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Abstract

We consider the problem of counting the number of vertices reachable from each vertex
in a digraph G, which is equal to computing all the out-degrees of the transitive closure
of G. The current (theoretically) fastest algorithms run in quadratic time; however, Borassi
has shown that this problem is not solvable in truly subquadratic time unless the Strong
Exponential Time Hypothesis fails [Inf. Process. Lett., 116(10):628–630, 2016]. In this paper,
we present an O( f 3n)-time exact algorithm, where n is the number of vertices in G and
f is the feedback edge number of G. Our algorithm thus runs in truly subquadratic time
for digraphs of f = O(n 1

3−ε) for any ε > 0, i.e., the number of edges is n plus O(n 1
3−ε),

and is fully polynomial fixed parameter tractable, the notion of which was first introduced by
Fomin, Lokshtanov, Pilipczuk, Saurabh, and Wrochna [ACM Trans. Algorithms, 14(3):34:1–
34:45, 2018]. We also show that the same result holds for vertex-weighted digraphs, where the
task is to compute the total weights of vertices reachable from each vertex.

1 Introduction

Consider the following problem concerning reachability on graphs. Given a digraph G, count
the number of vertices reachable from each vertex. This problem is known by the name of
Descendant Counting [Coh97], and it coincides with computing all the out-degrees of the
transitive closure of G. Computation of the size of the transitive closure has several applications,
including query optimization [LN95, LNS90], sparse matrix multiplication [Coh98], and social
network analysis, wherein it is used as a subroutine in identifying the most influential set of
individuals in a social network [CWY09, KSNM10, OAYK14].

The current (theoretically) fastest algorithms for Descendant Counting have (at least) quadratic
time complexity: they explicitly construct the transitive closure of G in O(nm) time [Pur70,
Ebe81] by running a breadth-first search or in O

(
nm log n2/m

log2 n
+ n2

)
time [BVW08] by using a

sophisticated data structure for sparse graphs; for dense graphs, this can be done in Õ(nω)

time1 [ABPR78] through fast matrix multiplication. Here, n is the number of vertices in G, m
is the number of edges in the G, and ω < 2.3728639 [LG14] is the exponent of matrix multi-
plication. Note that Cohen’s celebrated approximation algorithm [Coh97] estimates the number

*naoto.ohsaka@gmail.com
1Õ(g) denotes O(g logc g) for some positive integer c.

1

ar
X

iv
:2

10
3.

04
59

5v
2 

 [
cs

.D
S]

  2
7 

M
ay

 2
02

1

mailto:naoto.ohsaka@gmail.com


of reachable vertices within a factor of (1± ε) with high probability and runs in O(ε−2n log n)
time, which is almost linear. Unfortunately, it has been proven by Borassi [Bor16] that any exact
algorithm that runs in truly subquadratic time, i.e., in O(n2−ε) time for any ε > 0, refutes the
Strong Exponential Time Hypothesis (SETH) [IP01]. The SETH states that for any ε > 0 there
exists some integer k ≥ 3 such that k-Satisfiability on n variables cannot be solved in O(2(1−ε)n)

time. In particular, the same result is still true for sparse acyclic digraphs (m = O(n)).
Nevertheless, in this study, we quest for truly subquadratic time as well as exact algorithms

for Descendant Counting. To circumvent the quadratic time barrier, we follow the framework
of parameterized algorithms. Given a parameter k in addition to the input size, a problem is
referred to as fixed parameter tractable (FPT) if it is solvable in g(k) · |I|O(1) time, where g is some
computable function depending only on parameter k and |I| is the input size, e.g., |I| = n + m
in our case. While FPT algorithms have been actively studied for NP-hard problems (see, e.g.,
[CFK+15]), the concept of “FPT inside P” has opened up a new exciting line of research [GMN17].

