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Abstract

A non-empty word w is a border of the word u if |w| < |u| and w is
both a prefix and a suffix of u. A word u with the border w is closed

if u has exactly two occurrences of w. A word u is privileged if |u| ≤ 1
or if u contains a privileged border w that appears exactly twice in u.

Peltomäki (2016) presented the following open problem: “Give a
nontrivial upper bound for B(n)”, where B(n) denotes the number of
privileged words of length n. Let D(n) denote the number of closed
words of length n. Let q > 1 be the size of the alphabet. We show
that there is a positive real constant c such that

D(n) ≤ c ln n
qn√
n

, where n > 1.

Privileged words are a subset of closed words, hence we show also
an upper bound for the number of privileged words.

1 Introduction

A non-empty word w is a border of the word u if |w| < |u| and w is both a
prefix and a suffix of u. A border w of the word u is the maximal border of u
if for every border w̄ of u we have that |w̄| ≤ |w|. A word u with the border
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w is closed if u has exactly two occurrences of w. It follows that w occurs
only as a prefix and as a suffix of u. A word u is privileged if |u| ≤ 1 or if
u contains a privileged border w that appears exactly twice in u. Obviously
privileged words are a subset of closed words.

The properties of closed and privileged words have been studied in recent
years [2], [5], [6]. One of the questions that has been investigated is the
enumeration of privileged words. In [3], it was proved that there are constants
c and n0 such that for all n > n0, there are at least cqn

n(log
q
n)2

privileged words
of length n. This improves the lower bound for the number of privileged
words from [1]. Since every privileged word is a closed word, the result from
[3] forms also a lower bound for the number of closed words.

Concerning an upper bound for the number of privileged words we have
found only the following open problem [4]: “Give a nontrivial upper bound
for B(n)”, where B(n) denotes the number of privileged words of length n.
Also in [4], the author presents an idea how to improve the lower bound from
[3]. On the other hand, in [4], there is no explicit suggestion how to approach
the problem of determining the upper bound.

In the current article we construct an upper bound for the number of
closed words of length n. Since the privileged words are a subset of closed
words, we present also a response to the open problem from [4].

We explain in outline our proof. Let A be an alphabet with q > 1 letters,
let Am denote the set of all words of length m, and let A∗ =

⋃

m≥0A
m. It is

known that |Am | = qm. Let Aw(n) denote the number of words of length n

that do not contain the factor w ∈ A∗. Let µ(n,m) be the maximal value of
Aw(n) for all w of length m; formally

µ(n,m) = max{Aw(n) | w ∈ Am}.

Let D̂(n) denote the set of all closed words of length n and let D̂(n,m) denote
the set of all closed words of length n having a maximal border of length m.
Let D(n) = |D̂(n)| and D(n,m) = |D̂(n,m)|.

Obviously D̂(n) =
⋃n−1

m=1 D̂(n,m) and D̂(n,m) ∩ D̂(n, m̄) = ∅, where
m 6= m̄. We show that if 2m > n then D(n,m) ≤ q⌈

n

2
⌉ and if 2m ≤ n then

D(n,m) ≤ qmµ(n− 2m,m); see Lemma 2.5. It follows that

D(n) =

n−1
∑

m=1

D(n,m) ≤
⌊n

2
⌋

∑

m=1

qmµ(n− 2m,m) +

n−1
∑

m=⌊n

2
⌋+1

q⌈
n

2
⌉. (1)
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Let N denote the set of positive integers. Let ω(n) = 1
ln q

(lnn − ln lnn).
Let Π denote the set of all functions π(n) : N → N such that π(n) ∈ Π if and
only if 1 ≤ π(n) ≤ max{1, ω(n))} and π(n) ≤ π(n + 1) for all n ∈ N. We
apply the function max, because ω(n) < 1 for some small n.

