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Independent Domination versus

Weighted Independent Domination

Vadim Lozin∗, Dmitriy Malyshev†, Raffaele Mosca‡, Viktor Zamaraev§

Abstract

Independent domination is one of the rare problems for which the complexity of
weighted and unweighted versions is known to be different in some classes of graphs. Trying
to better understand the gap between the two versions of the problem, in the present paper
we prove two complexity results. First, we extend NP-hardness of the weighted version in a
certain class to the unweighted case. Second, we strengthen polynomial-time solvability of
the unweighted version in the class of P2 + P3-free graphs to the weighted case. This result
is tight in the sense that both versions are NP-hard in the class of P3 + P3-free graphs, i.e.
P3 + P3 is a minimal graph forbidding of which produces an NP-hard case for both versions
of the problem.

1 Introduction

Independent domination is the problem of finding in a graph an inclusionwise maximal
independent set of minimum cardinality. This is one of the hardest algorithmic problems and it
remains difficult in very restricted graph classes. In particular, it is NP-hard in the class of so
called sat-graphs, where the problem is equivalent to satisfiability [9].

The weighted version of the problem (abbreviated WID) deals with vertex-weighted graphs
and asks to find an inclusionwise maximal independent set of minimum total weight. This version
is provenly harder, as it remains NP-hard even for chordal graphs [2], where independent
domination can be solved in polynomial time [4].

Recently, we have strengthened the NP-hardness of WID in the class of chordal graphs by
showing that the problem is NP-hard in the class of (C4, Sun3)-free sat-graphs [5] (see Figure 1
for Sun3). This is a proper subclass of the intersection of sat-graphs and chordal graphs, and
therefore independent domination admits a polynomial-time solution in this class. Trying to
better understand the gap between the two versions of the problem, we slightly extend this class
by replacing C4 with a domino in the set of forbidden graphs and show that with this extension
the complexity of independent domination jumps from polynomial-time solvability to NP-
hardness.
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On the other hand, independent domination can be solved in polynomial time in the class
of P2 + P3-free graphs [7], where the complexity of WID is an open question. We answer this
question by showing that WID also admits a polynomial-time solution for P2 + P3-free graphs.
This result is tight in the sense that both versions are NP-hard in the class of P3+P3-free graphs,
because this class contains all sat-graphs. In other words, our result shows that P3 + P3 is a
minimal graph forbidding of which produces an NP-hard case for both versions of the problem.

The organization of the paper is as follows. In the rest of this section, we introduce basic
terminology and notation. In Section 2, we prove our NP-hardness results. Section 3 is devoted
to the polynomial-time result.

All graphs in this paper are finite, undirected, without loops and multiple edges. Let G =
(V,E) be a graph and let v be a vertex in G. By NG(v) we denote the neighborhood of v, i.e. the
set of vertices of G adjacent to v. For a set S ⊆ V , we denote by AG(S) the antineighborhood
of S, i.e. the set of vertices of G that have no neighbours in S. Also by G[S] we denote the
subgraph of G induced by S and by G − S the subgraph G[V \ S]. If S consists of a single
element, say S = {v}, we write AG(v) and G− v, omitting the braces.

As usual, Pn, Cn and Kn denote a chordless path, a chordless cycle and a complete graph
on n vertices, respectively. Given two graphs G and H, we denote by G+H the disjoint union
of G and H, and by mG the disjoint union of m copies of G.

A set S ⊆ V of pairwise non-adjacent vertices is called an independent set. We say that S is
a maximal independent set if it is not properly contained in any other independent set. Clearly,
if S is a maximal independent set, then it is also dominating, i.e. every vertex not in S has a
neighbour in S. This is why maximal independent sets also known as independent dominating
sets.

The independent domination number of G is the size of a minimum independent dominating
set in G; we denote it by id(G). If G is a vertex weighted graph with a weight function w, then
idw(G) stands for the minimum weight of an independent dominating set in G.

2 An NP-hardness result

As we mentioned in the introduction, both versions of the problem are NP-hard for general
graphs and remain difficult under various restrictions. For instance, both of them are NP-hard
for graphs of bounded vertex degree, of large girth [1], line graphs [8], chordal bipartite1 graphs
[3], etc. The weighted version of the problem is also NP-hard in the class of (C4, Sun3)-free sat
graphs [5], where the unweighted version is polynomial-time solvable, because this is a subclass
of chordal graphs. By replacing C4 in the set of forbidden induced subgraphs with a domino (see
Figure 1) we obtain a larger class. Therefore, WID remains NP-hard in this extension. However,
the complexity of ID in this class is an open question. In this section, we answer this question
by showing that independent domination is NP-hard in the class of (domino, Sun3)-free
sat-graphs

A graph G is called a sat-graph if there exists a partition A ∪B = V (G) such that

1. A is a clique (possibly, A = ∅);

2. G[B] is a 1-regular graph, also known as an induced matching (possibly, B = ∅);
1This is a bipartite analog of chordal graphs and is not the intersection of chordal and bipartite graphs.
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3. there are no triangles (a, b, b′), where a ∈ A and b, b′ ∈ B.

