
ar
X

iv
:1

81
2.

09
09

4v
3

 [
cs

.D
S]

 2
 N

ov
 2

01
9

A simple algorithm for computing the document array

Felipe A. Louza∗

Faculty of Electrical Engineering, Universidade Federal de Uberlândia,

Uberlândia, Brazil

Abstract

We present a simple algorithm for computing the document array given a string

collection and its suffix array as input. Our algorithm runs in linear time using

constant additional space for strings from constant alphabets.

Keywords: Document array, Text indexing, Algorithms

1. Introduction

The suffix array (SA) [1] is a fundamental data structure in string processing

that is commonly accompanied by the document array [2] when indexing string

collections (e.g. [3, 4, 5, 6, 7]). Given a collection of d strings of total length N ,

the document array is an array of integers DA[1, N] in the range [1, d+ 1] that

gives which document each suffix in the suffix array belongs to.

It is well-known that DA can be represented in a compact form by using

a bitvector bit[1, N] with support to rank operations, requiring N + o(N) bits

of space [8]. However, there are applications where DA must be accessed se-

quentially (e.g. [9, 10, 11, 12, 13, 14]), and having the array DA[1, N] computed

explicitly is important.

In this paper we show how to compute DA given a string collection and its

suffix array as input in O(N) time. Our algorithm reuses the space of SA to

store auxiliary arrays used to compute DA. SA is reconstructed in its original

space during DA computation. The workspace of our algorithm, that is, the

∗Corresponding author
Email address: louza@ufu.br (Felipe A. Louza)

Preprint submitted to Journal of LATEX Templates November 5, 2019

http://arxiv.org/abs/1812.09094v3

extra space used in addition to the input and output, is O(σ lgN) bits, where

σ is the alphabet size. Therefore, for constant alphabets, the workspace of our

algorithm is constant1.

2. Background

Let T be a string of length n, over an alphabet Σ of size σ, such that

T [n] = $ is an end-marker symbol that does not occur elsewhere in T and

precedes every symbol of Σ. T [i, j] denotes the substring from T [i] to T [j]

inclusive, for 1 ≤ i ≤ j ≤ n. A suffix of T is a substring T [i, n]. We define

rankc(T, i) as the number of occurrences of symbol c in T [1, i]. The string T is

stored in n lg σ bits of space.

The suffix array (SA) [1] for T is an array of integers in the interval [1, n] that

provides the lexicographical order of all suffixes of T . The inverted permutation

of SA, denoted as ISA, is defined as ISA[SA[i]] = i. SA can be computed in O(n)

time using O(σ lg n) bits of workspace [15]. Since, SA and ISA are permutations

of [1, n], the arrays SA and ISA use n lgn bits of space each one.

The Burrows-Wheeler transform (BWT) [16] of T is obtained by sorting all

n rotations of T in a conceptual matrixM, and taking the last column L as the

BWT. It can also be defined through the relation

BWT[i] = T [SA[i]− 1 mod n]. (1)

The BWT can be computed directly (without SA) in O(n) time using O(n lg σ)

bits of workspace [17, 18], or alternatively in O(n2) time in-place [19].

The Last-to-First (LF) mapping states that the kth occurrence of a symbol c

in column L ofM and the kth occurrence of c in the first column F correspond

to the same symbol in T . Let C[c] be the number of symbols c′ < c in T [1, n].

We define

LF(i, c) = C[c] + rankc(BWT, i). (2)

1We assume a computer word size of lgN bits.

2

We use shorthand LF(i) for LF(i,BWT[i]). LF(i) may be computed on-the-fly

in O(lg σ) time querying a wavelet tree [20] for the rank queries on Equation 2.

The wavelet tree requires additional (n + o(n)) lg σ bits of space.

LF-mapping allows us to navigate T right-to-left, given T [k] = BWT[i], then

T [k − 1] = BWT[LF(i)]. T can be reconstructed backwards from BWT starting

with T [n] = BWT[1] = $, and repeatedly applying LF for n steps.

2.1. String collections

Let T = T1, T2, . . . , Td be a collection of d strings of lengths n1, n2, . . . , nd.