Our contribution is that we present an exact parameterized algorithm for Descendant Count-
ing that has running time O( f 3n), where n is the number of vertices in G and f is the feedback
edge number of G. The feedback edge number is the minimum number of edges, the removal of
which renders the underlying undirected graph acyclic; this parameter has been used to de-
velop parameterized algorithms for graph problems in P, e.g., Maximum Matching [MNN20],
Betweenness Centrality [BDK+18], Hyperbolicity [FKM+19], Triangle Listing [BFNN19],
and Diameter [BN19]. Hence, for “very tree-like” digraphs having f = O(n 1

3−ε) for any ε > 0,
i.e., the number of edges is bounded by m = n+O(n 1

3−ε), our algorithm runs in O(n2−3ε)—truly
subquadratic—time and thus outperforms the current fastest algorithms described above.2 On
the other hand, if it holds that f = Ω(n

1
3+ε), which would be the case for real-world networks,

the proposed algorithm requires more than O(nm) time. Furthermore, the dependence of the
time complexity on parameter f is polynomial; such an algorithm, introduced by Fomin, Loksh-
tanov, Pilipczuk, Saurabh, and Wrochna [FLS+18], is called fully polynomial FPT. We also show
that the same result holds for vertex-weighted digraphs, where the task is to compute the total
weights of vertices reachable from each vertex.

We here stress that some graph parameters do not admit truly subquadratic time, fully poly-
nomial FPT algorithms for Descendant Counting: Ogasawara [Oga18] showed that under the
SETH, a kO(1)n2−ε-time algorithm does not exist for any ε > 0, where k denotes the treewidth
of G; the same hardness applies to the case where k is the feedback vertex number of G, which is
the minimum number of vertices the removal of which renders the underlying undirected graph
acyclic, because Ogasawara used Borassi [Bor16]’s reduction which constructs a digraph whose
feedback vertex number is O(log n).

2 Preliminaries

Notations and Definitions. For a digraph G = (V, E), let V(G) and E(G) denote the vertex set
V and the edge set E of G, respectively. Throughout this paper, all the digraphs are simple; i.e.,

2Even when G is a polytree, i.e., m = n − 1, the naive algorithms show quadratic time complexity, because the
transitive closure of G can be of size O(n2). In contrast, our algorithm no longer constructs the transitive closure.
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they have no self-loops and no multi-edges. For a subset of vertices S ⊆ V(G), the subgraph
induced by S is denoted by G[S]. A digraph is said to be acyclic if it contains no directed
cycles, to be weakly connected if the underlying undirected graph is connected, and to be strongly
connected if every vertex can reach every other vertex. A polyforest is a digraph, the underlying
undirected graph of which is a forest. A path P := (v0, v1, . . . v`) is a digraph with vertex set
V(P) := {v0, v1, . . . , v`} and edge set E(P) := {(v0, v1), (v1, v2), . . . , (v`−1, v`)}, where v0, v1, . . . v`
are distinct. For a digraph G and for an edge (u, v) and a path P, we denote G + (u, v) :=
(V(G), E(G) ∪ {(u, v)}) and G + P := (V(G) ∪ V(P), E(G) ∪ E(P)). Given a vertex weighting
a : V(G) → R, we denote by av the weight for vertex v and abuse notation by writing a(S) =

∑v∈S av for vertex set S ⊆ V(G).
For a digraph G, the reachability set of vertex v, denoted RG(v), is defined as the set of vertices

reachable from v on G (including v itself), and the reachability number of vertex v is defined as
rG(v) = |RG(v)|. For a vertex weighting a, the weighted reachability number of vertex v is defined
as rG,a(v) = a(RG(v)). We formally define the descendant counting problem and its vertex-
weighted version below.

Problem 2.1 (Descendant Counting). Given a digraph G, the task is to compute the reachability
number rG(v) for each vertex v in G.

Problem 2.2 (Weighted Descendant Counting). Given a digraph G and a vertex weighting a :
V(G) → R, the task is to compute the weighted reachability number rG,a(v) for each vertex v in G. In
particular, the case where av = 1 for all v ∈ V(G) corresponds to Descendant Counting.

