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Abstract

The Bubble-sort graph BSn, n > 2, is a Cayley graph over the symmetric group Symn generated by transpositions
from the set {(12), (23), . . . , (n − 1n)}. It is a bipartite graph containing all even cycles of length `, where 4 6 ` 6 n!.
We give an explicit combinatorial characterization of all its 4- and 6-cycles. Based on this characterization, we define
generalized prisms inBSn, n > 5, and present a new approach to construct a Hamiltonian cycle based on these generalized
prisms.
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1. Introduction

We start by introducing a few definitions. The Bubble-
sort graph BSn = Cay(Symn,B), n > 2, is a Cayley
graph over the symmetric group Symn of permutations
π = [π1π2 . . . πn], where πi = π(i), 1 6 i 6 n, with
the generating set B = {bi ∈ Symn : 1 6 i 6 n −
1} of all bubble-sort transpositions bi swapping the i-th
and (i + 1)-st elements of a permutation π when mul-
tiplied on the right, i.e. [π1π2 . . . πi−1πiπi+1 . . . πn]bi =
[π1π2 . . . πi−1πi+1πi . . . πn]. It is a connected bipartite (n−
1)–regular graph of order n! and diameter diam(BSn) =(
n
2

)
. Since this graph is bipartite it does not contain odd

cycles but it contains all even l–cycles where l = 4, . . . , n! [1].
The hamiltonicity of this graph also follows from results
in [2, 3, 4].

The graph BSn, n > 3, is constructed from n copies
BSn−1(i), 1 6 i 6 n, with the vertex set {[π1π2 . . . πn−1i]},
and vertices between copies are connected with external
edges from the set {{[π1π2 . . . πn−1i], [π1π2 . . . iπn−1]}, 1 6
i 6 n}, where πk ∈ {1, . . . , n}\{i}, 1 6 k 6 n − 1. For
example, BS3 is isomorphic to a 6–cycle, and BS4 is con-
structed from 4 copies of BS3

∼= C6 (see Figure 1).
The generating set B plays an important role in com-

puter science for generating all permutations [2, 5, 4], in
the theory of polytopes where BSn is considered as 1-
skeleton of the Permutahedron [6], in knot theory [7] and
the theory of reflection groups and Coxeter groups [8, 9,
10]. It is known that all transpositions bi = (i i + 1),
1 6 i 6 n− 1, from the set B can be considered as (n− 1)
braids on n strands forming the braid group Bn. There is
a surjective group homomorphism Bn → Symn from the
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braid group into the symmetric group so that the Cox-
eter presentation of the symmetric group is given by the
following

(
n
2

)
braid relations [11]:

bibi+1bi = bi+1bibi+1, 1 6 i 6 n− 2; (1)
bjbi = bibj , 1 6 i < j − 1 6 n− 2. (2)

It is known (see, for example §1.9 in [8] or [9]) that
if any permutation π is presented by two minimal length
expressions u and v in terms of generating elements from
the set B, then u and v can be transformed to each other
using only the braid relations (1) and (2). However, these
relations are not the only set and not the smallest set for
generating Bn.

Let us note that the relations (1) and (2) form a 6-cycle
and a 4-cycle in the Bubble-sort graph BSn for any n > 3
and for any n > 4, correspondingly. As it follows below,
we use a cycle description presented in [12] to characterize
small cycles in the Pancake graph, and then applied in the
Star graph [13].

Two simple paths in a graph are called non-intersecting,
if they have no common vertices. A sequence of transposi-
tions C` = bi0 . . . bi`−1

, where 1 6 ij 6 n−1, and ij 6= ij+1

for any 0 6 j 6 ` − 1, such that π bi0 . . . bi`−1
= π, where

π ∈ Symn, is said to be a form of a cycle C` of length
` in the Bubble-sort graph. A cycle C` of length ` is
called an `–cycle. It is evident that any `–cycle can be
presented by 2 ` forms (not necessarily different) with re-
spect to a vertex and a direction. The canonical form
C` of an `–cycle is called a form with a lexicographically
maximal sequence of indices i0 . . . i`−1. For cycles of a
form C` = babb · · · babb, where ` = 2 k, and babb appears
k times, we write C` = (babb)

k. In particular, BS3
∼= C6

with the following canonical form:

C6 = b2b1b2b1b2b1 = (b2 b1)3. (3)
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Figure 1: Examples of the Bubble-Sort graphs (a) BS3 and (b) BS4

