1806.03611v1 [cs.DS] 10 Jun 2018

arxXiv

1

CuCoTrack: Cuckoo Filter Based Connection
Tracking

Pedro Reviriego!, Salvatore Pontarelli?, and Gil Levy?®

"Universidad Antonio de Nebrija, C/ Pirineos, 55, E-28040
Madrid, Spain. previrie@nebrija.es
2Consorzio Nazionale Interuniversitario per le Telecomunicazioni
(CNIT), Via del Politecnico 1, 00133 Rome, Italy.
salvatore.pontarelli@uniroma2.it
3Mellanox Technologies, Ltd. Hakidma 26, Ofer Industrial Park,
Yokneam, Israel. gill@mellanox.com

June 12, 2018

Abstract

This paper introduces CuCoTrack, a cuckoo hash based data struc-
ture designed to efficiently implement connection tracking. The proposed
scheme exploits the fact that queries always match one existing connection
to compress the 5-tuple that identifies the connection. This reduces sig-
nificantly the amount of memory needed to store the connections and also
the memory bandwidth needed for lookups. CuCoTrack uses a dynamic
fingerprint to avoid collisions thus ensuring that queries are completed
in at most two memory accesses and facilitating a hardware implementa-
tion. The proposed scheme has been analyzed theoretically and validated
by simulation. The results show that using 16 bits for the fingerprint is
enough to avoid collisions in practical configurations.

Keywords: data structures, exact match, cuckoo filter, approximate
membership check, connection tracking.

Introduction

In many networking applications, there is a need to track each of the TCP
connections on a link. This is needed for example for load balancing of servers
in datacenter networks [I]. In those applications, each incoming packet has to
be matched against the set of existing connections S to retrieve a value that is
used to determine the processing of the packet. New connections are identified

W

hen the packet has the SYN flag set and then are inserted in the set of active

connections.



The lookup for each packet can be done using cuckoo hashing to store the set
of elements S each with its associated value [2]. With cuckoo hashing, a query
for element x to retrieve its associated value v, can be completed in a small and
constant number of memory accesses and close to full memory occupancy can be
achieved [3]. Elements can also be added or removed from the set dynamically.
This makes it attractive for high speed hardware implementations [4], [5].

For connection tracking, the size of the key used to identify the connection
is large as it is formed by the source and destination IP addresses and ports
and the protocol field and it is commonly referred to as 5-tuple. For example,
an IPv6 5-tuple has 296 bits and for IPv4 104 bits. This means that operations
require large memory bandwidth and also that the size of the memory needed
to store the connections in S is significant [I]. This poses a limitation to the
number of connections that can be stored inside a switch ASIC and processed at
high speed. A much larger number of keys could be stored in external memory
but then, the access time will be much larger and the number of lookups that
can be done per second would be much smaller.

A key observation, is that for connection tracking, only lookup operations
for elements (5-tuples) that are in S are performed (new connections are iden-
tified using the SYN field). Therefore, one possibility is to try to compress
the elements in S before storing them into the cuckoo hash tables. One way
to implement the compression is to store a fingerprint of the element instead
the element itself. This fingerprint can be computed using a hash function on
the element f, = hy(x). This approach has been used for example in [I] with
fingerprints of 16 bits. In fact, a cuckoo filter [6] could be potentially used as
a compressed cuckoo hash. The problem, is that we need to ensure that when
searching for an element z, there is no fingerprint for another element y on the
buckets assigned to x that has the same fingerprint. This will be referred to
as a collision of the elements in the rest of the paper. If that occurs, we could
not tell which fingerprint corresponds to z and which to y. In [I, this issue
was solved by handling collisions with additional lookup stages something that
requires additional data structures and processing.

Collisions can be avoided by using more sophisticated data structures such as
the Bloomier filter [7],[8]. A Bloomier filter can store a value v, associated with
each element so that the correct value is retrieved for all elements in the set, i.e.
there are no collisions among elements. For elements not in the set it can retrieve
a value (false positive) with low probability. The problem is that Bloomier filters
are not easily amenable to hardware implementations and supporting dynamic
insertions and deletions is also challenging. For connection tracking, we need
to support frequent insertions and removals of elements as connections are by
nature dynamic. We also want the scheme to be implementable in switching
ASICs. Therefore, the Bloomier filter does not fit with our needs.

In this paper we present CuCoTrack, a data structure that avoids collisions
while supporting dynamic insertions and removals. The proposed scheme is
based on cuckoo hashing and thus amenable to hardware implementation. To
avoid collisions, CuCoTrack uses an adaptive fingerprint. Those were first in-
troduced in the Adaptive Cuckoo Filter (ACF) to reduce the false positive rate



[9]. In CuCoTrack, fingerprints have a both fixed part and an adaptive part to
ensure that collisions can be avoided.