A feedback edge set in a digraph is a set of edges, the deletion of which renders the digraph
a polyforest. The feedback edge number is defined as the minimum size of any feedback edge set.
That is, the feedback edge number of G is equal to |E(G)| − |V(G)|+ c, where c is the number
of weakly connected components in G, which takes 1 if G is entirely weakly connected.

Remark 2.3. Our definition of a feedback edge set coincides with that for an undirected graph. For a
digraph, the feedback arc set, the deletion of which renders the digraph acyclic, is usually adopted. We
adopt the present definition, because solving Descendant Counting in truly subquadratic time for
acyclic digraphs still falsifies the SETH.

The condensation GSCC of a digraph G is defined as the digraph obtained from G by contracting
each strongly connected component. Formally, the vertices in GSCC are the strongly connected
components in G, and there exists an edge from a vertex C to another vertex C′ in GSCC if and
only if there exists an edge (u, v) ∈ E(G) such that u ∈ C, v ∈ C′. Note that the condensation is
acyclic. Let π : V(G) → V(GSCC) denote a mapping from vertices in G to vertices in GSCC; i.e.,
π(v) = C whenever v ∈ C ∈ V(GSCC). We abuse notation by writing π((u, v)) = (π(u), π(v))
for edge (u, v) and π(S) = {π(e) | e ∈ S} for set S.

Warm-up: Linear-time Algorithm for a Polyforest. Let us first consider the case where the
input graph is a polyforest T. Noting that the weighted reachability number rT,a(v) of vertex v
is the sum of the weighted reachability numbers over its out-neighbors plus av, i.e.,

rT,a(v) = av + ∑
w:(v,w)∈E(T)

rT,a(w), (1)
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Algorithm 2.1 O(n)-time algorithm for a polyforest.
Input: polyforest T and vertex weighting a.

1: find a topological ordering of V(T).
2: for all v ∈ V(T) in reverse topological order do
3: r(v)← av + ∑w:(v,w)∈E(T) r(w).

4: return r.

we are able to determine rT,a(v) in a bottom-up fashion. Algorithm 2.1 shows the precise pseu-
docode. Because the topological ordering can be found in linear time [Tar76], Algorithm 2.1 runs
in O(n) time. This linear-time algorithm is used as a subroutine, as described in the following
section.

3 Fully Polynomial FPT Algorithm for Bounded Feedback Edge Num-
ber

We now consider a general digraph of feedback edge number f . Unlike in the case of a poly-
forest, reachability numbers cannot be written as the sum of reachability numbers, because out-
neighbors’ reachability sets can overlap each other. Our strategy is based on incremental update;
i.e., (1) we first delete f edges and solve (Weighted) Descendant Counting on the resulting
polyforest, and (2) we then revert the f edges serially and update the reachability number.

3.1 Efficient Incremental Update on Acyclic Digraphs

Let G be an acyclic digraph of feedback edge number f and (s, t) ∈ V(G)× V(G) be an edge
not in G. Assume that inserting (s, t) does not render G cyclic. Given the reachability number
rG for G, we obtain the reachability number rG+(s,t) for G + (s, t) as follows. Let R5 denote the
set of vertices that can reach s on G and R4 denote the set of vertices reachable from t on G.
Here, R5 and R4 are disjoint as G + (s, t) is acyclic. We also remark that only vertices in R5

can newly reach some vertices in R4. Obviously, we can update reachability numbers for such
vertices by merely running a breadth-first search, which, however, consumes quadratic time in
the worst case.

