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Abstract

We consider three variants of the problem of finding a maximum weight restricted 2-matching
in a subcubic graph G. (A 2-matching is any subset of the edges such that each vertex is incident
to at most two of its edges.) Depending on the variant a restricted 2-matching means a 2-matching
that is either triangle-free or square-free or both triangle- and square-free. While there exist poly-
nomial time algorithms for the first two types of 2-matchings, they are quite complicated or use
advanced methodology. For each of the three problems we present a simple reduction to the com-
putation of a maximum weight b-matching. The reduction is conducted with the aid of half-edges.
A half-edge of edge e is, informally speaking, a half of e containing exactly one of its endpoints.
For a subset of triangles of G, we replace each edge of such a triangle with two half-edges. Two
half-edges of one edge e of weight w(e) may get different weights, not necessarily equal to 1

2w(e).
In the metric setting when the edge weights satisfy the triangle inequality, this has a geometric in-
terpretation connected to how an incircle partitions the edges of a triangle. Our algorithms are
additionally faster than those known before. The running time of each of them is O(n2 log n),
where n denotes the number of vertices in the graph.

1 Introduction

A subset M of edges of an undirected simple graph is a 2-matching if every vertex is incident to at most
two edges of M . 2-matchings belong to a wider class of b-matchings, where for every vertex v in the
set of vertices V of the graph, we are given a natural number b(v) and a subset of edges is a b-matching
if every vertex is incident to at most b(v) of its edges. A 2-matching is called Ck-free if it does not
contain any cycle of length at most k. Note that every 2-matching is C2-free and the smallest length
of a cycle in a 2-matching is three. A 2-matching of maximum size can be found in polynomial time
by a reduction to a classical matching. The Ck-free 2-matching problem consists in finding a Ck-free
2-matching of maximum size. Observe that the Ck-free 2-matching problem for n/2 ≤ k < n, where
n is the number of vertices in the graph, is equivalent to finding a Hamiltonian cycle, and thus NP-hard.
Hartvigsen [9] gave a complicated algorithm for the case of k = 3. Papadimitriou [5] showed that this
problem is NP-hard when k ≥ 5. The complexity of the C4-free 2-matching problem is unknown.

In the weighted version of the problem, each edge e is associated with a nonnegative weight w(e)
and we are interested in finding a Ck-free 2-matching of maximum weight, where the weight of a
2-matching M is defined as the sum of weights of edges belonging to M . Vornberger [26] showed that
the weighted C4-free 2-matching problem is NP-hard. We refer to cycles of length three and four as
triangles and squares, respectively.

*Partially supported by Polish National Science Center grant 2018/29/B/ST6/02633.
†abraka@cs.uni.wroc.pl
‡mateusz.wasylkiewicz@cs.uni.wroc.pl

1

ar
X

iv
:2

01
2.

15
77

5v
1 

 [
cs

.D
S]

  3
1 

D
ec

 2
02

0



In the paper we consider the following three problems in subcubic graphs: the weighted triangle-
free 2-matching problem (i.e. the weighted C3-free 2-matching problem), the weighted square-free
2-matching problem, in which we want to find a maximum weight 2-matching without any squares,
but possibly containing triangles and the weighted C4-free 2-matching problem. A graph is called
cubic if its every vertex has degree 3 and is called subcubic if its every vertex has degree at most 3.

The weighted triangle-free 2-matching problem in subcubic graphs. The existing two polynomial
time algorithms for this problem are the following. Hartvigsen and Li [12] gave a rather complicated
primal-dual algorithm with running time O(n3) and a long analysis. The algorithm uses a type of
so-called comb inequality. Kobayashi [15] devised a simpler algorithm using the theory of M -concave
functions on finite constant-parity jump systems as well as makes O(n3) computations of a maximum
weight b-matching for b ∈ {0, 1, 2}V . Its running time is O(n5 log n).