The rest of the paper is structured as follows, CucoTrack is introduced in
section 2 and in section 3 is analyzed theoretically. In section 4, simulation
results are presented to show that collisions can be avoided for practical con-
figurations and also to validate the theoretical analysis. Finally the conclusions
are summarized in section 5.

2 CuCoTrack

To avoid collisions, the proposed data structure uses a fingerprint that has a
both a fixed part and an adaptive part. The fingerprint is defined as follows:

o Fixed fingerprint: f, = hy¢(z).
e Adaptive fingerprint composed of:

— Hash function selector: «.
— Value: a, = hq(z).

where the adaptive fingerprint is similar to one of the schemes proposed for
the Adaptive Cuckoo Filters (ACF) [9]. The information stored for an element
on the proposed data structure is illustrated in Figure[I]and is composed by the
fixed and adaptive fingerprints plus the value associated with the element v,.
The CuCoTrack structure uses buckets of ¢ = 4 cells as in the original cuckoo
filter [6]. The structure of a bucket composed of four cells is shown in Figure

Fingerprints  Value

NSRS

Figure 1: Information stored for element = on the proposed data structure.

Cell 1 Cell 2 Cell 3 Cell 4

(hfafa[vwl[bt[alalvw|[[floala w| & lea|lalw]

Figure 2: Example of a bucket in the proposed CuCoTrack scheme.

Instead of using a single table to which each element z maps to two positions
as in the cuckoo filter, CuCoTrack uses d = 2 independent tables and each
element maps to a single position on each table. In more detail, an element x is
mapped to two buckets: p; = hy(z) on the first table and py = hy(z) xor ha(f.)
on the second table. It must be noted that those positions depend only on x
and the fixed fingerprint f,. The adaptive part of the fingerprint is not used to



compute the positions. This will be one of the key aspects of the design as will
be seen in the following.

To insert a new element x on the set, we just need to access the two buckets
p1 = hi(x) on the first table and ps = hy(z) zor ha(f:) on the second table
and check that there are no elements stored there that match both the fixed f,
and adaptive a, fingerprints. If that occurs there is a collision. To avoid it, we
can change the value of the hash selector function a, and update the adaptive
fingerprint a, = hqo(x) accordingly. To do so, we need to store a copy of the
original elements, possibly in a larger and slower external memory (as done in
[9]). The change in «, has to be done such that the value selected for each
colliding element gives a fingerprint that is unique among them. For example,
if we have three colliding elements z,y, z and we have four values of a,, so that
the values of the hash functions are:

ax‘x Yy oz
0 la b b
1 c a ¢
2 |a a b
3 |a a a

we can select o, = 0 for z, oy = 1 for y and o, = 2 for z and there will
be no collisions when we search for any of the elements. We fail to adapt only
when there is at least one conflicting element for which all values of o, give a
hash value that is equal to the one of another of the conflicting elements.

Once collisions are avoided, the insertions proceed as in a standard cuckoo
filter [6] displacing stored fingerprints if needed to make room for the newly
inserted fingerprint.

The full elements can be stored using tables that have a one to one correspon-
dence of buckets and cells with the CuCoTrack structure. Then when changing
oy, we access the same cell on the full table to compute the new a, = hq(x).
The fixed cuckoo filter fingerprint f, is needed to ensure that the bucket loca-
tions of an element do not depend on the adaptation. If that were the case,
an adaptation could create further collisions with other elements and queries
would need to check the positions that correspond to all the values of a,. In
our design, cuckoo movements during insertions cannot create new collisions as
the movements do not change the locations where an element = can be stored
and a new element y that collides with  would map to the same positions as
in that case f, = f,. Therefore, the check for collisions is only needed for new
elements added to the set not for movements during insertions. Finally, queries
and removals of elements are the same as in a standard cuckoo filter.

3 Analysis

Let us denote as f the number of bits allocated for the fixed fingerprint, a for
the adaptive fingerprint value and « for the hash selector. To estimate the
probability of the structure failing to avoid collisions, let us consider that the



filter has an occupancy of 0. The analysis can be done by looking at each pair
of values given by p; = hy(x), f, and pa = hy(z) xor he(fz), f. That is, once
we select a fixed fingerprint and a position on the first table, the position on the
second table is also determined. Those two positions are the ones that x will
map to with fixed fingerprint f,. Therefore only elements that map to those
positions with that fingerprint can create a collision with z. For two tables with
m/2 buckets each, there are m/2 - 27 possible pairs of values. The mapping of
the m - ¢ - o elements to the pairs of values can be approximated by a Poisson
distribution with A\ = 2-0-¢/2/ where the c is the number of cells on each bucket
(typically four as discussed before). Therefore, the probability that there are 4
elements with values {p;,p2} can be approximated as:

P(i) = (2\!)1 e

where A will be much smaller than one as for the Cuckoo filter to achieve
close to full occupancy we need at least 6 or more bits for the fixed fingerprint.
Note that when ¢ > 8 we are not able to place the elements in the cuckoo filter
and thus the construction of the filter fails. Now, let us consider that a given
pair values {p;,p>} has i elements with ¢ > 2, then the probability that for one of
those i elements, we have a collision that cannot be removed with the adaptive
fingerprint bits can be estimated as:

L2
(1 B (2a2a 1) ) (1)

The exponent 2% comes from the number of adaptations that we can do.
While the negative term is the probability that the i—1 values of the fingerprints
of the other i —1 elements are all different from the one we are considering. Thus
one minus it is the probability of failing. Since we have i elements, and assuming
that the probability of failure is low, we can approximate the probability of
failure for the 7 elements as:

a4

Py(i) i <1 - (22: 1>“>2 (2)

This assumes that the probability of failing for one of the elements is inde-
pendent of the rest which is not true. Therefore, the estimate will not be exact.
In fact for ¢ = 2, the failures are totally correlated. Therefore, for that case we

will use:
20 _1\\2%" R
Py(2) = (1 — ( 5 >) = 2792 (3)

Combining the previous equations, the expected number of collisions N that
cannot be removed for the entire table of m buckets can be estimated as:




N %21‘213(@)&(1') —m.2/L. (4)

A2e— —a2e 5 Ae=> | 20 —1\"!
52 +y i 1< 5 )
=3

Where the summation is truncated at i = 8 as for larger values the con-
struction of the cuckoo filter will fail. It should be noted that in the derivation
of approximation, it has been assumed that the values of the fingerprints and
the positions are uniformly distributed over their range of possible values. This
may not be entirely true. For example, if there is a position to which many
elements map, the second positions for that bucket have a larger probability of
having the fingerprint value that corresponds to that first position.

The previous analysis has considered the number of collisions that we cannot
remove during the initialization of the filter. However, collisions can also occur
during its operation as elements are added and removed. Let us consider that
the filter has already an occupancy of o and we remove one element and add a
new one. Then, the probability F' that the new element creates a collision that
can not be removed is:

e

N\ 2

)\ 3 2 —1\"
e (- (5)

The reasoning is as follows: the newly inserted element will go in the pair
of values p1 = hi(x), fr and pa = hi(x) zor hao(f.), f» that has already i
elements with probability P(¢). When there is at least one element, a collision
will be created that needs to be removed. This removal will fail with probability
Pr(i+1). It should be noted that in the above derivation, we assume that the
when pair of values had i elements, the collisions could be removed (as otherwise
we would have failed before this insertion) and at the same time we use the
P¢(i + 1) for the general case. This can be a good approximation since the
probability of failing with ¢ + 1 elements should be much larger than that of
failing with ¢ and therefore the first should have little effect on the second.

4 Evaluation

Since the goal is to have a data structure that has no collisions, we first use
the analytical approximations to show that for some practical configurations,
the probability of having non removable collisions will be very low. Then, we



validate the analytical approximations by simulation for different values of the
probability going as low as it is practical using the available computing resources.

removable collsions N

Number of non

Figure 3: Estimated number N of non removable collisions when using 12,14
and 16 fingerprint bits split among f,a and « bits according to equation 4.

To show the potential of CuCoTrack, we have used the approximations pre-
sented in the previous section to compute the expected number N of non remov-
able collisions and the probability F' of creating a non removable collision when
inserting a new element. An occupancy o of 95% has been assumed that is close
to the maximum occupancy achievable by a cuckoo filter [6]. Three values have
been considered for the total number of bits in the fingerprint: 12,14 and 16.
Those are split between the fixed part f and the adaptive part a, o assigning at
least 6 bits to the fixed part. For the adaptive part, several configurations are
tested by changing a and «. The results are shown in Figures [3| and

It can be seen, that with 16 bits we are able to provide a very small prob-
ability when using 6,7 or 8 bits for the fixed fingerprint f. If we can use 18 or
20 bits, we can achieve close to zero collisions for larger values of f. Therefore,
from the analytical approximations, we can conclude that CucoTrack can pro-
vide a practically collision free solution when we have 16 or more bits for the
fingerprint. Looking at the dynamic part of the fingerprint, it seems that the
best split of the bits is approximately in half for a¢ and half for @ with a bias
towards smaller values of a.