The key observation in our article is that the number of words of length
n that do not contain some “short" factor of length π(n) ∈ Π has the same
growth rate as the number of words of length n − ⌊ lnn

ln q
⌋. Formally said, for

each π(n) ∈ Π there is a positive real constant c such that µ(n, π(n)) ≤
cq

n− lnn

ln q ; see Theorem 2.3. This observation allows us to show that there are
real positive constants c1, c2 such that

⌊n

2
⌋

∑

m=1

qmµ(n− 2m,m) ≤ c1 lnn

⌊n

2
⌋

∑

m=⌊c2 lnn⌋
qmµ(n− 2m,m). (2)

In consequence we may count only closed words having a maximal border
longer than c2 lnn in order to find an upper bound for D(n). Applying that
µ(n− 2m,m) ≤ qn−2m for n ≥ 2m, we derive from (1) and (2) our result for
the number of closed words.

2 Upper bound for the number of closed words

We present an upper bound for the number of words of length n that avoid
some factor of length m; it means an upper bound for µ(n,m).

Lemma 2.1. If n,m ∈ N then

µ(n,m) ≤ qn
(

1− 1

qm

)⌊ n

m
⌋
.

Proof. Given w ∈ Am, let Un,w be a set of words u = u1u2 . . . uk−1uk ∈ A∗,
where |u| = n, |ui| = m, w 6= ui for all 1 ≤ i < k, and |uk| = n mod m. It
follows that |uk| < m = |w| and thus uk 6= w. Obviously

|Un,w| = (qm − 1)⌊
n

m
⌋qn mod m = qn

(

1− 1

qm

)⌊ n

m
⌋
.

Note that |Am \{w}| = qm − 1. It is clear that the set of words of length n

not containing the factor w is a subset of Un,w. The lemma follows.
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For the proof of Theorem 2.3 we need the following limit.

Proposition 2.2. We have that

lim
n→∞

n

(

1− lnn

n

)n

= e .

Proof. Let

y = lim
n→∞

n

(

1− lnn

n

)n

. (3)

From (3) we have that

ln y = lim
n→∞

ln

[

n

(

1− lnn

n

)n]

= lim
n→∞

[

lnn + n ln

(

1− lnn

n

)]

. (4)

Let us consider the second term on the right side of (4):

lim
n→∞

n ln

(

1− lnn

n

)

= lim
n→∞

ln
(

1− lnn
n

)′

( 1
n
)′

=

lim
n→∞

(−1)( 1−ln n

n2 )

(1− lnn

n
)

− 1
n2

= lim
n→∞

n(1− lnn)

n− lnn
.

(5)

Since limn→∞
n

n−lnn
= 1, it follows from (4) and (5) that

ln y = lim
n→∞

[

lnn+
n(1− lnn)

n− lnn

]

= lim
n→∞

[lnn+ 1− lnn] = 1.

It follows that y = e. This completes the proof.

Let R
+ denote the set of positive real numbers.

Let β = 1
ln q

∈ R
+. The following theorem states that the number of

words of length n avoiding some given "short" factor (of length shorter than
π(n) ∈ Π) has the same growth rate as the number of all words of length
n− β lnn.

Theorem 2.3. If π(n) ∈ Π then there is a constant c ∈ R
+ such that for all

n ∈ N we have that
µ(n, π(n))

qn−β lnn
≤ c.
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Proof. From Lemma 2.1 we have that

µ(n, π(n))

qn−β lnn
=

qn
(

1− 1
qπ(n)

)⌊ n

π(n)
⌋

qn−β lnn
= n

(

1− 1

qπ(n)

)⌊ n

π(n)
⌋
. (6)

Realize that qβ lnn = n.
Obviously there is n0 ∈ N such that qπ(n) ≤ n

lnn
for all n > n0; recall that

π(n) ≤ ω(n) = 1
ln q

(lnn− ln lnn) as n tends to infinity. Consequently for all
n > n0 we have that

n

(

1− 1

qπ(n)

)n

≤ n

(

1− lnn

n

)n

. (7)

Proposition 2.2 and (7) imply that

lim
n→∞

n

(

1− 1

qπ(n)

)n

≤ e . (8)

Clearly limn→∞ (f(n))
1

π(n) ≤ e for each function f(n) such that f(n) ≥ 0 and
limn→∞ f(n) ≤ e; recall that π(n) ≥ 1. Then the theorem follows from (6)
and (8). This completes the proof.