This representation admits the braid relation (1) for
n = 3. In the case when n = 4, for 6-cycles there are
two canonical forms C6 = bi+1bibi+1bibi+1bi = (bi+1 bi)

3,
where i = 1, 2, meeting the same braid relations (1). More-
over, for 4-cycles there is the canonical form C4 = b3b1b3b1
= (b3 b1)2 which admits the braid relation (2). It is evi-
dent from the Figure 1, (b), that the 4- and 6-cycles have
no other canonical representation that is different from
the braid relations in BS4. The natural questions arising
here is about existence of canonical forms of small cycles
not admitting the braid relations in the Bubble-sort graph
BSn for any n > 4.

In this paper we give complete combinatorial charac-
terization of 4- and 6-cycles, which is presented in the fol-
lowing two theorems.

Theorem 1. Each of vertices of BSn, n > 4, belongs to
(n−2)(n−3)/2 distinct 4–cycles of the following canonical
form:

C4 = (bj bi)
2, 1 6 i 6 n− 3, i+ 2 6 j 6 n− 1. (4)

In total, there are (n−2)(n−3)n!
8 distinct 4–cycles in BSn.

Instead of explicitly writing two index conditions as in
Equation (4), for the sake of simplicity we use the com-
pound version, given as 1 6 i 6 j − 2 6 n− 3.

Theorem 2. Each of vertices of BSn, n > 3, belongs to
(n− 2) distinct 6–cycles of the canonical form:

C1
6 = (bi bi+1)3, 1 6 i 6 n− 2, n > 3; (5)

when n > 5, each vertex belongs to 3(n−2)(n−3) distinct

6–cycles of the canonical form:

C2
6 = bj bi+1 bi bj bi bi+1, 1 6 i 6 j − 3 6 n− 4, or

1 6 j 6 i− 2 6 n− 4; (6)

when n > 6, each vertex belongs to (n−3)(n−4)(n−5)
2 distinct

6–cycles of the canonical form:

C3
6 = (bk bj bi)

2, 1 6 i 6 j − 2 6 k − 4 6 n− 5; (7)

C4
6 = bk bj bi bk bi bj , 1 6 i 6 j − 2 6 k− 4 6 n− 5; (8)

C5
6 = bk bj bk bi bj bi, 1 6 i 6 j − 2 6 k− 4 6 n− 5; (9)

C6
6 = bk bi bk bj bi bj , 1 6 i 6 j−2 6 k−4 6 n−5. (10)

In total, there are (2n3 − 21n2 + 80n− 104)n!
6 distinct 6–

cycles in BSn.

Hamiltonian cycles are one of the main objects of study
in graph theory, and without doubt they also have numer-
ous applications in various fields of science. The question
of existence is as well important as the proposal of dif-
ferent constructions of these cycles, which is related to
finding new Gray codes in combinatorial graphs [14] or
various embeddings [15]. In this paper, we propose a new
algorithm for constructing the Hamiltonian cycle, which is
based on a maximal cover of the graph with generalized
prisms. For any graph H, the generalized prism, denoted
as 2-H, is defined as the Cartesian product H ×K2 [16].
The maximal cover of a graph G = (V,E) by subgraphs
H ⊂ G is a vertex-disjoint embedding of a collection of
H1, H2, . . . ,Hk, where Hi

∼= H for each i, such that each
vertex v ∈ V belongs to some Hi. The Hamiltonian cy-
cle based on a maximal cover H1, H2, . . . ,Hk is the cycle
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that is formed by finding appropriate Hamiltonian paths in
each copy of Hi and fastening them together by the edges
between these subgraphs to form the closed Hamiltonian
cycle in the original graph. Similar idea was successfully
used to construct Hamiltonian cycles in vertex-transitive
graphs (see e.g. [14], [17], [18]). Our result is presented in
the following theorem.

Theorem 3. In graph BSn, n > 5, there exists a Hamil-
tonian cycle based on the maximal cover by generalized
prisms 2-BSn−2.

Although we prove the existence of the cycle, the proof
is constructive and the construction suggests there are
multiple Hamiltonian cycles of the presented type.