To bypass this inefficiency, further definitions are required. We say that a vertex b ∈ R5 is
a boundary if there exists a path from b to some vertex of R4 that does not pass through (s, t)
and the internal vertices of which do not touch R5. We define the boundary set as the set of all
boundaries and denote it by B ⊆ R5. See Figure 1. For a vertex v ∈ R5, we call RG(v) ∩ B the
restricted boundary set for v. Observe that the set difference of RG+(s,t)(v) and RG(v) for v ∈ V(G)

can be expressed by using R4 and RG(b)’s for b ∈ B:

RG+(s,t)(v) \ RG(v) =

{
R4 \

⋃
b∈RG(v)∩B RG(b) if v ∈ R5,

∅ otherwise.
(2)

It is determined that rG+(s,t)(v) = rG(v) + |R4 \
⋃

b∈RG(v)∩B RG(b)| for vertex v ∈ R5. The bound-
ary set has the following convenient properties to compute Eq. (2) efficiently, whose proofs are
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Figure 1: Illustration of R5, R4, and B. Paths from b1, b2, b3, b4 to s and paths from t to c, c′, c′′

are omitted for simplicity. Each vertex in B can reach R4 without passing through (s, t). Because
vertex v can reach b1 and b2 and their reachable sets, it can reach vertices of R4 \ (RG(b1) ∪
RG(b2)) for the first time on G + (s, t).

deferred to Section 3.3.

Lemma 3.1. Let G be an acyclic digraph of feedback edge number f and (s, t) be an edge not in G, and
assume G + (s, t) acyclic. Then, the boundary set B has at most f vertices; i.e., |B| ≤ f .

Lemma 3.2. Let G be an acyclic digraph of feedback edge number f and (s, t) be an edge not in G, and
assume G + (s, t) acyclic. Then, the collection of the restricted boundary set for v ∈ R5 has at most 2 f
distinct sets; i.e.,

|{RG(v) ∩ B | v ∈ R5}| ≤ 2 f . (3)

Lemma 3.1 tells us that we can explicitly compute the reachability set for all boundaries in
O( f (n + m)) time. By Lemma 3.2, we have that the space to store

⋃
b∈RG(v)∩B RG(b) in Eq. (2) for

all v ∈ R5 is bounded by 2 f · |RG(·)| = O( f n). As a by-product, we can say that the collection
of the set differences between RG+(s,t)(v) and RG(v) for all v ∈ R5 are of cardinality at most 2 f ;
i.e., |{RG+(s,t)(v) \ RG(v) | v ∈ R5}| ≤ 2 f .

3.2 Algorithm Description for Acyclic Digraphs

Algorithm 3.1 shows the precise pseudocode of our algorithm that, given an acyclic digraph G
of feedback edge number f and a vertex weighting a : V(G) → R, computes the reachability
number rG,a for all vertices in G. We first construct a polyforest T on V(G) by deleting f edges
from G and invoke Algorithm 2.1 on T with a to obtain its weighted reachability number rT,a.
Let E(G) \ E(T) = {(s1, t1), . . . , (s f , t f )} be the f edges to be reverted to T in an arbitrary order.
Let G(0) = T and define G(i) = G(i−1) + (si, ti) for each i ∈ {1, . . . , f }. For each i ∈ {0, 1, . . . , f },
let r(i) be the weighted reachability number for G(i); in particular, we have that r(0) = rT,a.
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Algorithm 3.1 O( f 3n + f 2m)-time algorithm for an acyclic digraph of feedback edge number f .
Input: acyclic digraph G of feedback edge number f and vertex weighting a.

1: compute a polyforest T on V(G), the edge set of which is obtained by removing f edges from
G.

2: invoke Algorithm 2.1 on T with a to obtain rT,a.
3: let G(0) ← T and r(0) ← rT,a.
4: let E(G) \ E(T) = {(s1, t1), . . . , (s f , t f )} in any order.
5: for i = 1 to f do
6: compute set R5 of vertices that can reach si on G(i−1).
7: compute set R4 of vertices reachable from ti on G(i−1).
8: compute boundary set B ⊆ R5.
9: declare empty set MARK[v] for all v ∈ R5.

10: for all b ∈ B do
11: for all v ∈ R5 that can reach b on G(i−1) do
12: MARK[v]← MARK[v] + b.

13: R(b)← reachability set of b w.r.t. G(i−1).