We shall refer to the pair (A,B) as a sat-partition of G. The NP-hardness of independent
domination (and hence of WID) in the class of sat-graphs was proved in [9], where the author
showed that independent domination restricted to the class of sat-graphs is equivalent to
satisfiability.
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Figure 1: Graphs (a) domino, and (b) Sun3

Observe that no cycle with at least 5 vertices is an induced subgraph of a sat-graph, while
each of domino and Sun3 (Figure 1) can be an induced subgraph of a sat-graph. Moreover, it
is easy to see that each of domino and Sun3 is partitioned by a sat-partition in a unique way.

Observation 1. Let G be a sat-graph with a sat-partition (A,B).

(1) If G contains a domino (see Figure 1 (a)) as an induced subgraph, then 3, 4 ∈ A and
1, 2, 5, 6 ∈ B.

(2) If G contains Sun3 (see Figure 1 (b)) as an induced subgraph, then 1, 2, 3 ∈ A and 4, 5, 6 ∈
B.

Since each of domino and Sun3 can be an induced subgraph of a sat-graph, the class of
(domino, Sun3)-free sat-graphs form a proper subclass of sat-graphs. To prove the NP-hardness
of ID in this class, we reduce the problem from sat-graphs.

Let G be a sat-graph with a sat-partition (A,B), and let a ∈ A and b ∈ B be two adjacent
vertices. The transformation γ(a, b) of G consists in

1. adding a new vertex v to A, and connecting it to all other vertices in A;

2. adding new vertices x and y to B and connecting them by an edge;

3. removing the edge (a, b);

4. adding edges (v, b), (v, x) and (a, y).

We say that v is an α-new vertex, x, y are β-new vertices, and the edge (x, y) is a β-new
edge. Vertices in A that are not α-new, and vertices and edges in B that are not β-new will be
called α-old and β-old, respectively.

Notice that transformation γ(a, b) does not change the property of being a sat-graph. In
what follows, we show that this transformation increases the independent domination number
by exactly one. To this end, we first make the following observation.
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Figure 2: Transformation γ(a, b)

Observation 2. Let G be a sat-graph with a sat-partition (A,B) and let s be the number of
edges in G[B]. Then s ≤ id(G) ≤ s+ 1.

Lemma 1. Let G be a sat-graph and G′ be the sat-graph obtained from G by applying transfor-
mation γ(a, b). Then id(G′) = id(G) + 1.

Proof. Let (A,B) be a sat-partition of G and let s be the number of edges in G[B]. By Obser-
vation 2 we have s ≤ id(G) ≤ s+ 1, and s+ 1 ≤ id(G′) ≤ s+ 2. Therefore, to prove the lemma
it is sufficient to show that id(G) = s if and only if id(G′) = s+ 1.

First, assume that id(G) = s and D is a minimum independent dominating set in G. If
b ∈ D, then D′ = D ∪ {y} is an independent dominating set in G′. Moreover, D′ is minimum,
since id(G′) ≥ s+1 and |D′| = s+1. Let now id(G′) = s+1 and D′ be a minimum independent
dominating set in G′. If y ∈ D′, then b ∈ D′ (to dominate v) and therefore D = D′ \ {y} is a
minimum independent dominating set in G. If x ∈ D′, then there exists c ∈ D′ \ {x, y} that
dominates a, and hence D = D′ \ {x} is a minimum independent dominating set in G.

Let G be a sat-graph with a sat-partition (A,B). By G∗ we denote the sat-graph obtained
from G by successive applications of transformation γ(a, b) to every edge (a, b) with a ∈ A
and b ∈ B. Denote S∗ = {G∗ | G is a sat-graph with a sat-partition (A,B)}. It follows from
Lemma 1 that independent domination in sat-graphs polynomially reduces to the same
problem in the subclass S∗ of sat-graphs. Now we show that graphs in S∗ are (domino, Sun3)-
free. First, we note some useful properties of a graph G in S∗:

(1) No α-old vertex is adjacent to a β-old edge.

(2) Every α-new vertex is adjacent to exactly one β-new edge, and to exactly one β-old edge.

(3) In every β-new edge one of its vertices is adjacent to exactly one vertex in A and this vertex
is α-new, and the other vertex is adjacent to exactly one vertex in A and this vertex is
α-old.

Lemma 2. Let G be a graph in S∗. Then G is (domino, Sun3)-free.