The suffix array of T is the SA built for the concatenation of all strings

T cat[1, N] = T1T2 . . . Td#, with total size N =
∑d

i=1
(n1) + 1 and a new end-

marker # < $. SA can be computed in O(N) time using O(σ lgN) bits of

workspace [21], such that an end-marker $ from string Ti is smaller than a $

from string Tj iff i < j, which is equivalent to using d different end-markers as

separators, without increasing the alphabet size.

The BWT may also be generalized for string collections. BWT of T is ob-

tained from SA and T cat through the Equation 1. However, LF-mapping through

Equation 2 does not work for symbols $, since the kth symbol $ in column L

does not (necessarily) corresponds to the kth symbol $ in column F , in this case

LF(i, $) is undefined [7].

LF(i) can be pre-computed in an array LF[1, n] through Equation 3 such that

LF still works for $-symbols. Given SA and ISA, we have

LF[i] = ISA[(SA[i]− 1) mod n] (3)

The array LF uses N lgN bits of space.

2.2. Document array

The document array (DA) is an array of integers in the interval [1, d+1] that

tells us which document j ∈ T each suffix in the SA belongs to [2]. We define

DA[i] = j iff suffix T cat[SA[i], N] came from string Tj ∈ T . DA[1] = d + 1 for

the last suffix T cat[N,N] = #. DA[1, N] uses N lg(d+ 1) bits of space.

3

The array DA[1, N] can also be represented using a wavelet tree [20], within

the same N lg(d + 1) bits with additional functionalities [3]. DA can still be

compressed using grammars when the string collection is repetitive [22].

2.3. Related work

Given T cat and SA, the document array DA can be constructed in O(N)

time using N lgN additional bits to store ISA, such that DA[ISA[i]] = j for

i = ℓj−1, . . . , ℓj , with ℓ0 = 1 and ℓj =
∑j

k=1
nk, see [23, Alg. 5.29].

DA can also be computed in the same fashion as the text T cat is reconstructed

from its BWT. Given T cat and SA, we can compute ISA[1, N] and then array

LF[1, N] (Equation 3). DA is obtained in O(N) time during the BWT inversion

using N lgN bits of workspace, see [23, Alg. 7.30]. In particular, in Section 3

we show an alternative algorithm that reuses the space of SA to compute LF

without ISA. Our algorithm uses O(σ lgN) bits of workspace and reconstructs

SA during DA computation.

Lightweight alternative. DA can be computed using a compact data structure

composed by a bitvector bit[1, N] with rank support operation. bit is built over

T cat[1, N], such that

bit[i] = 1 iff T cat[i] = $ and bit[i] = 0, otherwise. (4)

DA[i] can be obtained using bit and SA as follows [23, Alg. 7.29]:

DA[i] = rank1(bit, SA[i]) + 1, (5)

bit[1, N] can be pre-processed in O(N) time so that rank queries are supported

in O(1) time using additional o(N) bits [24]. This procedure computes DA in

O(N) time using N + o(N) bits of workspace.

3. Computing DA

In this section we show how to compute DA given SA built for T cat. Our al-

gorithm runs in O(N) time using O(σ lgN) bits of workspace, which is constant

when σ = O(1).

4

At a glance, we reuse the space of SA to compute the LF-array, which is used

to traverse T cat[1, N] from right-to-left applying the LF-mapping N times. We

compute DA[1],DA[LF1(1)],DA[LF2(1)], . . . ,DA[LFN−1(1)]. Starting with doc =

d+1, each DA[i] receives doc, and whenever T cat[SA[i]− 1] = BWT[i] = $, that

is, LF[i] ∈ [2, d+ 1], doc is decremented by one.

Recall that LF(i, $) is undefined then we cannot traverse backwards

T cat[1, N] with the LF-mapping given by Equation 2. Alternatively, given the

BWT of T cat and an auxiliary array C[1, σ] initialized with C[c] equal to the

number of symbols c′ < c in T cat[1, N], we can pre-compute correct LF entries

for every position with a corresponding BWT symbol c 6= $. For i = 1, . . . , N ,

LF[i] = C[BWT[i]], and C[BWT[i]] is incremented by one. The resulting (incor-

rect) LF-positions, corresponding to BWT[i] = $, will be in the interval [2, d+1].

These values will be computed correctly by Algorithm 1 on-the-fly during the

right-to-left T cat[1, N] traversal.