14: declare empty trie GAIN.
15: for all v ∈ R5 do
16: if MARK[v] is not found in GAIN then
17: GAIN[MARK[v]]← a(R4 \ ∪b∈MARK[v]R(b)).

18: r(i)(v)← r(i−1)(v) + GAIN[MARK[v]] for all v ∈ R5.
19: r(i)(v)← r(i−1)(v) for all v ∈ V(G) \ R5.
20: G(i) ← G(i−1) + (si, ti).

21: return r( f ).

The remaining part of the algorithm consists of f rounds, which reverts each of the f edges
serially. Given the current r(i−1) at the beginning of the i-th round with i ∈ {1, . . . , f }, we
calculate r(i) as follows. As in the previous section, let R5 be the set of vertices that can reach si
on G(i−1) and R4 the set of vertices reachable from ti on G(i−1). We compute the boundary set B
with regard to G(i−1) and (si, ti). This computation can be done by running a breadth-first search
starting from R4 that does not go forward whenever it touches R5 on the transposed counterpart
of G(i−1). Then, for each boundary b ∈ B, we mark vertices in R5 that can reach b and compute
the reachability set of b in G(i−1), denoted by R(b). Let MARK[v] be the set of boundaries marked
for v; i.e., MARK[v] = RG(i−1)(v) ∩ B. We know that for every v ∈ R5, RG(i)(v) \ RG(i−1)(v) is
equal to R4 \ ∪b∈MARK[v]R(b) because of Eq. (2). Hence, we declare an empty trie GAIN for storing
a(R4 \ ∪b∈MARK[v]R(b)) with key MARK[v] for every v ∈ R5. It should be noted that we can omit the
reachability set computation for some vertices, because MARK[u] = MARK[v] may hold for u 6= v.
Finally, we compute r(i)(v) as r(i−1)(v)+ GAIN[MARK[v]] for v ∈ R5 and r(i−1)(v) for v ∈ V(G) \R5

and insert (s, t) into G(i−1) to obtain G(i). Having completed the f rounds, we return r( f ).

6



3.3 Correctness and Time Complexity

We now verify the correctness and the time complexity of Algorithm 3.1. To this end, we first
validate Eq. (2).

Observation 3.3. Let G be an acyclic digraph and (s, t) be an edge not in G, and assume G + (s, t)
acyclic. Then, for any vertex v, Eq. (2) is correct.

Proof. The case where v 6∈ R5 is obvious; we prove for v ∈ R5. We show that a vertex x ∈ V(G)

is in the set on the left hand side in Eq. (2) if and only if x is in the set on the right hand side in
Eq. (2). First, assume that x ∈ RG+(s,t)(v) \ RG(v). We have that any path from v to x on G + (s, t)
must pass through (s, t). Obviously, x ∈ R4. We also have that x 6∈ RG(b) for any b ∈ RG(v)∩ B,
because otherwise v can reach x via such b without passing through (s, t), which results in a
contradiction. Consequently, x ∈ R4 \

⋃
b∈RG(v)∩B RG(b).

Now, assume that x ∈ R4 \
⋃

b∈RG(v)∩B RG(b). We have that x is reachable from t (on G).
Thus, v can reach x on G + (s, t) by passing through (s, t), i.e., x ∈ RG+(s,t)(v). On the other
hand, v cannot reach x on G, because to exit R5 without passing through (s, t), a path starting
from v must touch some b ∈ RG(v) ∩ B; i.e., x 6∈ RG(v). Consequently, x ∈ RG+(s,t)(v) \ RG(v),
which completes the proof.

We now prove the two lemmas on the boundary set.

Proof of Lemma 3.1. We prove the statement by a contradiction. Suppose that the boundary set B
contains at least f + 1 vertices, say, b1, b2, . . . , b f+1. Without loss of generality, we can assume that
these vertices are sorted in reverse topological order, so that bi cannot reach bj whenever i < j.

