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Abstract

We present the first o(n)-space polynomial-time algorithm for computing the length of a longest
common subsequence. Given two strings of length n, the algorithm runs in O(n3) time with

O
(
n log1.5 n

2
√
logn

)
bits of space.
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1. Introduction

A subsequence of a string is a string that can be obtained from the original string by
removing some elements. If two strings X and Y contain a string Z as their subsequences,
then Z is a common subsequence of X and Y . For example, “tokyo” and “kyoto” have “to”
and “oo” as common subsequences but not “too.” The problem of finding (the length of) a
longest common subsequence is a classic problem in computer science. The applications of the
problem range over many fields (see [10, 11, 3, 5] and the references therein). Given two strings
of length n, the problem can be solved in O(n2) time with O(n log n) bits of space using a
dynamic programming approach [14, 9]. On the other hand, it is known that under the strong
exponential time hypothesis, there is no O(n2−ε)-time algorithm for any ε > 0 [4, 1, 6, 2]. Given
this lower bound, subquadratic-time approximation algorithms have been proposed (see [8, 12]
and the references therein). Recently, Cheng et al. [7] presented an approximation algorithm of
factor 1− o(1) that runs in polynomial time with polylogarithmic space.

In this paper, we seek for exact (i.e., non-approximation) polynomial-time algorithms with
small space complexity. To the best of authors’ knowledge, there was no known polynomial-
time algorithm that runs with o(n) bits of space. A natural (but probably quite challenging)
question in this direction would be whether there is a polynomial-time algorithm that runs with
truly sublinear space of O(n1−ε) bits for some ε > 0 [7]. We make a step toward this goal by
giving a polynomial-time algorithm that runs with slightly sublinear space. More precisely, the
result of this paper is as follows.

Theorem 1.1. Given two strings of length n, the length of a longest common subsequence can

be computed in O(n3) time with O
(
n log1.5 n

2
√
logn

)
bits of space.
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2. The algorithm

We use the standard computational model in the literature of space-efficient algorithms.
That is, we take the RAM model with the following restrictions:

• the input is in a read-only memory;

• the output must be produced on a write-only memory;

• an additional memory that is readable and writable can be used.

We measure space consumption in the number of bits used within the additional memory.
Throughout the paper, we fix the base of logarithms to 2. That is, log x means log2 x.

For nonnegative integers m and n, we denote by Γm,n the directed acyclic graph such that

V (Γm,n) = {vi,j | 0 ≤ i ≤ m, 0 ≤ j ≤ n},
E(Γm,n) = {(vi,j , vi+1,j) | 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n} ∪

{(vi,j , vi,j+1) | 0 ≤ i ≤ m, 0 ≤ j ≤ n− 1} ∪
{(vi,j , vi+1,j+1) | 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1}.

Namely, Γm,n is the (m+ 1)× (n+ 1) grid with the main diagonal edge in each square, where
each edge is oriented from left to right and from top to bottom. See Figure 1.
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Figure 1: The directed acyclic graph Γm,n with m = 3 and n = 4.

Let S = s1s2 · · · sm and T = t1t2 · · · tn be strings of length m and n, respectively. By
Γ(S, T ), we denote the graph Γm,n with the edge weights defined as follows: the horizontal
and vertical edges have weight 0; the diagonal edge (vi,j , vi+1,j+1) has weight 1 if si+1 = tj+1;
otherwise it has weight 0. It is easy to see that every v0,0–v|S|,|T | path is monotone in both x
and y directions and the positive weight edges in the path represent a common subsequence
of S and T . Moreover, we can show the following fact, which is used in most of the existing
algorithms.

Observation 2.1 (Folklore). The length of a longest common subsequence of S and T is
equal to the longest path length from v0,0 to v|S|,|T | in Γ(S, T ).

As mentioned in the introduction, the length of a longest common subsequence of S and T , or
equivalently the longest path length from v0,0 to v|S|,|T | in Γ(S, T ), can be computed in O(mn)
time with O(m log n) bits of space, where m < n. We describe the idea of this algorithm in a
slightly generalized setting.