Algorithm 1. The algorithm starts with SA stored in A[1, N]. We use N lgN

bits to store A[1, N], and N lg(d+1) bits to store DA[1, N]. First, we overwrite

SA with the BWT in A[1, N] (Lines 1-3). Then, we overwrite the BWT with

the LF-array computed as described above (Lines 4-6). Recall that positions

with A[i] ∈ [2, d+ 1] are not correct. In the sequel, DA[1, N] is computed while

SA is reconstructed in the space of A[1, N] as follows. Initially, pos = 1 and

doc = d + 1 (Lines 7-8). At each step i = N, . . . , 1 (Lines 9-18), the value in

A[pos] (corresponding to LF(pos)) is stored in a temporary variable (Line 10)

and replaced by SA[pos] = i (Line 11), then DA[pos] = doc (Line 12). Whenever

LF[pos] = tmp ∈ [2, d + 1], BWT(pos) is a $-symbol and we have to compute

correctly its LF-mapping. In particular, when we reach the first tmp ∈ [2, d+1],

we reach the BWT position corresponding to the dth $-symbol in T cat (the last

one), because we traverse T cat[1, N] right-to-left, and its correct LF-mapping is

tmp = d + 1. The next iteration we reach tmp ∈ [2, d+ 1] we are at the BWT

position corresponding to the (d − 1)th $-symbol in T cat, and tmp = d, and

so on. Therefore, whenever tmp ∈ [2, d + 1] we update tmp with the correct

5

Algorithm 1: Computing DA from T cat, SA[1, N] and C[1, σ].

1 for i← 1 to N do

2 A[i]← T cat[A[i]− 1 mod N] ; // A = BWT

3 end

4 for i← 1 to N do

5 A[i]← C[A[i]]++; // A = LF

6 end

7 pos← 1;

8 doc← d+ 1;

9 for i← N downto 1 do

10 tmp← A[pos]; // tmp = A[pos] = LF(pos)

11 A[pos]← i; // A[pos] = SA[pos]

12 DA[pos]← doc

13 if tmp ≤ d+ 1 then // BWT(pos) == $

14 tmp← doc;

15 doc← doc− 1;

16 end

17 pos← tmp; // pos = tmp = LF(pos)

18 end

LF-mapping value stored in doc (Line 14), and doc is decremented by one for the

next iterations (Line 15). The next step will visit position pos = tmp = LF(pos)

(Line 17). At the end, DA[1, N] is completely computed and SA is reconstructed

in the same space of A[1, N].

Theoretical costs. The number of steps is N and only array C[1, σ] was needed

in addition to the input and output. Therefore, the algorithm runs in O(N)

time, using O(σ lgN) bits of workspace.

Discussion. We remark that one can use a standard suffix sorting algorithm

(e.g. [15]) to compute the suffix array for T cat, such that $-symbols are not

6

considered different symbols in T cat (see Section 2.1), then LF(i, $) is well-

defined and Algorithm 1 can be applied with line 14 commented. Notice that,

in this case, during suffix sorting unnecessary comparisons may be performed,

depending on the order of the strings in the collection, what may deteriorate

the practical performance of suffix sorting (see [21] for details).

4. Experimental results

We compared our algorithm with the lightweight alternative described in

Section 2.3. We evaluated two versions of this procedure, using compressed

(bit sd) and plain bitvectors (bit plain). We used C++ and SDSL library [25]

version 2.0. The algorithms receive as input the concatenated string (T cat)

and its suffix array (SA), which was computed using gSACA-K [21]. Our

algorithm was implemented in ANSI C. The source codes are available at

https://github.com/felipelouza/document-array/.

The experiments were conducted on a machine with Debian GNU/Linux 8 64

bits OS (kernel 3.16.0-4) with processor Intel Xeon E5-2630 v3 20M Cache 2.40-

GHz, 386 GB of RAM and a 13 TB SATA disk. We used real data collections

described in Table 1.

Table 2 shows the running time (in seconds) and workspace (in KB) of each

algorithm. The workspace is the peak space used subtracted by the space used

for the input, T cat[1, N] and SA[1, N], and for the output, DA[1, N].