Let h(n) = ⌊β lnn⌋. We present Theorem 2.3 in a slightly different man-
ner that will be more useful for us in the following.

Corollary 2.4. If π(n), π̄(n) ∈ Π, and π̄(n) ≤ π(n) then there is a constant

c ∈ R
+ such that for all n ∈ N we have that

µ(n− 2π̄(n), π̄(n))

qn−h(n)
≤ c.

Proof. It is easy to verify that µ(n − 2π̄(n), π̄(n)) ≤ µ(n, π(n)), since the
number of words of length n avoiding some factor of length π(n) is bigger
or equal to the number of words of length n− 2π̄(n) avoiding some factor of
length π̄(n) ≤ π(n).

Obviously h(n) = ⌊ lnn
ln q

⌋ ≤ lnn
ln q

= β lnn. In consequence we have that
qn−h(n) ≥ qn−β lnn.

The corollary follows from Theorem 2.3. This completes the proof.

We show an upper bound for D(n,m) for the cases where 2m > n and
2m ≤ n.
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Lemma 2.5. Suppose n,m ∈ N.

• If 2m > n then D(n,m) ≤ q⌈
n

2
⌉.

• If 2m ≤ n then D(n,m) ≤ qmµ(n− 2m,m).

Proof. If 2m > n, w ∈ A∗, and |w| = m then there is obviously at most one
word u with |u| = n having a prefix and a suffix w; the prefix w and the
suffix w would overlap with each other. If such u exists then the first half of
u uniquely determines the second half of u. If follows that D(n,m) ≤ q⌈

n

2
⌉.

Let F(w) denote the set of all factors of w ∈ A∗. If n ≥ 2m then let

Z(n,m) = {wuw | u ∈ An−2m and w ∈ Am and w 6∈ F(u)}.
If n ≥ 2m then D(n,m) ⊆ Z(n,m). It is easy to see that

|Z(n,m)| ≤ |Am |µ(n− 2m,m).

This completes the proof.

Let κ > 1 be a real constant and h̄(n) = max{1, ⌊ 1
κ
ω(n)⌋}. Again we use

the function max to guarantee that h̄(n) ≥ 1 for small n.

Remark 2.6. The function h̄(n) defines the maximal length of a “short” border
of a closed word. In the proof of Theorem 2.9 the closed words from D̂(n,m)
will be enumerated differently for m < h̄(n) and for m ≥ h̄(n).

The next auxiliary lemma shows an upper bound for q−h(n)+h̄(n), that we
will use in the proof of Proposition 2.8.

Lemma 2.7. There is a constant c1 ∈ R
+ such that for all n ∈ N we have

that

q−h(n)+h̄(n) ≤ c1q
1

ln q
( 1
κ
−1) lnn

Proof. Let

y = lim
n→∞

(−h(n) + h̄(n)− 1

ln q

(

1

κ
− 1

)

lnn).

We have that

y = lim
n→∞

(

−⌊ 1

ln q
lnn⌋+ ⌊ 1

κ ln q
(lnn− ln lnn)⌋ − 1

ln q

(

1

κ
− 1

)

lnn

)

= lim
n→∞

(

lnn

ln q

(

−1 +
1

κ

)

− 1

ln q

(

1

κ
− 1

)

lnn

)

= 0.

(9)
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This implies that

lim
n→∞

q−h(n)+h̄(n)

q
1

ln q
( 1
κ
−1) lnn

= 1.

The lemma follows.

The next proposition shows an upper bound for the number of closed
words of length n having a maximal border of length ≤ ⌈n

2
⌉.