We denote by Γw
m,n the graph Γm,n with an edge weighting w, where each edge weight can

be represented in O(log n) bits. Let λw(vi,j , vi′,j′) be the longest path length from vi,j to vi′,j′
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in Γw
m,n. Then λw can be expressed in a recursive way as follows:

λw(v0,0, vi,j) =



0 i = j = 0,

λw(v0,0, v0,j−1) + w(v0,j−1, v0,j) i = 0, j ≥ 1,

λw(v0,0, vi−1,0) + w(vi−1,0, vi,0) i ≥ 1, j = 0,

max


λw(v0,0, vi−1,j) + w(vi−1,j , vi,j),

λw(v0,0, vi,j−1) + w(vi,j−1, vi,j),

λw(v0,0, vi−1,j−1) + w(vi−1,j−1, vi,j)

 i ≥ 1, j ≥ 1.

Clearly, we can compute λw(v0,0, vm,n) in O(mn) time. While a naive implementation takes
O(mn log n) bits of space, by a simple trick of computing the entries for vi,j in an increasing
order of j and storing only two recent rows (that is, the rows j − 1 and j), we can reduce the
space consumption to O(m log n) bits. We call this recursive method the standard algorithm.

We now explain the high-level idea of our algorithm. Observe that the problem of deciding
whether λw(v0,0, vm,n) ≥ ` is in NL since we can nondeterministically find the next vertex in a
longest path in logspace and we can forget the visited vertices as the graph is acyclic. Hence,
Savitch’s theorem [13] implies that the problem can be solved deterministically with O(log2 n)
bits of space but in quasipolynomial (nO(logn)) time. Such an algorithm recursively find the
center of a longest path, and thus has a search tree of maximum degree n and depth log n. Our
algorithm can be seen as a modification of this algorithm. Instead of guessing a single vertex
included in a longest path, we guess a set of vertices that a longest path intersects. The search
tree of our algorithm has maximum degree O(2

√
logn) and depth O(

√
log n). This gives us a

sublinear-space polynomial-time algorithm.
We now prove the main lemma based on the idea described above, which immediately implies

Theorem 1.1.

Lemma 2.2. For an edge weighting w : E(Γm,n)→ Z∪{−∞} given as a constant time oracle,
where each edge weight can be represented in O(log n) bits, the longest path length from v0,0 to

vm,n in Γw
m,n can be computed in O(n3) time using O

(
n log1.5 n

2
√
logn

)
bits of space.

Proof. Without loss of generality assume that m ≤ n. We also assume that m is a power of 2
by adding, if necessary, some dummy columns and rows and set the weights of the new edges
to −∞. The numbers of columns and rows are doubled in the worst case. Note that we do
not have to construct the dummy columns and rows explicitly. We just need to remember the
original m and n with O(log n) bits of additional space consumption.

Let B = d(n + 1)/2
√
logne. We compute the length in a recursive way. In the recursive

algorithm described below, m and n may get smaller in each recursive call, while we keep B the
same. The algorithm solves a slightly generalized problem, where we compute the longest path
lengths from v0,0 to the vertices in T := {vm,j | (d(n+ 1)/Be − 1)B ≤ j ≤ n}.

The algorithm. Our algorithm solves the problem in a recursive way. (See Algorithm 1 for the
outline.) If min{m,n} ≤ 2B, then we solve the problem with the standard algorithm.

Assume that m,n > 2B. Let Vh = {vm/2,j | hB ≤ j ≤ min{(h + 1)B − 1, n}} for 0 ≤
h ≤ d(n+ 1)/Be − 1. Observe that for every u ∈ T , each v0,0–u path intersects Vh for some h.
(Note that such h is not necessarily unique.) Such a path first goes through the upper-left part
induced by {vi,j | 0 ≤ i ≤ m/2, 0 ≤ j ≤ min{(h+ 1)B − 1, n}}, reaches Vh, then goes through
the bottom-right part induced by {vi,j | m/2 ≤ i ≤ m, hB ≤ j ≤ n}, and finally reaches u. See
Figure 2.
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m/2
V0 Vh Vd(n+1)/Be−1
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Figure 2: Every path intersecting Vh goes through upper-left and bottom-right regions of the grid.