Results. bit plain was the fastest algorithm in all tests. bit plain was 2.19

times faster than bit sd, and 5.73 times faster than Alg. 1, on the average.

bit sd was still 3 times faster than Alg. 1, which shows that Alg. 1 is not

competitive in practice. On the other hand, Alg. 1 was the only algorithm

2http://jltsiren.kapsi.fi/data/fiwiki.bz2
3ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA/influenza.fna.gz
4http://algo2.iti.kit.edu/gog/projects/ALENEX15/collections/ENWIKIBIG/
5http://gage.cbcb.umd.edu/data/index.html
6http://www.ebi.ac.uk/uniprot/download-center/

7

https://github.com/felipelouza/document-array/
http://jltsiren.kapsi.fi/data/fiwiki.bz2
ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA/influenza.fna.gz
http://algo2.iti.kit.edu/gog/projects/ALENEX15/collections/ENWIKIBIG/
http://gage.cbcb.umd.edu/data/index.html
http://www.ebi.ac.uk/uniprot/download-center/

Table 1: Datasets. We used 32-bits integers to store SA[1, N] when N < 231 (2GB), otherwise

we used 64-bits. The document array DA[1, N] is stored using 32-bits integers, since d is always

smaller than 231. Each symbol of T cat uses 1 byte.

Dataset σ N/230 d N/d longest string

revision 203 0.39 20,433 20,527 2,000,452

influenza 15 0.56 394,217 1,516 2,867

reads 4 2.87 32,621,862 94 101

pages 205 3.74 1,000 4,019,585 362,724,758

wikipedia 208 8.32 3,903,703 2,288 224,488

proteins 25 15.77 50,825,784 333 36,805

pages: repetitive collection from a snapshot of Finnish-language Wikipedia.

Each document is composed by one page and its revisions2.

revision: the same as pages, except that each revision is a separate document.

influenza: repetitive collection of the genomes of influenza viruses3.

wikipedia: collection of pages from English-language of Wikipedia4.

reads: collection of DNA reads from Human Chromosome 14 (library 1)5.

proteins: collection of protein sequences from Uniprot/TrEMBL 2015 096.

that kept the workspace constant, namely 1 KB for inputs smaller than 231 (2

GB) and 2 KB otherwise, which correspond to the space used by the auxiliary

array C[1, σ] used to compute LF. The workspace of bit plain and bit sd were

much larger, bit plain spent 0.16×N bytes, whereas bit sd spent 0.003×N

bytes, on the average.

Competing interests. The author declare that there is no competing interests.

Acknowledgments. We thank the anonymous reviewers for comments that im-

proved the manuscript. We thank Giovanni Manzini, Travis Gagie and Nicola

Prezza for helpful discussions.

8

Table 2: Running time and workspace.

Dataset
Time (seconds) Workspace (KB)

Alg. 1 bit plain bit sd Alg. 1 bit plain bit sd

revision 60.88 11.74 20.37 1 64,002 44

influenza 109.13 20.48 41.24 1 91,168 704

reads 931.35 150.40 549.65 2 470,389 38,980

pages 762.91 141.99 141.25 2 613,341 4

wikipedia 2,947.59 450.64 1,054.08 2 1,363,147 7,096

protein 7,007.87 1,211.13 2,899.63 2 2,583,532 69,423

Funding. F.A.L. was partially supported by the grants #2017/09105-0 and

#2018/21509-2 from the São Paulo Research Foundation (FAPESP).

References

[1] U. Manber, E. W. Myers, Suffix arrays: A new method for on-line string

searches, SIAM J. Comput. 22 (5) (1993) 935–948.

[2] S. Muthukrishnan, Efficient algorithms for document retrieval problems,

in: Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA),

ACM/SIAM, 2002, pp. 657–666.

[3] N. Välimäki, V. Mäkinen, Space-efficient algorithms for document retrieval,

in: Proc. Annual Symposium on Combinatorial Pattern Matching (CPM),

2007, pp. 205–215.

[4] D. Belazzougui, G. Navarro, D. Valenzuela, Improved compressed indexes

for full-text document retrieval, J. Discrete Algorithms 18 (2013) 3–13.

[5] T. Kopelowitz, G. Kucherov, Y. Nekrich, T. A. Starikovskaya, Cross-

document pattern matching, J. Discrete Algorithms 24 (2014) 40–47.

[6] T. Gagie, A. Hartikainen, K. Karhu, J. Kärkkäinen, G. Navarro, S. J.

Puglisi, J. Sirén, Document retrieval on repetitive string collections, Inf.