In the literature we could find three proposed Hamilto-
nian cycle constructions in the Bubble-sort graph. The fa-
mous Steinhaus-Johnson-Trotter algorithm [2, 4] produces
a Hamiltonian cycle, which is merely based on the permu-
tation structure, rather than the structure of the graph,
and it is different from our algorithm. T. Manneville and
V. Pilaud in [19] proposed a similar method of construct-
ing a Hamiltonian cycle in a general family of 1-skeletons
of graph associahedra. However their method, in simple
words, was based on the hierarchical structure, thus using
bn−1-edges to connect the chunks of a Hamiltonian cycle
in the copies of BSn−1. Another construction that also
utilizes the fastening method was proposed in [20]. The
authors used a lexicographical ordering of permutations
in BSn to obtain subgraphs isomorphic to BSn−1 and by
connecting them through 4-cycles also get a Hamiltonian
cycle. All the proposed methods are different from our
algorithm and we provide the detailed explanation using
graph-theoretic language, making it accessible to a wider
community.

The rest of the paper is structured as follows. In the
Section 2 we present the proof of Theorems 1 and 2 and
in the Section 3 we present the details of the Hamiltonian
cycle construction in the case of general n and the proof
of Theorem 3.

2. Characterization of small cycles

The general idea of the proofs is based on consider-
ing two antipodal vertices π and τ of the 2`–cycle, where
` = 4, 6 and finding two non-intersecting `–paths between
them (see Figure 2). For any positive integer d 6 n − 2,
the element πi of a permutation π ∈ Symn, where 1 6 i 6
n−d−1, is called to be shifted d steps to the right from its
original position, if τi+d = πi. This is achieved by applying
the sequence of transpositions (bi+1 bi+2 . . . bi+d).

In case of each `, we subdivide the proof into cases,
depending on the number of shifted elements of π and
the distance they are shifted along the (π, τ)-path. It is
obvious that along the (τ, π)-path the same elements must
be shifted back to the left to their original positions, and
therefore we only consider shifting to the right. Since we

bc

bc bc

bc

bcbc

π τ

(π, τ)-path

(τ, π)-path

bi1

bi2
bi3

bj1
bj2

bj3

Figure 2: Example of (π, τ)- and (τ, π)-paths in a 6–cycle.

consider cycles of small length, we evade looking into more
complicated shifts along the paths.

We call two transpositions bi and bj independent, if
i 6= j−1, j+1. Otherwise the transpositions are called de-
pendent. The main properties of such transpositions used
in the proofs can be formulated as follows.

Proposition 1. Let π and τ be the vertices of the Bubble-
sort graph BSn, n > 3, and let the (π, τ)–path of length
d, where d 6 n − 2, is given by a sequence of successively
dependent transpositions then there is no non-intersecting
(τ, π)-path of length d.

Proof. For any j, where 1 6 j 6 n − d, the sequence of
transpositions (bj bj+1 . . . bj+d−1) acts on π as shifting of
the element j to position j+d. Since this is the only moved
element, the backward (τ, π)-path of the same length in-
evitably has all the transpositions in reverse order. Hence,
the path is unique.

2.1. Proof of Theorem 1
We present now the complete description of 4-cycles.

Proof. Since the graph is vertex-transitive, let π = [12 . . . n].
For any two antipodal vertices π and τ of a 4-cycle, the
length of the (π, τ)–path equals two. We prove the state-
ment by considering all possible cases of the shifted ele-
ments of π along the (π, τ)–path and describing the set
of non-intersecting (τ, π)–paths. Obviously, the number of
shifted elements should not be greater than two.

Shift of the one element is equivalent to having only two
dependent transpositions on the (π, τ)–path and by Propo-
sition 1 such a path is unique. If two elements are shifted,
then (π, τ)–path consists of two independent transposi-
tions bi bj , where 1 6 i 6 n−3 and i+3 6 j 6 n−1. Since
transpositions are independent, shuffling those will result
in another path, which is a non-intersecting (τ, π)–path
defined as bj bi.

Altogether the canonical form of the only possible 4-
cycles is given in (4). It is straightforward to obtain the
number of distinct cycles given by this family of forms.
The number of possible pairs of indices is (n − 2)(n −
3)/2 and each form describes one distinct 4-cycle pass-
ing through a given vertex, thus in total there are (n −
2)(n − 3)/2 distinct 4-cycles passing through a given ver-
tex and the total number of distinct 4-cycles in BSn is
(n−2)(n−3)n!

