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Abstract

A segment representation of a graph is an assignment of line segments in 2D to
the vertices in such a way that two segments intersect if and only if the corresponding
vertices are adjacent. Not all graphs have such segment representations, but they exist,
for example, for all planar graphs.

In this note, we study the resolution that can be achieved for segment representa-
tions, presuming the ends of segments must be on integer grid points. We show that
any planar graph (and more generally, any graph that has a so-called L-representation)
has a segment representation in a grid of width and height 4n.

1 Introduction

The problems String and Segment have received much attention in recent history. Here,
String refers to the problem of, given a graph G = (V,E), testing whether we can assign
a curve C(v) in 2D to each vertex v in such a way that C(v) and C(w) intersect if and only
if (v, w) is an edge in the graph. Such an assignment is called a string representation. This
problem is NP-hard [3] and also in NP [8]; the latter is not at all obvious because string
representations sometimes require an exponential number of crossings among strings [5].

The Segment problem is a special case of the String problem, where we want a segment
representation, i.e., C(v) is a line segment. The NP-hardness proof of [3] also works for
segments (see [4]), so Segment is also NP-hard but not known to be in NP. Indeed, the
problem is unlikely to be in NP, since it was shown to be hard for the class ∃R, the existential
theory of the reals [6], and it is widely assumed that ∃R is a strict superset of NP. (See e.g. [9]
for more on ∃R.)

For the purposes of displaying a graph via a segment representation, we care not only
about the existence, but also about the resolution required to show it. By moving endpoints
slightly one can always achieve rational coordinates at the endpoints without changing the
represented graph. After scaling therefore we may assume that endpoints have integer co-
ordinates. We measure the resolution of a segment representation by the size of the grid
supporting all endpoints of the segments.
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Assuming ∃R 6= NP, there are some graphs that have a segment representation, but no
segment-representation has exponential resolution (i.e., O(cn) for some constant c, where n
is the number of vertices). Namely, a segment-representation of exponential resolution can
be described using O(poly(n)) bits, and given such a description, we can check in O(poly(n))
time whether this corresponds to a segment representation of a graph. If all graphs had a
segment representation of exponential resolution, therefore Segment would be in NP.

In his Ph.D. thesis in 1984 [10], Scheinermann famously asked whether every planar graph
(i.e., graph that can be drawn in the plane without crossing) has a segment representation.
This was proved in 2009 by Chalopin and Gonçalvez [1]; a second (independent and much
more accessible) proof was given by Gonçalvez, Isenburg and Pennarun [2]. In particular,
Segment is not ∃R-hard for planar graphs (the answer is simply “yes”), which raises the
possibility that they always have representations of exponential resolution.

Neither of [1, 2] addressed the question of what resolution can be achieved. We show
in this note that the representation from [2] can be modified to have resolution 4n. Our
result is not specific to the construction in [2], but instead works for any graph that has an
L-representation. This is a string representation of a graph where every C(v) has the shape
of an L, i.e., it consists of a horizontal and a vertical segment that share their left/bottom
endpoint. It was shown by Middendorf and Pfeiffer [7] that every graph that has an L-
representation also has a segment representation. The approach of [2] is hence to construct
an L-representation for any planar graph and then to appeal to Middendorf and Pfeiffer’s
result.

It is not hard to show a bound of O((2n)2n) on the resolution achieved with the trans-
formation by Middendorf and Pfeiffer (we review this in Section 3). Our main result is the
following better bound:

Theorem 1. Any graph that has an L-representation (in particular therefore any planar
graph) has a segment representation with resolution 4n.

2 Proof of Theorem 1

Assume that we are given an L-representation of a graph. We may assume that no endpoint
of an L lies on another L, else we can lengthen its segment a bit. We may assume also that
all vertices have a non-zero length horizontal and vertical segment, else we can insert a very
short one. Whether two L’s intersect depends only on the relative coordinates of segments;
we may therefore reassign endpoint-coordinates to integers in {0, . . . , 2n−1} in sorted order
(breaking ties arbitrarily) and obtain the same graph. Hence assume from now on that all
endpoints of all segments of L’s have distinct coordinates in {0, . . . , 2n− 1}.

It will be convenient to rotate the picture by 180◦, so that C(v) becomes an

L

. We describe
C(v) by giving the four coordinates `, b, r, t ∈ {1, . . . , 2n} of its bounding box [`, r] × [b, t];
thus C(v) consists of the top and right side of this box.