Based on the observation above, we divide the problem into d(n+1)/Be pairs of subproblems
as follows. Let h ∈ {0, . . . , d(n + 1)/Be − 1}. We first find the longest path lengths from v0,0
to the vertices of Vh in Γw

m,n. We find the lengths by recursively applying the algorithm to

Γw′

m/2,min{(h+1)B−1,n}, where w′ is obtained from w by restricting it to Γm/2,min{(h+1)B−1,n}. The

recursive call returns the longest path lengths `′ from v0,0 to Vh, where `′ is a |Vh|-dimensional
vector indexed by the second coordinates hB, hB + 1, . . . ,min{(h+ 1)B − 1, n} of the vertices.

Let w′′ be the edge weighting of Γm/2,n−hB obtained from w and `′ as follows:

w′′(v0,j , v0,j+1) = `′(j + hB + 1)− `′(j + hB) for 0 ≤ j ≤ |Vh| − 2,

w′′(vi,j , vi′,j′) = w(vi+m/2,j+hB, vi′+m/2,j′+hB) otherwise.

Namely, w′′ is obtained from w by first restricting it into its bottom-right part starting at Vh,
and then changing the weight of the edges in Vh with respect to the longest path lengths from
v0,0. We now recursively apply the algorithm to Γw′′

m/2,n−hB for computing `′′, the longest path

lengths from Vh to T under w′′.
Now we set `(j) = max0≤h≤d(n+1)/Be−1 `

′(hB) + `′′(j−hB) for (d(n+ 1)/Be−1)B ≤ j ≤ n.
The correctness of this final step follows from the claim below.

Claim 2.3. The maximum length of a path P from v0,0 to vm,j ∈ T passing through Vh is
`′(hB) + `′′(j − hB).

Proof (of Claim 2.3). Let k be the maximum index such that vm/2,k ∈ Vh is included in P .
Then, the length of P is λw(v0,0, vm/2,k) + λw(vm/2,k, vm,j).

Let Q be the subpath of P from vm/2,k to vm,j . The length of Q is λw(vm/2,k, vm,j). Let

P ′′ be the v0,0–vm/2,j−hB path in Γw′′

m/2,n−hB that first takes the unique v0,0–v0,k−hB path of

length
∑

0≤p≤k−hB−1(`
′(p + hB + 1) − `′(p + hB)) = `′(k) − `′(hB) and then follows Q by

shifting each vertex coordinate by −(m/2, hB). Since `′(k) = λw(v0,0, vm/2,k), the length of P ′′

is λw(v0,0, vm/2,k) + λw(vm/2,k, vm,j)− `′(hB). Since P ′′ is a v0,0–vm/2,j−hB path in Γw′′

m/2,n−hB,
it holds that

`′′(j − hB) ≥ λw(v0,0, vm/2,k) + λw(vm/2,k, vm,j)− `′(hB). (1)

Let Q′′ be a v0,0–vm/2,j−hB path of length `′′(j − hB) in Γw′′

m/2,n−hB. Let q be the maximum

index such that q ≤ |Vh| − 1 and v0,q is included in Q′′. The unique v0,0–v0,q path in Γw′′

m/2,n−hB
has length

∑
0≤p≤q−1(`

′(p+hB+1)−`′(p+hB)) = `′(q+hB)−`′(hB). From the construction
of w′′, the rest of P ′′ starting at v0,q has length λw′′(v0,q, vm/2,j−hB) = λw(vm/2,q+hB, vm,j).
Since `′(q + hB) = λw(v0,0, vm/2,q+hB),

`′′(j − hB) = λw(v0,0, vm/2,q+hB) + λw(vm/2,q+hB, vm,j)− `′(hB)

≤ λw(v0,0, vm/2,k) + λw(vm/2,k, vm,j)− `′(hB). (2)

Equations (1) and (2) imply that `′′(j − hB) + `′(hB) = λw(v0,0, vm/2,k) + λw(vm/2,k, vm,j). �
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Algorithm 1 The algorithm given in the proof of Lemma 2.2.