8 . This completes the proof.
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Figure 3: Illustration for the order of two shifted elements. Orders I) and III) produce the same form; cycle in order II) is impossible.

2.2. Proof of Theorem 2
We present now the complete description of 6-cycles.

Proof. Consider two antipodal vertices π = [12 . . . n] and
τ of a 6-cycle. The length of the (π, τ)–path is equal to
three. We prove the statement by considering all possible
cases of the shifted elements of π along the (π, τ)–path and
describing the set of non-intersecting (τ, π)–paths. The
number of such elements should not be greater than three.
This turns to considering the following cases.

Case 1: one shifted element. Suppose the element
i is shifted to the position i+ 3. In order to do so, the se-
quence bi bi+1 bi+2 should be applied to π, which consists
of successively dependent transpositions and by Proposi-
tion 1 such (π, τ)–path is unique. Hence, no 6-cycle is
possible in this case.

Case 2: two shifted elements. Suppose the element
i is shifted to the position i + 2 and another element j is
shifted to j + 1. In order to do so, the sequence bi bi+1

and the transposition bj should be applied to π. There are
three possible orders of application (see Figure 3):

I) bi bi+1 bj ; II) bi bj bi+1; III) bj bi bi+1. (11)

There are two possibilities: either bj is independent from
bi and bi+1 or not.

If bj is independent from bi and bi+1, then in order to
shift the element i back to the initial position, we need to
apply the sequence bi bi+1 in inverse order on (τ, π)–path.
By analyzing the possible ways of this operation (see Fig-
ure 3), we find the only possible cycle form bj bi bi+1 bj bi+1 bi,
which corresponds to (6) from the statement. Since bj is
independent from bi and bi+1, then either i + 3 6 j or
j 6 i − 2. In the first case we have 1 6 i 6 n − 4 and
i+ 3 6 j 6 n− 1. Taking the double sum over both these
conditions we obtain (n− 3)(n− 4)/2. In the second case
we have 1 6 j 6 n−3 and j+2 6 i 6 n−1, which gives the
another (n−3)(n−4)/2 forms. In total, this leaves us with
exactly (n−2)(n−3) distinct forms given by (6) and due to
symmetries each form describes three distinct cycles pass-
ing through a given vertex, in total giving 3(n− 2)(n− 3)
distinct cycles.

If bj is dependent on bi or bi+1, then either j = i,
j = i + 1 or j = i − 1. Along the (τ, π)–path we must
apply the sequence bi bi+1 in the inverse order, thus for

each choice I), II) and III) of (π, τ)–path there exists a
unique description of possible (τ, π)–path. In case (π, τ)–
path is given by I), then for j = i the non-intersecting
(τ, π)–path is given as bi+1 bi bi+1, whereas j = i − 1 and
j = i + 1 are impossible. In case (π, τ)–path is given by
III), then for j = i + 1 the non-intersecting (τ, π)–path
is given as bi bi+1 bi, whereas j = i − 1 and j = i are
impossible. The case of (π, τ)–path given by II) is also
impossible. Therefore, we have the only form of a 6-cycle
given by bi+1 bi bi+1 bi bi+1 bi, which corresponds to (5) in
the statement. The number of distinct forms described
by (5) is n− 2, and each form describes one cycle passing
through a given vertex, in total giving (n − 2) distinct
cycles.

Case 3: three shifted elements. Suppose the ele-
ment i is shifted to the position i+ 1 by bi. Then we have
two other elements j and k shifted to the positions j + 1
and k + 1 by independent transpositions bj and bk corre-
spondingly. Suppose the (π, τ)-path is given by bi bj bk.
The sole restriction on the non-intersecting (τ, π)–path is
that the two incident edges to π and τ should be different.
Therefore, we have two non-intersecting (τ, π)-paths: 1)
bj bk bi and 2) bk bi bj . Further, we note there are chords
between pairs of paths (bi bj bk, bj bk bi), (bj bk bi, bk bi bj)
and (bi bj bk, bk bi bj) (see Figure 4). Thus, combining all
the non-intersecting pairs of paths, we obtain four dis-
tinct canonical forms of cycles described by (7)-(10) in the
statement. We note that these 6-cycles appear only when
n > 6.

