that A has no consecutive equal elements we have that A[i] 6= A[i + 1]. Therefore, i is
red.

We say that an index 0 < i < n is good if i does not have right siblings in cMin(A)
and in cMax(A). We say that 0 < i < n is bad if i has right siblings in cMin(A) and in
cMax(A). If 0 < i < n is not good or bad we say that i is neutral. For an index 0 < i < n,
the relevant tree of i is the tree from cMin(A), cMax(A) in which i is an internal node
(note that by Claim 1 there is exactly one tree in which i is an internal node).

In the following, we encode the color red by 0 and the color blue by 1. The encoding
of cMin(A), cMax(A) consists of the following strings.

• The strings TMin(A) and TMax(A) (these strings were defined in Section 2.3).

• A binary string Ugood/bad that is obtained by concatenating the characters U [i] for
every i which is either good or bad (the string U was defined in Section 2.3).

• A binary string Vbad obtained by concatenating the color of i in the relevant tree of
i for every bad i.

• A ternary string Vneutral obtained by concatenating a character ci for every neutral
index i. If i does not have right siblings in its relevant tree, ci = 2. Otherwise, ci is
the color of i in the relevant tree of i.

See Figure 4 for an example.
We now show that given the string TMin(A), TMax(A), Ugood/bad, Vbad, and Vneutral we

can reconstruct the trees cMin(A) and cMax(A). We initialize two trees T1, T2 to contain
node 0. At the end of the following algorithm, T1 = cMin(A) and T2 = cMax(A). By
reading the prefixes of TMin(A) and TMax(A) until the first zero in each string, we know
the degrees of node 0 in Min(A) and in Max(A). We now go over i = 1, . . . , n and add
node i to the trees T1 and T2. This is done as follows. From the previous iterations of
the algorithm, we know the number of children of the nodes 0, . . . , i − 1 in Min(A) and
in Max(A). We make node i the rightmost child of node j in T1 where j is the minimum
integer such that the number of children of j in T1 is less than the number of children of
j in Min(A). We also add node i to the tree T2 similarly. We then find which tree is the
relevant tree of i. After we know the relevant tree of i, we read unread characters from
the string TMin(A) or TMax(A) that corresponds the relevant tree of i until reaching the first
zero. This gives us the number of children of i in its relevant tree. Moreover, by Claim 1,
i does not have children in the non-relevant tree. Finally, we find the color of i in Min(A)
and Max(A).

4

0

51 6

2 3

4

7

8 9
(a) cMin(A)

0

21 8

3 4

5

97

6
(b) cMax(A)

i 0 1 2 3 4 5 6 7 8 9
A[i] 3 8 5 6 3 2 7 10 9

TMin(A) 110 10 0 0 10

TMax(A) 110 110 0 0 0

Ugood/bad 0 1 0 0

Vbad 1 0
Vneutral 2 0 2 2

Figure 4: An example of the trees cMin(A) and cMax(A) of an array A and the encoding
of these trees. The good indices are 6,7 and the bad indices are 1,2.

Since we know the number of children of the parent of i in Min(A), we know whether
node i has right siblings in Min(A) (i has right siblings if and only if the number of children
of the parent of i in T1 is less than the number of children of the parent of i in Min(A)).
Similarly, we know whether i has a right sibling in Max(A). Therefore, we know whether
i is good, bad, or neutral.

If i is good, reading the next unread character from Ugood/bad gives us the relevant
tree of i. Since i has no right siblings in cMin(A) and in cMax(A), the color of i is blue
in both trees.

If i is bad, reading the next unread character from Ugood/bad gives us the relevant tree
of i. We also read the next unread character from Vbad to know the color of i in the
relevant tree. The color of i in the non-relevant tree is red by Claim 3.

Finally, if i is neutral, we read the next unread character from Vneutral and let c be
this character. Suppose without loss of generality that i does not have right siblings in
cMin(A) and it has right siblings in cMax(A). The color of i in cMin(A) is blue (since i
does not have right siblings in cMin(A)). If c = 2 then the relevant tree of i is cMin(A)
and the color of i in cMax(A) is red (by Claim 3). Otherwise, the relevant tree of i is
cMax(A) and the color of i in cMax(A) is red if c = 0 and blue if c = 1.

We now analyze the size of the encoding. We need the following lemma.

Lemma 4. The number of good indices is equal to the number of bad indices.

Proof. For the purpose of the proof we also define the index n to be a good index. Thus,
we now need to show that the number of good indices is equal to the number of bad indices
plus one. We prove this claim using induction on n. The base of the induction, n = 1, is
true since in this case there is one good index and no bad indices.

Now suppose that n > 1. Suppose without loss of generality that A[n − 1] > A[n].
Then, node n is the only child of n − 1 in cMax(A). Moreover, node n is not a child of
n− 1 in cMin(A). Let j be the parent of n in cMin(A). Since the names of the nodes are
according to their ranks in the preorder, we have that nodes j+1, . . . , n−1 are descendants

5

of j in cMin(A), and therefore node j + 1 is a child of j in cMin(A). Therefore, n has left
siblings in cMin(A). Let k be the immediate left sibling of n in cMin(A).

Let A′ be the array obtained by taking the first n− 1 elements of A. We have that the
trees Min(A′) and Max(A′) are obtained by deleting node n from Min(A) and Max(A),
respectively.