Proof. Let H be a sat-graph with a sat-partition (A,B) such that G = H∗. Let also (A′, B′)
be a sat-partition of G such that A ⊆ A′, B ⊆ B′, and all α-new vertices belong to A′ and all
β-new vertices belong to B′.

Suppose to the contrary that G contains an induced domino with vertex set {1, 2, 3, 4, 5, 6}
as shown in Figure 1 (a). By Observation 1 (1) we have 3, 4 ∈ A′ and 1, 2, 5, 6 ∈ B′. Assume that
3 is an α-new vertex, then by Property (2) of H∗ one of the edges (1, 2) and (5, 6) is β-new and
the other one is β-old. Without loss of generality, let (1, 2) be a new edge. Now by Property (1)
vertex 4 is also α-new. But then two new vertices 3, 4 are adjacent to the new edge (1, 2), which
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contradicts Property (3). Assume now that both vertices 3 and 4 are α-old. Then by Property
(1) edges (1, 2) and (5, 6) are β-new, which again contradicts Property (3). This contradiction
shows that G is domino-free.

Suppose now that G contains the graph Sun3 induced by vertices 1, 2, 3, 4, 5, 6 as shown in
Figure 1 (b). Then by Observation 1 we have 1, 2, 3 ∈ A′ and 4, 5, 6 ∈ B′. Let us consider vertex
1. From Properties (1) and (2) we conclude that at least one of its neighbours 4 and 5, say 4,
is a β-new vertex. But this is impossible, since by Property (3) every β-new vertex has at most
one neighbour in A. This contradiction shows that G is Sun3-free and completes the proof of
the lemma.

Now the main result of this section follows from Lemmas 1 and 2 and from the fact that
independent domination is NP-hard in sat-graphs.

Theorem 1. Independent domination is NP-hard in the class of (domino, Sun3)-free sat-
graphs.

3 A polynomial-time result

In this section, we study the weighted version of the problem restricted to the class of P2+P3-free
graphs. This special case of the problem was also studied in [6]. However, a solution presented
in [6] turned out to be erroneous. The error was partially corrected in [7], where a solution
for the unweighted version of the problem was presented. Now we extend it to weighted
independent domination. The initial stage of the solution, up to Claim 2, is the same for
both versions of the problem, and we start by briefly outlining the main ideas of this stage and
stating the necessary results from [7].

The first step in the solution is Algorithm Generation, which generates a family S of vertex
subsets of the input graph. To each set H ∈ S the algorithm assigns a special vertex µ(H) which
does not belong to H. Given a graph G with vertex set V (G) = {v1, v2, . . . , vn}, we denote by
Gi the subgraph of G induced by vertices v1, v2, . . . , vi. Also, for a subset U ⊆ V (G), we denote
by U0 the set of isolated vertices in G[U ]. Without loss of generality we assume that the input
graph G has no isolated vertices, because all these vertices must belong to any optimal solution.
We also assume that the vertices of G are ordered so that v1 is adjacent to v2. In the beginning
of the algorithm, the family S includes only the set {v1} and the special vertex assigned to this
set is µ({v1}) = v2.

Lemma 3. [7] Let G be a P2 + P3-free graph with vertex set V (G) = {v1, v2, . . . , vn} and let S
be the family of subsets of V (G) produced by Algorithm Generation. Then

(i) for each H ∈ S, we have H −H0 ⊆ AG({vi, µ(H)}), where i is the iteration at which H
was created;

(ii) for each maximal independent set I in G, there is a set H ∈ S such that I ⊆ H.

Lemma 4. [7] For a graph G with n vertices, Algorithm Generation runs in time O(n5) and
the family S produced by this algorithm contains O(n3) subsets of V (G).

By Lemma 3, a solution to WID in a P2 + P3-free graph G belongs to one of the subsets
H ∈ S generated by the algorithm. Therefore, the problem can be solved by checking, for each
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Algorithm 1 Generation

Input: A graph G with vertex set V (G) = {v1, v2, . . . , vn}.
Output: A family S of subsets of V (G).

1: S := {{v1}} with µ({v1}) = v2
2: for i = 2 to n do

3: [Extension of some members of S]
4: for each H ∈ S do
5: if

[
NGi(vi) ∩H = ∅

]
or

[
(NGi(vi) ∩H0 = ∅) and (µ(H), vi) 6∈ E(G)

]
then

6: H := H ∪ {vi}

7: [Addition of new members of S]
8: for each pair of vertices vi, u inducing in Gi a P2 do
9: H := {vi} ∪AGi({vi, u})

10: µ(H) := u
11: S := S ∪ {H}

12: for each triple of vertices vi, u, w inducing in Gi a P3 with u being the centre do
13: H := {vi, w} ∪AGi({vi, u, w})
14: µ(H) := u
15: S := S ∪ {H}

16: return S

H ∈ S, all maximal independent sets in G[H], verifying which of them are also maximal in G
and then choosing a set of minimum weight. For sets H ∈ S created in Line 13 of the algorithm,
this is an easy task, because all these sets are independent.