To define s(v), first let d(v) by the segment from (0, 2t) to (2r, 0), i.e., the downward
diagonal in rectangle [0, 2r] × [0, 2t]. Observe that d(v) has slope −2t−r. To obtain s(v),

2



intersect d(v) with the halfspaces {x ≥ 2`} and {y ≥ 2b}. The endpoints of s(v) are hence
(2`, 2t − 2t−(r−`)) and (2r − 2r−(t−b), 2b), which have integral coordinates in 1, . . . , 22n−1. See
also Figure 1.

252423222120

25

24

23

22

21

20

s(b)

s(c)

s(a)

1 2 3 4 5

1

2

3

4

5
b

c

a

Figure 1: An L-representation (rotated) and its corresponding segment representation.

Lemma 1. If s(v) and s(w) intersect, then (v, w) is an edge.

Proof. Let C(v) = {`, b, r, t} and C(w) = {L,B,R, T}. After possible renaming we may
assume t > T .

Assume that r > R. Walking along the x-axis, we encounter first d(v) at (2r, 0) and then
d(w) at (2R, 0). Walking along the y-axis, we encounter first d(v) at (0, 2t), and then d(w)
at (0, 2T ). So the order is the same, which means that line segments d(v) and d(w) do not
intersect, and neither can the segments s(v) and s(w) that lie within them. See e.g. vertices
a and b in Figure 1.
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So we know that r < R and t > T . If r < L then s(v) resides in the halfspace {x ≤ 2r}
and s(w) resides in the halfspace {x ≥ 2L} and they do not intersect. See e.g. vertices a
and c in Figure 1. If b > T , then similarly s(v) resides in the halfspace {y ≥ 2b} while s(w)
resides in the halfspace {y ≤ 2T}, and they do not intersect.

So we know that L < r < R and b < T < t. But now consider point (r, T ). This belongs
to the vertical segment of v by b < T < t and to the horizontal segment of w by L < r < R.
So C(v) and C(w) intersect and (v, w) was an edge.

Lemma 2. If (v, w) is an edge, then s(v) and s(w) intersect.

Proof. Let C(v) = {`, b, r, t} and C(w) = {L,B,R, T}. After possible renaming we may
assume that the intersection of the curves happens between the vertical segment of v and
the horizontal segment of w. See e.g. vertices b and c in Figure 1. In particular, L < r < R
and b < T < t, which by integrality means L + 1 ≤ r ≤ R − 1 and b + 1 ≤ T ≤ t− 1. This
immediately implies that d(v) and d(w) intersect (their order is different along the x-axis and
the y-axis). The work is now to show that this intersection point lies within the halfspaces
with which we pruned d(v) and d(w) to obtain s(v) and s(w).

We know that d(v) has y-intercept 2t and slope −2t−r, while d(w) has y-intercept 2T and
slope −2T−R. If we let (x∗, y∗) be the point of their intersection, we hence have 2t−2t−rx∗ =
y∗ = 2T − 2T−Rx∗, which implies

x∗ =
2t − 2T

2t−r − 2T−r
≥ 2 · 2t−1 − 2t−1

2t−r
= 2r−1.

So the intersection point lies within half-space {x ≥ 2r−1}, which contains {x ≥ 2L} since
r ≥ L + 1 and {x ≥ 2`} since ` < r, hence ` ≤ r − 1.

Symmetrically y∗ satisfies 2r − 2r−ty∗ = 2R − 2R−Ty∗ which shows that

y∗ =
2R − 2r

2R−T − 2r−t
≥ 2R−1

2R−T
= 2T−1.

So the intersection point lies within half-spaces {y ≥ 2b} and {y ≥ 2B} by T > B and T > b.
In consequence the intersection point of d(v) and d(w) lies on both s(v) and s(w) and

they intersect as desired.

3 { L, L}-representations
The result by Middendorf and Pfeiffer [7] is more general than stated before; they can create
segment representations even if the input representation is an { L, L}-representation, i.e.,
vertex-curves may also be horizontally reflected Ls.

We have not been able to generalize Theorem 1 to such representations, because its proof
relies on that we can distort both x-coordinates and y-coordinates exponentially. However,
one can show that we can obtain a segment representation of resolution (2n)2n (specifically,
its width is quite small at 2n, but its height is (2n)2n.
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As before we will assume that the representation has distinct coordinates in {0, . . . , 2n−1}
and has been rotated by 180◦. So for any vertex v, C(v) includes the top side of its bounding
box, and it includes either the left or the right side.