Since n is the single child of n − 1 in Max(A), we conclude that a node i has right
siblings in Max(A′) if and only if i has right siblings in Max(A). Since n is the immediate
right sibling of k in Min(A), we have that a node i 6= k has right siblings in Min(A′) if
and only if i has right siblings in Min(A). Moreover, k has right siblings in Min(A) but
not in Min(A′). It follows that

• n is a good index with respect to A, but not with respect to A′.

• Either k is a good index with respect to A′ and neutral with respect to A (if k does
not have right siblings in Max(A′)), or k is a neutral index with respect to A′ and
bad with respect to A.

• For every i 6= k, n, i is good (resp., bad) with respect to A′ if and only if i is good
(resp., bad) with respect to A′.

It follows that the difference between the number of good indices and bad indices with
respect to A is equal to the difference of these numbers with respect to A′. By the induction
hypothesis, the latter difference is 1.

Let g be the number of good indices. The combined size of TMin(A) and TMax(A) is 2n
bits. The size of Ugood/bad is 2g bits and the size of Vbad is g bits. The string Vneutral has
length n−1−2g so it can be encoded using d(n−1−2g) log 3e bits. We also need to store
the lengths of the strings which requires O(log n) bits. The total size of the encoding is
2n + 3g + (n − 2g) log 3 + O(log n) bits. This expression is maximized when g = 0, and
the theorem follows.

4 General arrays

Lemma 5. For a constant c > 0 and integers n, k, c(n− k) + log
(
n
k

)
≤ log (2c + 1) · n.

Proof. Let y = k/n. We have that

c(n− k) + log

(
n

k

)
= c(1− y)n + log

(
n

yn

)
≤ c(1− y)n + n log

(
1

yy(1− y)1−y

)
.

Let f(x) = c(1 − x) + log(1
xx(1−x)1−x). The derivative of f is −c + log(1 − x) − log x.

Therefore, f is maximized at x∗ = 1/(2c + 1) and f(x∗) = log(2c + 1).

Theorem 6. The effective entropy of PSV/PLV/NSV/NLV queries is at most log 13 ·n+
o(n) < 3.701n.

Proof. As in [12], we define a binary string C of length n − 1 in which C[i] = 1 if and
only if A[i] = A[i + 1]. We also define an array A′ that is obtained from A by deleting
the elements A[i] for every i such that C[i] = 1. Let k be the number of ones in C. In
order to answer PSV/PLV/NSV/NLV queries on A, it suffices to store C and information
for answering PSV/PLV/NSV/NLV queries on A′. By Theorem 2, the latter can be done
using at most (2 + log 3)(n− k) bits. Moreover, C can be stored using dlog ne+ dlog

(
n
k

)
e

bits. The theorem now follows from Lemma 5.

6

References

[1] G. S. Brodal and P. Davoodi andd S. S. Rao. On space efficient two dimensional
range minimum data structures. Algorithmica, 63(4):815–830, 2012.

[2] G. S. Brodal, A. Brodnik, and P. Davoodi. The encoding complexity of two di-
mensional range minimum data structures. In Proc. 21st European Symposium on
Algorithms (ESA), pages 229–240, 2013.

[3] P. Davoodi, G. Navarro, R. Raman, and S. S. Rao. Encoding range minima and range
top-2 queries. Philosophical Transactions of the Royal Society, 372(2016):20130131,
2014.

[4] J. Fischer. Combined data structure for previous-and next-smaller-values. Theoretical
Computer Science, 412(22):2451–2456, 2011.

[5] J. Fischer and V. Heun. Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. on Computing, 4(2):465–492, 2011.

[6] T. Gagie, G. Manzini, and R. Venturini. An encoding for order-preserving matching.
In Proc. 25th European Symposium on Algorithms (ESA), pages 38:1–38:15, 2017.

[7] P. Gawrychowski and P. K. Nicholson. Optimal encodings for range top-k, selection,
and min-max. In Proc. 42nd International Colloquium on Automata, Languages and
Programming (ICALP), pages 593–604, 2015.

[8] M. Golin, J. Iacono, D. Krizanc, R. Raman, S. R. Satti, and S. Shende. Encoding 2d
range maximum queries. Theoretical Computer Science, 609:316–327, 2016.

[9] R. Grossi, J. Iacono, G. Navarro, R. Raman, and S. R. Satti. Asymptotically optimal
encodings of range data structures for selection and top-k queries. ACM Transactions
on Algorithms, 13(2):28:1–28:31, 2017.

[10] V. Jayapaul, S. Jo, R. Raman, V. Raman, and S. R. Satti. Space efficient data
structures for nearest larger neighbor. J. of Discrete Algorithms, 36:63–75, 2016.

[11] S. Jo, R. Lingala, and S. R. Satti. Encoding two-dimensional range top-k queries. In
Proc. 27th Symposium on Combinatorial Pattern Matching (CPM), volume 54, 2016.

[12] S. Jo and S. R. Satti. Simultaneous encodings for range and next/previous
larger/smaller value queries. Theoretical Computer Science, 654:80–91, 2016.

[13] D. Merlini, R. Sprugnoli, and M. C. Verri. Waiting patterns for a printer. Discrete
Applied Mathematics, 144(3):359–373, 2004.

7

	1 Introduction
	2 Preleminaries
	2.1 Encoding PSV queries
	2.2 Encoding PSV/NSV queries
	2.3 Encoding PSV/PLV queries

	3 Arrays with no consecutive equal elements
	4 General arrays