Proposition 2.8. There is a constant c ∈ R
+ such that

⌈n

2
⌉

∑

m=1

qmµ(n− 2m,m) ≤ c lnn
qn√
n
, where n > 1.

Proof. Since µ(n− 2m,m) ≤ qn−2m we have that

⌈n

2
⌉

∑

m=1

qmµ(n− 2m,m) ≤
h̄(n)−1
∑

m=1

qmµ(n− 2m,m) +

⌈n

2
⌉

∑

m=h̄(n)

qmqn−2m. (10)

Corollary 2.4 implies that µ(n−2m,m) ≤ cqn−h(n) for some constant c ∈ R
+.

It follows that
h̄(n)−1
∑

m=1

qmµ(n− 2m,m) ≤
h̄(n)
∑

m=1

qmcqn−h(n)

≤ h̄(n)qh̄(n)cqn−h(n).

(11)

Lemma 2.7 and (11) imply that

h̄(n)−1
∑

m=1

qmµ(n− 2m,m) ≤ c1h̄(n)cq
n− lnn

ln q
(1− 1

κ
), (12)

where c1 is some real positive constant.
It is easy to verify that

q−h̄(n) ≤ q
− 1

κ ln q
(lnn−ln lnn)+1 = q(lnn)

1
κ q

− 1
κ ln q

lnn. (13)

Thus using (13)

⌈n

2
⌉

∑

m=h̄(n)

qmqn−2m ≤ qn
⌈n

2
⌉

∑

m=h̄(n)

q−m ≤ qn−h̄(n)

1− q−1
≤ q(lnn)

1
κ q

n− 1
κ ln q

lnn

1− q−1
. (14)
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Obviously h̄(n) ≤ lnn
κ ln q

. Hence taking κ = 2, we get from (10), (12), and (14)
that

⌈n

2
⌉

∑

m=1

qmµ(n− 2m,m) ≤ c1h̄(n)cq
n− 1

2 ln q
lnn +

q(lnn)
1
2 q

n− 1
2 ln q

lnn

1− q−1

≤ q
n− 1

2 ln q
lnn

(

c1c
lnn

2 ln q
+

q(lnn)
1
2

1− q−1

)

≤ q
n− 1

2 ln q
lnn(c2 lnn+ c3(lnn)

1
2 ),

(15)

for some constants c2, c3 ∈ R
+. Since

√
n = q

1
2 ln q

lnn the proposition follows
from (15).

We show an upper bound for D(n).

Theorem 2.9. There is a constant c ∈ R
+ such that

D(n) ≤ c lnn
qn√
n
, where n > 1.

Proof. We have that

D(n) =

n−1
∑

m=1

D(n,m) =

⌈n

2
⌉

∑

m=1

D(n,m) +

n−1
∑

m=⌈n

2
⌉+1

D(n,m). (16)

From Lemma 2.5 and (16) we get that

D(n) ≤
⌈n

2
⌉

∑

m=1

qmµ(n− 2m,m) +
n−1
∑

m=⌈n

2
⌉+1

q⌈
n

2
⌉. (17)

Realize that
n−1
∑

m=⌈n

2
⌉+1

q⌈
n

2
⌉ ≤ n

2
q⌈

n

2
⌉

and

lim
n→∞

nq
n

2

lnnqn√
n

= 0.
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Then it follows that from (17), and Proposition 2.8 that there are constants
c2, c3 ∈ R

+ such that

c2

⌈n

2
⌉

∑

m=1

qmµ(n− 2m,m) ≥
n−1
∑

m=⌈n

2
⌉+1

q⌈
n

2
⌉ and

D(n) ≤ c3

⌈n

2
⌉

∑

m=1

qmµ(n− 2m,m). (18)

The theorem follows from (18), and Proposition 2.8

Remark 2.10. Note that the some of the constants c, c1, c2, c3, that we used
in our results and in particular in Theorem 2.9, depend on q.
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