We construct a sequence of f + 2 subgraphs of G, denoted by G0, G1, . . . , G f+1, as follows.
The initial graph G0 consists of a single edge (s, t); i.e., G0 = ({s, t}, {(s, t)}). For each i ∈
{1, . . . , f + 1}, Gi is obtained from Gi−1 by adding the following three paths: (1) a path Pbis on
G[R5] from bi to s, (2) a path Pbici from bi to some vertex ci ∈ R4 the internal vertices of which
belong to neither R5 nor R4, and (3) a path Ptci on G[R4] from t to ci. See Figure 2. Note that the
three paths are edge-disjoint, and f (Gi) = |E(Gi)| − |V(Gi)|+ 1 for each Gi, where f (·) denotes
a feedback edge number, as it is weakly connected.

We now show that the feedback edge number increases by at least one from Gi−1 to Gi. Let
x and y be the vertex next to bi with regard to the two paths Pbis and Pbici , respectively. Then,
we divide Pbis into an edge (bi, x) and a subpath Pxs from x to s and divide Pbici into an edge
(bi, y) and a subpath Pyci from y to ci. See Figure 2. It is easy to see that Gi−1 + Pxs + Ptci + Pyci

is weakly connected. Then, consider the addition of (bi, x) and (bi, y) to Gi−1 + Pxs + Ptci + Pyci ,
which yields Gi. Observing that x and y have already been added and x 6= y (because Pbis and
Pbici are edge-disjoint), we can ensure that this addition preserves the weak connectivity and
increases the number of vertices by one for bi and the number of edges by two for (bi, x) and
(bi, y); i.e., f (Gi) ≥ f (Gi−1) + 1. Hence, f (G f+1) ≥ f + 1 + f (G0) = f + 1, from which it follows
that f (G) ≥ f (G f+1) ≥ f + 1, a contradiction.

Proof of Lemma 3.2. The proof is by contradiction. Suppose that at least 2 f + 1 vertices in R5 have
distinct restricted boundary sets; i.e., |{RG(v) ∩ B | v ∈ R5}| ≥ 2 f + 1. We bound from below

7
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Figure 2: Construction of G0, G1, . . . , G f+1 in the proof of Lemma 3.1. The addition of three paths
Pbis, Pbici , and Ptci increases the feedback edge number by at least one, because (bi, xi) and (bi, yi)

have thus far never been added. (It could be the case that xi = bj for some j < i.) Consequently,
G f+1 has a feedback edge number of at least f + 1, which is a contradiction.

the number of edges in the induced subgraph G[R5]. It is easy to see that, if a vertex v ∈ R5 \ B
has an out-degree of one on G[R5], then both v and v’s unique out-neighbor, say w, have exactly
the same restricted boundary set; i.e., RG(v)∩ B = RG(w)∩ B.3 Hence, there must be 2 f + 1− |B|
vertices in R5 \ B of an out-degree of at least two on G[R5] (because otherwise |{RG(v)∩ B | v ∈
R5}| ≤ |{RG(v)∩ B | v ∈ R5 \ B}|+ |B| ≤ 2 f , which is a contradiction). By Lemma 3.1, we have
that 2 f + 1− |B| ≥ f + 1. Observing that each vertex in R5 − s has an out-degree of at least one
on G[R5], the number of edges in G[R5] is at least (|R5|− 1)+ ( f + 1) = |R5|+ f . Therefore, the
feedback edge number of G[R5] is |E(G[R5])| − |V(G[R5])|+ 1 ≥ |R5|+ f − |R5|+ 1 = f + 1,
a contradiction.

By Lemmas 3.1 and 3.2, we finally obtain the following:

Theorem 3.4. Given an acyclic digraph G and a : V(G) → R, Algorithm 3.1 correctly returns the
weighted reachability number for all vertices in G and runs in O( f 3n + f 2m) time and O( f n +m) space,
where n = |V(G)|, m = |E(G)|, and f is the feedback edge number of G.