Retr. Journal 20 (3) (2017) 253–291.

9

[7] J. Sirén, E. Garrison, A. M. Novak, B. Paten, R. Durbin, Haplotype-aware

graph indexes, in: Proc. International Workshop on Algorithms in Bioin-

formatics (WABI), 2018, pp. 4:1–4:13.

[8] K. Sadakane, Succinct data structures for flexible text retrieval systems, J.

Discrete Algorithms 5 (1) (2007) 12–22.

[9] E. Ohlebusch, S. Gog, Efficient algorithms for the all-pairs suffix-prefix

problem and the all-pairs substring-prefix problem, Information Processing

Letters 110 (3) (2010) 123–128.

[10] M. Arnold, E. Ohlebusch, Linear Time Algorithms for Generalizations of

the Longest Common Substring Problem, Algorithmica 60 (4) (2011) 806–

818.

[11] W. H. Tustumi, S. Gog, G. P. Telles, F. A. Louza, An improved algorithm

for the all-pairs suffix-prefix problem, J. Discret. Algorithms 37 (2016) 34–

43.

[12] F. A. Louza, G. P. Telles, S. Gog, L. Zhao, Algorithms to compute the

Burrows-Wheeler Similarity Distribution, Theor. Comput. Sci. 782 (2019)

145–156.

[13] L. Egidi, F. A. Louza, G. Manzini, G. P. Telles, External memory BWT and

LCP computation for sequence collections with applications, Algorithms for

Molecular Biology 14 (1) (2019) 6:1–6:15.

[14] V. Guerrini, G. Rosone, Lightweight metagenomic classification via eBWT,

in: Proc. International Conference on Algorithms for Computational Biol-

ogy (AICoB), 2019, pp. 112–124.

[15] G. Nong, Practical linear-time O(1)-workspace suffix sorting for constant

alphabets, ACM Trans. Inform. Syst. 31 (3) (2013) 1–15.

[16] M. Burrows, D. J. Wheeler, A block-sorting lossless data compression al-

gorithm, Tech. rep., Digital SRC Research Report (1994).

10

[17] J. I. Munro, G. Navarro, Y. Nekrich, Space-efficient construction of com-

pressed indexes in deterministic linear time, in: Proc. ACM-SIAM Sympo-

sium on Discrete Algorithms (SODA), 2017, pp. 408–424.

[18] J. F. Sepúlveda, G. Navarro, Y. Nekrich, Space-efficient computation of

the Burrows-Wheeler Transform, in: Proc. IEEE Data Compression Con-

ference (DCC), 2019, pp. 132–141.

[19] M. Crochemore, R. Grossi, J. Krkkinen, G. M. Landau, A constant-space

comparison-based algorithm for computing the Burrows-Wheeler trans-

form, in: Proc. Annual Symposium on Combinatorial Pattern Matching

(CPM), 2013, pp. 74–82.

[20] R. Grossi, A. Gupta, J. S. Vitter, High-order entropy-compressed text in-

dexes, in: Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA),

ACM/SIAM, 2003, pp. 841–850.

[21] F. A. Louza, S. Gog, G. P. Telles, Inducing enhanced suffix arrays for string

collections, Theor. Comput. Sci. 678 (2017) 22–39.

[22] G. Navarro, S. J. Puglisi, D. Valenzuela, Practical compressed document

retrieval, in: Proc. Symposium on Experimental and Efficient Algorithms

(SEA), 2011, pp. 193–205.

[23] E. Ohlebusch, Bioinformatics Algorithms: Sequence Analysis, Genome Re-

arrangements, and Phylogenetic Reconstruction, Oldenbusch Verlag, 2013.

[24] J. I. Munro, Tables, in: Proc. of Foundations of Software Technology and

Theoretical Computer Science (FSTTCS), Vol. 1180 of LNCS, Springer,

1996, pp. 37–42.

[25] S. Gog, T. Beller, A. Moffat, M. Petri, From theory to practice: Plug and

play with succinct data structures, in: Proc. Symposium on Experimental

and Efficient Algorithms (SEA), Vol. 8504 of LNCS, Springer, 2014, pp.

326–337.

11

	1 Introduction
	2 Background
	2.1 String collections
	2.2 Document array
	2.3 Related work

	3 Computing DA
	4 Experimental results