One may see from the Figure 4 that paths form a sub-
graph of a 3-cube. Therefore any permutation of indices

bc

bc

bc

bc

bc

bc

bc

π τ

bi

bj

bk

bk
bj

bi

bi

bj
bj

bk bk

bc

bi

Figure 4: Case of three shifted elements: three possible non-
intersecting (π, τ)–paths with chords between them produce a graph
isomorphic to a 3-cube.
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Figure 5: The graph BS5 with apparent 6–prism structure marked with different colors.

i, j, k leaves us inside the same subgraph and in order to
calculate the number of distinct forms N(6) given by each
of (7)-(10) it is only necessary to calculate the number of
possible ordered triples (i, j, k), such that i 6 j−2 6 k−4.
We note that for n = 6 there is only one way to select three
independent transpositions, thus N(6) = 1. Increasing n
by one produces extra triples only by fixing the k = n− 1,

which is
n−3∑
j=3

j−2∑
i=1

1 = (n− 4)(n− 5)/2, hence the following

relation holds for n > 7:

N(n) = N(n− 1) +
(n− 4)(n− 5)

2
.

From this relation, we immediately have the number N(n)

= (n−3)(n−4)(n−5)
6 . Due to symmetries, each of the four

forms (7)-(10) describes three distinct cycles passing through
a given vertex, all in total giving a contribution of 2(n −
3)(n− 4)(n− 5) distinct cycles.

In total, the graph BSn contains

((n− 2) + 3(n− 2)(n− 3) + 2(n− 3)(n− 4)(n− 5))
n!

6

= (2n3 − 21n2 + 80n− 104)
n!

6
(12)

cycles of length 6. This completes the proof.

3. Hamiltonian cycles in BSn based on generalised
prisms

In this section we give a description of a Hamiltonian
cycle in the Bubble-sort graph BSn based on graphical

prisms. We first show the existence of such cycles in the
graph BS5. Then the algorithm is further extended to
the general case n > 5. We start the section with a few
definitions and a technical lemma.

The parity of a permutation π ∈ Symn may be de-
fined as the parity of the number of transpositions in the
canonical representation of π. Let us remind, that the
Bubble-sort graph is bipartite, since each multiplication
by a generating transposition changes parity of a permu-
tation. The graph of an n–prism, n > 3, is called the graph
of a Cartesian product Cn × K2 of the cycle of length n
and the complete graph on two vertices. A graph is called
Hamilton-connected if any two vertices of a graph are con-
nected by a Hamiltonian path. The following proposition
is well known for prisms (see e.g. [21]).

Proposition 2. The graph of n–prism is Hamilton-con-
nected if and only if n is odd.

The Hamiltonian cycle is constructed using general-
ized prisms. Remind that for any graph G the generalised
prism 2-G is defined as the Cartesian product G×K2. Let
the graph G have a maximal vertex cover by subgraphs,
isomorphic to a subgraph H ⊂ G. Then, the factor graph
G�H = (V,E) is the graph whose nodes V represent cov-
ering subgraphs and there is an edge (V1, V2) ∈ E if in
the original graph G there is an edge between some nodes
u ∈ V1 and v ∈ V2.

In the graph BSn, where n > 5, we observe the pres-
ence of generalized prisms 2-BSn−2, whose vertex set is

5
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Figure 6: a) Example of a 6-prism (or GP5); b) Schematic example of a generalised prism GP6.

given by

{[π1 . . . πn−2 i j] ∪ [π1 . . . πn−2 j i] : πk ∈ {1, . . . , n}\{i, j}} ,

for fixed i 6= j ∈ {1, . . . , n} and the edge set includes edges,
that correspond to transpositions b1, . . . , bn−3, bn−1. Fur-
ther, note that bn−1-edges only connect vertices of two
copies of BSn−2, since they permute only the last two
elements of a permutation. Let us denote further for sim-
plicity the 2-BSn−2 as GPn. On the Figure 6 we show
an example of the GP6. By hierarchical structure, it is
straightforward to show that there exists a maximal cover
of BSn by GPn, therefore there exists the factor graph
Γn = BSn�GPn

.
Let us describe the structure of the factor graph Γn.