To validate the analytical approximations, the proposed scheme has been
simulated. This has been done for tables of 512K buckets each having 4 cells
giving a total of 4M cells.



Prababilty of failure on dynamic

Probabilty of failure on dyn:

Figure 4: Estimated probability of failure F' on dynamic insertion when using
12,14 and 16 fingerprint bits split among f,a and « bits according to equation
5.

Firstly, two configurations with 12 and 14 bits were tested to check the
accuracy of the approximations for IV and F'. In the case of 12 bits, f was fixed
to 6 and for 14 bits to 8. Then a was varied from 1 to 5. This corresponds to
the blue line in the first plots of Figures 3] and to the green line in the second
plots. In these simulations, the filter was constructed 10000 times and for each of
the runs, once 95% occupancy was reached, one million replacement operations
were done. The average across all the runs is reported. The comparison of the
simulation results with the theoretical estimates showed a worst case deviation
of less than 15%. Therefore it seems that the approximations are reasonably
accurate at least to probabilities of dynamic failure down to 1078,

Since the goal of the scheme is to provide close to zero collisions, the next step
was to test a configuration with 14 bits that has a lower probability of failure.
In particular, f = 7,a = 4 and a = 3 was tested with one hundred thousand
filter constructions. The results again matched the theoretical estimates with
less than 15% error. These results suggest that the equations obtained in the
analysis can be used to estimate the probability of collisions when the probability
of failure is even lower (in this case it was approximately 3.8 - 10710).

In a final experiment, we have checked that a configuration with a low prob-
ability of failure does not suffer non removable collisions. In particular, we have
selected 16 bits with f = 8, a = 3 and o = 5. For this configuration, we have run
one hundred thousand filter constructions and for each we have done one mil-



lion replacements. Non removable collisions were not seen on all the runs. This
confirms that CucoTrack can reliably remove collisions when using fingerprints
of 16 bits.

5 Conclusions

In this paper, CuCoTrack, a new data structure to perform connection tracking
has been proposed. CuCotrack is based on cuckoo hashing and enables a colli-
sion free scheme using small fingerprints instead of storing the complete 5-tuple.
This reduces significantly the memory needed to store the connections and the
memory bandwidth for queries. The proposed scheme has been analyzed the-
oretically to show that CuCoTrack is able to significantly reduce the collisions
when 12 bits are used for the fingerprint and practically eliminate them when we
can afford to use 16 bits or more for the fingerprint. This has been corroborated
in simulation for probabilities of failures on insertion down to 10~1°.

Acknowledgment

Pedro Reviriego would like to acknowledge the support of the excellence network
Elastic Networks TEC2015-71932-REDT funded by the Spanish Ministry of
Economy and Competitivity. Salvatore Pontarelli is partially supported by the
EU Commission in the frame of the Horizon 2020 project 5G-PICTURE (grant
#762057).

References

[1] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu “SilkRoad: Making Stateful
Layer-4 Load Balancing Fast and Cheap Using Switching ASICs, in Pro-
ceedings of the Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’17).

[2] R. Pagh and F. Rodler “Cuckoo hashing, Journal of Algorithms, 2004, pp.
122-144.

[3] U.Erlingsson, M. Manasse, and F. Mcsherry, A cool and practical alternative
to traditional hash tables, in Proc. of the Seventh Workshop on Distributed
Data and Structures (WDAS), 2006.

[4] P. Bosshart, G. Gibb, H. S, Kim, G. Varghese, N. McKeown, M. Izzard, F.
Mujica, and M. Horowitz, “Forwarding metamorphosis: fast programmable
match-action processing in hardware for SDN,” in Proceedings of the Con-

ference of the ACM Special Interest Group on Data Communication (SIG-
COMM ’13).



[5]

S. Pontarelli, P. Reviriego and J. A. Maestro. “Parallel d-pipeline: a cuckoo
hashing implementation for increased throughput.”, IEEE Transactions on
Computers vol. 65 no. 1, pp. 326-331, 2016.

B. Fan, D. Andersen, M. Kaminsky and M. Mitzenmacher, “Cuckoo Filter:
Practically Better Than Bloom” in Proceedings of CoNext 2014.

B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier filter: an
efficient data structure for static support lookup tables,” in Proc. Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 30-39, 2004.

D. Charles and K. Chellapilla, “Bloomier filters: A second look,” in Proc.
16th Annual European Symposium on Algorithms, pp. 259-270, 2008.

M. Mitzenmacher, S. Pontarelli and P. Reviriego, “Adaptive Cuckoo Filters:
Reducing False Positive Rates for Network Applications, ALENEX, 2018.

10



	1 Introduction
	2 CuCoTrack
	3 Analysis
	4 Evaluation
	5 Conclusions