Proof. We first prove the correctness of Algorithm 3.1. To this end, we show that it holds that
r(i) = rG(i),a for all i ∈ {0, 1, . . . , f } by induction on i. The base case i = 0 is clear. Now, assume
that r(i−1) = rG(i−1),a, where i ∈ {1, . . . , f }. In the i-th iteration, MARK[v] is equal to RG(i−1)(v) ∩ B
for every v ∈ R5. Thus, by construction of GAIN, it holds that r(i)(v) = r(i−1)(v) + a(R4 \⋃

b∈R
G(i) (v)∩B RG(i−1)(b)) for every v ∈ R5, which is equal to rG(i−1),a(v) + a(RG(i)(v) \ RG(i−1)(v)) =

rG(i),a(v) by the assumption and Observation 3.3, which completes the inductive step.
We now bound the running time of Algorithm 3.1. T and rT,a (steps 1–2) can be constructed

in linear time, because spanning tree computation and Algorithm 2.1 are completed in linear

3Note that this observation does not hold if v ∈ B. Suppose that v ∈ B has an out-degree of one on G[R5], and let
w be v’s unique out-neighbor. We then have that RG(v) ∩ B 6= RG(w) ∩ B because v ∈ RG(v) ∩ B and v 6∈ RG(w) ∩ B.
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time. We now show that each of the f rounds (steps 6–20) consumes O( f 2n + f m) time. First, we
can compute R5, R4, and B (steps 6–8) in O(n + m) time by running three breadth-first searches
starting from si, ti, and R4 on G(i−1), respectively. By Lemma 3.1, B contains at most f vertices.
Thus, MARK can be constructed (steps 10–13) in O(|B| · (n + m)) = O( f (n + m)) time. Note that
each MARK[v] contains at most f vertices of B. Then, observing that there are at most 2 f distinct
sets in MARK by Lemma 3.2, we can ensure that the algorithm reaches step 17 at most 2 f times
and compute the right hand side of step 17 in O( f n) time by taking a union over (at most) f sets.
Each search for GAIN (step 16) and each update of GAIN (step 17) can be done inO( f ) time because
the length of a binary representation of a key (i.e., any subset of B) is O( f ). It is thus determined
that the construction of GAIN (steps 15–17) consumes O( f 2n) time. We can obviously update the
reachability number and the digraph (steps 18–20) in time O( f n). Accordingly, the entire time
complexity is bounded from above by O( f 3n + f 2m). The space complexity is obvious.

3.4 Solution for General Digraphs

We finally use Algorithm 3.1 to solve Weighted Descendant Counting for arbitrary digraphs
of bounded feedback edge number. For the sake of completeness, we prove the following obser-
vation.

Observation 3.5. If a digraph G has a feedback edge number of at most f , then so does the condensation
GSCC.

Proof. Let F be a feedback edge set of size (at most) f of G. Then, the edge set F′ := π(F), which
is of size at most f , is a feedback edge set of GSCC. This is because GSCC− F′ is equal to the graph
(π(V(G)), π(E(G)− F)), which is a polyforest by definition of F.

Corollary 3.6. For a digraph G of feedback edge number f and a vertex weighting a : V(G) → R,
Weighted Descendant Counting can be solved inO( f 3n) time andO( f n) space, where n = |V(G)|.

Proof. Given G and a, we first construct its condensation GSCC in linear time [Tar72] and a vertex
weighting b : V(GSCC) → R such that bC = a(C) for each strongly connected component C of
G. We then invoke Algorithm 3.1 on GSCC with b, which consumes at most O( f 3|V(GSCC)| +
f 2|E(GSCC)|) time because of Theorem 3.4 and Observation 3.5. We finally compute the weighted
reachability number for G by rG,a(v) = rGSCC,b(π(v)) for each v ∈ V(G), where π : V(G) →
V(GSCC) is a mapping from vertices in G to vertices in GSCC. The whole time complexity is thus
bounded by O( f 3|V(G)|) since |E(G)| ≤ |V(G)|+ f . The space complexity is obvious.
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