Since, the vertex set of any GPn contains all vertices with
the last two elements fixed, then vertices of Γn can be en-
coded by unordered pairs of elements {i, j} from {1, 2, . . . , n}
and a specific prism on vertices with last elements i, j we
denote as GPn(i, j). Following the connectivity between
copies of GPn, which is given by the edges corresponding to
transposition bn−2, two prisms GPn(i1, j1) and GPn(i2, j2)
are connected iff {i1, j1} ∩ {i2, j2} = 1. Hence Γn is iso-
morphic to the Johnson graph J(n, 2), which is proven to
be Hamiltonian and even Hamilton-connected [22]. For
the sake of visual presentation we refer to Figure 5 with
an example of the covering of the graph BS5 by prisms
GP5(2, 4)

Furthermore, we note that any two factor vertices of
GPn are connected through GPn−1, meaning that for any
appropriate k all vertices of one GPn−1(k, i, j) ⊂ GPn(i, j)
on the vertices of type [. . . k i j] with fixed last elements
k, i, j are connected to the vertices of GPn−1(i, k, j) ⊂
GPn(k, j) on the vertices of type [. . . i k j] with fixed last
elements i, k, j.

3.1. Proof of Theorem 3
Proof. We use the lifting method to construct the Hamil-
tonian cycle. We showed above that the factor graph is
nice enough, thus we need to prove a certain statement
about the connectivity of GPn.

Proposition 3. In the graph of the GPn ⊂ BSn, where
n > 5, for a given vertex π and any vertex τ , such that the
parity ω(π) 6= ω(τ), there is a Hamiltonian path with end
vertices π and τ .

Proof. By definition, the prism GPn is represented as two
copies of BS1

n−2 and BS2
n−2, put one above the other

and connected by bn−1-edges between nodes of respective
copies. Since the graph BSn is Hamiltonian for any n > 3,
let us fix some Hamiltonian cycles H1

n−2 ∈ BS1
n−2 and

H2
n−2 ∈ BS2

n−2 of similar structure, i.e. such that if an
edge (π1, π2) ∈ H1

n−2, then it implies that (π1 bn−1, π2 bn−1) ∈
H2

n−2.
The graph BSn is bipartite, thus any path between two

nodes of the opposite parity has odd length and between
the nodes of the same parity the length is even. We shall
use this fact to construct the desired Hamiltonian path
between π and τ . Since the graph is vertex-transitive, let
us fix the vertex π in the copy BS1

n−2 and consider two
cases of placement of the vertex τ .

Case 1. Let τ be in the same copy BS1
n−2. Then,

denote π = πbn−1 and τ = τbn−1. The nodes π and τ
are of different parity, thus the (π, τ)-path has odd length.
Therefore, we can start the Hamiltonian path at π, then
proceed in alternating way as shown on Figure 7 until we
reach τ . Then we continue the path in the copy BS2

n−2

until we reach the direct neighbour of the vertex π in the
H2

n−2. Moving back to the BS1
n−2 and following the un-

visited part of H1
n−2 we reach the vertex τ , thus obtaining

the desired Hamiltonian path.
Case 2. Let τ be in the different copy BS2

n−2. Let
us again denote π = πbn−1 and τ = τbn−1. The nodes π
and τ are of the same parity, thus the (π, τ)-path has even
length. Therefore, we can start the Hamiltonian path at
π, then proceed along the H1

n−2 until we reach the direct
neighbour of τ as shown on Figure 7. Then we move to the
copy BS2

n−2 and continue along the path H2
n−2 backwards

(without passing through τ) until we reach the vertex π
in the H2

n−2. The distance between the direct neighbour
of π and τ is odd, since the length of the H2

n−2 is even
and the traversed segment of H1

n−2 and H2
n−2 is of odd

length, therefore we can continue in the alternating way
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Figure 7: Schematic structure of the Hamiltonian path construction in prisms from Proposition 3.

until we reach the vertex τ (see Figure 7), thus obtaining
the desired Hamiltonian path.

We now turn to the proof of the main theorem. The
Hamiltonian cycle in Γn defines the traversal sequence
GP(j1)

n → GP(j2)
n → · · · → GP(jm)

n → GP(j1)
n of gener-

alized prisms and let us construct the lifted cycle in the
original graph. Let us fix the vertex incident to the edge
between GP(j1)

n and GP(j2)
n as a starting vertex π(j1) with

parity ω. Traversing this edge will change the parity, and
the adjacent vertex τ(j2) in GP(j2)

n will have an opposite
parity ω. By Proposition 3, there is a Hamiltonian path
that ends in a vertex π(j2) with opposite parity ω which is
adjacent to τ(j3) in GP(j3)

n . Traversing to τ(j3) changes the
parity again to ω, which was the case for τ(j2). Proceeding
in this way, the parity of the starting and ending vertices
in the prisms will be different, hence when the construc-
tion arrives back to the starting prism GP(j1)

n , the ending
vertex τ(j1) will have parity ω, opposite from the parity of
π(j1). Therefore, this vertex is at the odd distance from
π(j1) and connecting them with a Hamiltonian path will
result in a Hamiltonian cycle in the original graph BSn.
This finishes the proof of the Theorem 3.
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Appendix

In the Appendix we present the table of all Hamiltonian paths between any two nodes at odd distance in the 6-prism
P6(i, k).