To define s(v), set Q(v) to be the rectangle [`, r] × [(2n)b, (2n)t], and use as s(v) the
diagonal of Q(v) that corresponds to the ends of C(v). Put differently, if C is

L

then s(v) is
the downward diagonal of Q(v), and if C is

L
then s(v) is the upward diagonal of Q(v). See

also Figure 2. Clearly the ends of s(v) are integer grid points within the required range.

Lemma 3. If s(v) and s(w) intersect, then (v, w) is an edge.

Proof. Let C(v) = {`, b, r, t} and C(w) = {L,B,R, T}. After possible renaming we may
assume t > T . Note that the constructed representation is horizontally symmetric, so up to
symmetry, we may assume that C(v) is an

L

and s(v) is the downward diagonal of Q(v).
If r < L then s(v) resides in the halfspace {x ≤ r} and s(w) resides in the halfspace

{x ≥ L} and they do not intersect. If b > T , then similarly s(v) resides in the halfspace
{y ≥ 2b} while s(w) resides in the halfspace {y ≤ 2T}, and they do not intersect. So we
know that L < r and b < T < t.

The horizontal segment of C(w) is (L, T ) − (R, T ). If R > r, then this intersects the
vertical segment (r, b)− (r, t) of C(v), and (v, w) is an edge and we are done.

The only remaining case is hence max{L,R} < r and b < T < t. Recall that s(w) resides
within Q(w) = [L,R]× [(2n)B, (2n)T ]. We claim that s(v) does not intersect Q(w). Namely,
s(v) (which is the downward diagonal) has slope

−(2n)t − (2n)b

r − `
< −(2n)t

2n
= −(2n)t−1 ≤ −(2n)T ,

which means that at x-coordinate r− 1, the y-coordinate of s(v) is at least (2n)b + (2n)T >
(2n)T . Since r − 1 ≥ R, this means that s(v) bypasses Q(w) entirely, and in particular s(v)
does not intersect s(w).

Lemma 4. If (v, w) is an edge, then s(v) and s(w) intersect.

Proof. Let C(v) = {`, b, r, t} and C(w) = {L,B,R, T}. After possible renaming we may
assume that the intersection of the curves happens between the vertical segment of v and
the horizontal segment of w. Up to symmetry, we may assume that C(v) is an

L

, so s(v) is
the downward diagonal. This implies L < r < R and b < T < t.

Consider the two vertical lines Lr−1 : {x = r−1} and Lr : {x = r}; these intersect both
s(v) and s(w) by ` < r and L < r < R. As in the previous proof, one shows that s(v) has
y-coordinate > (2n)T at x = r−1, while s(w) has y-coordinate ≤ (2n)T throughout, so s(w)
intersects Lr−1 below s(v).

Segment s(v) intersects Lr at y-coordinate (2n)b and ends here. (See e.g. vertex b in
Figure 2.) If s(w) is the downward diagonal, then it intersects Lr at y-coordinate

(2n)B + (R−r)
(2n)T − (2n)B

R−L
=

r−L
R−L

(2n)B +
R−r
R−L

(2n)T >
1

2n
(2n)T = (2n)T−1 ≥ (2n)b,
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so it is above s(v) at Lr. (See e.g. vertex c in Figure 2.) If s(w) is the upward diagonal, then
it intersects Lr at y-coordinate

(2n)T − (R−r)
(2n)T − (2n)B

R−L
=

r−L
R−L

(2n)T +
R−r
R−L

(2n)B >
1

2n
(2n)T ≥ (2n)b,

so again it is above s(v) at Lr. (See e.g. vertex a in Figure 2.) Either way therefore,
somewhere in the x-range [r−1, r] the two line segments intersect.

4 Conclusion

While we have made progress on one interesting question (what resolution is needed for
segment representations of planar graphs?), we leave many questions open for future study:

• Is exponential resolution ever needed for planar graphs? Put differently, can we con-
struct a planar graph G such that any segment representation of G requires resolution
Ω(cn), for some constant c? Or can we achieve polynomial resolution?

The problem is also interesting for the superclass of “graphs that have an L-representation”.

• Can we achieve exponential resolution for all graphs with an { L, L}-representation?

• Can we construct an explicit graph family that has segment representations, but no
such segment representation has exponential resolution?

• Does every graph with a segment representation have one of resolution f(n), for some
computable function f(n)?
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Figure 2: An {L, L}-representation (rotated) and its corresponding segment representation
(not to scale).
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