1: procedure LongestPathLength(Γw
m,n, B)

2: if min{m,n} ≤ 2B then
3: Use the standard algorithm and return the longest path lengths.
4: else
5: ` := 0 . λw(v0,0, vm,j) for (d(n+ 1)/Be − 1)B ≤ j ≤ n
6: for h ∈ {0, . . . , d(n+ 1)/Be − 1} do
7: `′ := LongestPathLength(Γw′

m/2,min{(h+1)B−1,n}, B)

8: Compute w′′ from w and `′.
9: `′′ := LongestPathLength(Γw′′

m/2,n−hB, B)

10: for j ∈ {(d(n+ 1)/Be − 1)B, . . . , n} do
11: `(j) := max{`(j), `′(hB) + `′′(j − hB)}
12: return `

Space consumption. In the recursion tree of Algorithm 1, each inner node stores O(B log n)
bits for `, `′, and `′′. The weight functions w′ and w′′ are also stored at each inner node and
provided as constant time oracles for the children in the recursive tree. Observe that w′ can be
represented by w with a constant number of indices, and w′′ can be represented by w with a
constant number of indices and `′. In total, an inner node stores O(B log n) bits of information.
Each leaf node executes the standard algorithm with min{m,n} ≤ 2B, and thus only needs
O(B log n) bits. Since the depth of the recursion tree is dlog(m/(2B))e <

√
log n, the total

space consumption is O(B log n ·
√

log n) = O(n log1.5 n/2
√
logn).

Running time. We estimate an upper bound L(m) of the number of leaves in the recursion tree,
where m+ 1 is the number of rows. If m ≤ 2B, then L(m) ≤ 1. Assume that m > 2B. Then

L(m) ≤ 2d(n+ 1)/Be · L(m/2) < (2(2
√
logn + 1))

√
logn

since the algorithm invokes at most 2d(n+1)/Be ≤ 2
√
logn+1 recursive calls with the parameter

m/2 and the depth of recursion is at most dlog(m/(2B))e <
√

log n. Since (2
√
logn + 1)

√
logn ≤

e ·(2
√
logn)

√
logn ≤ en, it holds that L(m) ∈ O(2

√
logn ·n). Since each inner node of the recursion

tree has two or more children, the number of all nodes in the recursion tree is also O(2
√
logn ·n).

Each leaf node takes O(Bn) time, and each inner node takes O(n) time excluding the time
spent by its children. Therefore, the total running time is O(Bn · 2

√
logn · n) = O(n3). �

3. Concluding Remarks

We have presented an algorithm for computing the length of a longest common subsequence

of two string of length n in O(n3) time using O
(
n log1.5 n

2
√
logn

)
bits of space. The challenge for finding

a polynomial-time algorithm with O(n1−ε) space for some constant ε > 0 remains unsettled.
Our algorithm in Lemma 2.2 is designed for a slightly general problem on the edge weighted

grid-like graph Γw
m,n. The generality allows us to compute some other similarity measures of

strings as well. For example, the edit distance (or the Levenshtein distance) between two strings
is the minimum number of operations (insertions, deletions, or substitutions) required to make
the strings the same. We can formulate this problem as the shortest path problem on Γw

m,n even
in a general setting where each operation has different cost possibly depending on the symbols
involved. Since the shortest path problem on Γw

m,n is equivalent to the longest path problem on
Γ−wm,n, Lemma 2.2 implies that we can compute the (general) edit distance in the same time and
space complexity.
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[6] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In FOCS 2015, pages 79–97, 2015. doi:10.1109/

FOCS.2015.15.

[7] Kuan Cheng, Zhengzhong Jin, Xin Li, and Yu Zheng. Space efficient deterministic approx-
imation of string measures. CoRR, abs/2002.08498, 2020. arXiv:2002.08498.

[8] MohammadTaghi Hajiaghayi, Masoud Seddighin, Saeed Seddighin, and Xiaorui Sun. Ap-
proximating LCS in linear time: Beating the

√
n barrier. In SODA 2019, pages 1181–1200,

2019. doi:10.1137/1.9781611975482.72.

[9] Daniel S. Hirschberg. A linear space algorithm for computing maximal common subse-
quences. Commun. ACM, 18(6):341–343, 1975. doi:10.1145/360825.360861.

[10] Daniel S. Hirschberg. Recent results on the complexity of common subsequence problems.
In Time Warps, String Edits, and Macromolecules, pages 323–328. 1983.
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