All possible Hamiltonian paths with end vertices (π, τ)

π bi−1

[bi bi−1 bi bi−1 bk bi−1 bi bi−1 bi bi−1 bk],
[bi bi−1 bi bk bi bi−1 bi bi−1 bi bk bi],
[bi bi−1 bk bi−1 bi bi−1 bi bi−1 bk bi−1 bi]

[bi bk bi bi−1 bi bi−1 bi bk bi bi−1 bi],
[bk bi−1 bi bi−1 bi bi−1 bk bi−1 bi bi−1 bi],
[bk bi bk bi−1 bk bi bk bi−1 bk bi bk]

π bi

[bi−1 bi bi−1 bi bk bi bi−1 bi bi−1 bi bk],
[bi−1 bi bi−1 bk bi−1 bi bi−1 bi bi−1 bk bi−1],
[bi−1 bi bk bi bi−1 bi bi−1 bi bk bi bi−1],

[bi−1 bk bi−1 bi bi−1 bi bi−1 bk bi−1 bi bi−1],
[bk bi−1 bk bi bk bi−1 bk bi bk bi−1 bk],
[bk bi bi−1 bi bi−1 bi bk bi bi−1 bi bi−1]

π bk
[bi−1 bi bi−1 bi bi−1 bk bi−1 bi bi−1 bi bi−1],
[bi−1 bk bi bk bi−1 bk bi bk bi−1 bk bi],

[bi bi−1 bi bi−1 bi bk bi bi−1 bi bi−1 bi],
[bi bk bi−1 bk bi bk bi−1 bk bi bk bi−1]

π ·
bi−1

bi bi−1

[bi−1 bi bk bi bi−1 bi bk bi−1 bk bi bk],
[bi−1 bk bi−1 bi bk bi−1 bk bi bi−1 bk bi−1],
[bi bi−1 bk bi−1 bi bi−1 bk bi bk bi−1 bk],

[bi bk bi bi−1 bk bi bk bi−1 bi bk bi],
[bk bi−1 bk bi bk bi−1 bi bi−1 bk bi−1 bi],
[bk bi bk bi−1 bk bi bi−1 bi bk bi bi−1]

π ·
bi−1

bi bk

[bi−1 bi bi−1 bk bi bk bi−1 bk bi bi−1 bi],
[bi−1 bk bi−1 bi bk bi−1 bk bi bk bi−1 bk],
[bi bi−1 bi bi−1 bi bk bi−1 bi bi−1 bi bi−1],
[bi bi−1 bi bk bi bi−1 bi bi−1 bk bi bk],

[bi bi−1 bk bi−1 bi bi−1 bk bi bi−1 bk bi−1],
[bi bk bi bi−1 bk bi bi−1 bi bk bi bi−1],
[bk bi−1 bk bi bi−1 bi bi−1 bk bi−1 bi bi−1],
[bk bi bk bi−1 bk bi bk bi−1 bi bk bi]

π · bi
bi−1 bk

[bi−1 bi bi−1 bi bi−1 bk bi bi−1 bi bi−1 bi],
[bi−1 bi bi−1 bk bi−1 bi bi−1 bi bk bi−1 bk],
[bi−1 bi bk bi bi−1 bi bk bi−1 bi bk bi],
[bi−1 bk bi−1 bi bk bi−1 bi bi−1 bk bi−1 bi],

[bi bi−1 bi bk bi−1 bk bi bk bi−1 bi bi−1],
[bi bk bi bi−1 bk bi bk bi−1 bk bi bk],
[bk bi−1 bk bi bk bi−1 bk bi bi−1 bk bi−1],
[bk bi bk bi−1 bi bi−1 bi bk bi bi−1 bi]

Table 1: The list of Hamiltonian paths from the source node π in the 6-prism P6(i, k) to any possible node with the odd distance.
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