Now let H be created in Line 9 of the algorithm and denote by A the subset of H obtained
by removing isolated vertices from G[H]. By Lemma 3, A ⊆ AG({vi, µ(H)}), and hence, G[A] is
P3-free, i.e. each connected component of G[A] is a clique with at least two vertices. We denote
the components (cliques) of G[A] by Q1, . . . , Qt.

The condition in Line 5 of the algorithm implies that every maximal independent set in
G[H] dominates all vertices of G except possibly some neighbours of µ(H). We denote the set
of neighbours of µ(H), which are not dominated by at least one maximal independent set in
G[H], by W . With this notion and an argument similar to the one used in [7] (see Proposition
4 of [7]), maximal independent sets in G[H], which also are maximal in G, can be characterized
as follows.

Claim 1. Let H ∈ S be a set created in Line 9 of Algorithm Generation. An independent set
I which is maximal in G[H] also is maximal in G if and only if I ∩A dominates W .

Our next claim characterizes independent sets I ∩A that dominate W .

Claim 2. For i = 1, . . . , t, let zi ∈ Qi and Yi = W ∩AG(zi). The set I = {z1, . . . , zt} dominates
W if and only if Y1 ∩ . . . ∩ Yt = ∅.

Proof. Denote Y i = W − Yi. Then I dominates W if and only if Y 1 ∪ . . . ∪ Y t = W . By De
Morgan’s law, this holds if and only if Y1 ∩ . . . ∩ Yt = ∅.
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It remains to show that the problem of finding a maximal independent set in G[H] of mini-
mum weight that dominates W can be solved in polynomial time. To prove this, we first observe
that if a vertex x ∈ W is non-adjacent to two vertices a, b ∈ A, then a and b are non-adjacent
to each other, since otherwise a, b, x, µ(H), vi induce a P2 + P3. Therefore, if Q = {q1, . . . , qp}
is a component (clique) in G[A] and Wi = W ∩ AG(qi), then {W1, . . . ,Wp} is a partition of W
and we denote this partition by P(Q).

We recall that Q1, . . . , Qt are the components of G[A]. The corresponding t partitions
P(Q1), . . . ,P(Qt) of W can be described as a rooted tree T as follows. Let W be the root of
T and let v be a node of distance 0 ≤ i < t from the root representing a subset U ⊆ W . If
U = ∅, then v is a leaf. Otherwise, v has p children representing the sets U ∩W1, . . . , U ∩Wp,
where W1, . . . ,Wp are the subsets in the partition P(Qi+1). In other words, if a node v is
located at level i of the tree, then it represents the set Y1∩ . . .∩Yi for a unique collection of sets
Y1 ∈ P(Q1), . . . , Yi ∈ P(Qi) defined by the unique path connecting v to the root of T . Every
set Yi ∈ P(Qi) corresponds to a unique vertex zi ∈ Qi with Yi = W ∩ AG(zi) and we denote
Av = {z1, . . . , zi} ∪Qi+1 ∪ . . . ∪Qt.

From Claims 1 and 2, we derive the following conclusion.

Claim 3. If I is a maximal independent set in G[H], which is also maximal in G, then I∩A ⊂ Av

for a node v of T representing the empty set.

Each Av induces a P3-free graph and hence WID can be solved for such a graph in time
O(n). It remains to estimate the number of nodes representing the empty sets (empty nodes,
for short). To this end, we first slightly modify the tree T as follows. If a node of T has several
children representing the empty set, then we ignore all of them except one, corresponding to a
vertex zi ∈ Qi of minimum weight. Clearly, with this modification we do not lose any potential
solution. Now, every node of T has at most one child representing the empty set, and hence the
number of empty nodes does not exceed the number of non-empty nodes, i.e nodes representing
non-empty sets.

Claim 4. The number of non-empty nodes in T is at most n2.

Proof. For each i, the subsets of W represented by the nodes of T at level i form a partition of
W . Therefore, for each i, the number of non-empty nodes at level i is at most n. The number of
levels (cliques) is at most n, and hence, the total number of non-empty nodes is at most n2.

Theorem 2. The weighted independent domination problem can be solved for n-vertex
P3 + P2-free graphs in O(n6) time.

Proof. To solve the problem for a P3 + P2-free graph G, first, we run Algorithm Generation
which produces O(n3) subsets of G. For each of these subsets, which is not an independent set,
we construct a tree T and for each of the O(n2) empty nodes of T , we solve the problem in O(n)
time. Therefore, the total time is O(n6).
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