We present a simple combinatorial algorithm for the problem that uses one computation of a maxi-
mum weight b-matching for b ∈ {0, 1, 2}V . Given a subcubic graph G, we replace some of its triangles
with gadgets containing half-edges and define a function b on the set of vertices in such a way that,
any b-matching in the thus constructed graph G′ yields a triangle-free 2-matching. A half-edge of
edge e is, informally speaking, a half of e containing exactly one of its endpoints. Half-edges have
already been introduced in [20] and used in several subsequent papers. Here we use a different weight
distribution among half-edges of one edge - two half-edges of one edge e may be assigned different
weights and not necessarily equal to 1

2w(e). In the metric setting when the edge weights satisfy the
triangle inequality, this has a geometric interpretation connected to how an incircle partitions the edges
of a triangle. The running time of our algorithm is O(n2 log n). If the graph is unweighted, then the
run time of this algorithm becomes O(n3/2).

Square-free 2-matchings. In bipartite graphs a shortest cycle has length four - a square. Polynomial
time algorithms for the C4-free 2-matching problem in bipartite graphs were shown by Hartvigsen [10],
Pap [21] and analyzed by Király [13]. As for the weighted version of the square-free 2-matching prob-
lem in bipartite graphs it was proven to be NP-hard [8, 14] and solved by Makai [18] and Takazawa [23]
for the case when the weights of edges are vertex-induced on every square of the graph. When it comes
to the square-free 2-matching problem in general graphs, Nam [19] constructed a complex algorithm
for it for graphs, in which all squares are vertex-disjoint. Bérczi and Kobayashi [3] showed that the
weighted square-free 2-matching problem is NP-hard for general weights even if the given graph is
cubic, bipartite and planar and gave a polynomial algorithm that finds a maximum weight 2-matching
that contains no squares (but it can contain triangles). In [3] the square-free 2-matching problem is
used for solving the (n − 3)-connectivity augmentation problem. As regards subcubic graphs, there
are two other results besides those mentioned above. Bérczi and Végh [4] considered the problem of
finding a maximum t-matching (a b-matching such that b(v) = t for each vertex v) which does not
contain any subgraph from a given set of forbidden Kt,t and Kt+1 in an undirected graph of degree at
most t + 1. Observe that the square-free 2-matching problem in subcubic graphs is a special case of
this problem for t = 2.

The C4-free 2-matching problem was previously investigated only in the unweighted version by
Hartvigsen and Li in [11], who devised an O(n3/2)-algorithm. We present combinatorial algorithms
for the weighted square-free 2-matching problem and the weighted C4-free 2-matching problem for
the case when the weights of edges are vertex-induced on every square of the graph and the graph is
subcubic. These algorithms are similar to the one for the weighted triangle-free 2-matching problem
in subcubic graphs and have the same running time.

Related work Some generalizations of the Ck-free 2-matching problem were investigated. Re-
cently, Kobayashi [16] gave a polynomial algorithm for finding a maximum weight 2-matching that
does not contain any triangle from a given set of forbidden edge-disjoint triangles. One can also con-
sider non-simple b-matchings, in which every edge e may occur in more than one copy. Problems

2



connected to non-simple b-matchings are usually easier than variants with simple b-matchings. Ef-
ficient algorithms for triangle-free non-simple 2-matchings (such 2-matchings may contain 2-cycles)
were devised by Cornuéjols and Pulleyback [5, 6], Babenko, Gusakov and Razenshteyn [2], and Arta-
monov and Babenko [1]. Other results for restricted non-simple b-matchings appeared in [22, 24, 25].

2 Preliminaries

Let G = (V,E) be an undirected graph with vertex set V and edge set E. We denote the number of
vertices of G by n and the number of edges of G by m. We assume that all graphs are simple, i.e., they
contain neither loops nor parallel edges. We denote an edge connecting vertices v and u by (v, u). A
cycle of graph G is a sequence c = (v0, . . . , vl−1) for some l ≥ 3 of pairwise distinct vertices of G
such that (vi, v(i+1) mod l) ∈ E for every i ∈ {0, 1, . . . , l − 1}. We refer to l as the length of c. For a
given cycle c = (v0, . . . , vl−1) any edge of G, which connects two vertices of c and does not occur in
c is called a diagonal (of c). For a subgraph H of G, we denote the edge set of H by E(H). For an
edge set F ⊆ E and v ∈ V , we denote by degF (v) the number of edges of F incident to v.

An instance of each of the three problems that we consider in the paper consists of an undirected
subcubic graph G = (V,E) and a weight function w : E → R≥0. In the weighted triangle-free 2-
matching problem the goal is to find a maximum weight triangle-free 2-matching of G. In the weighted
square-free (resp. C4-free) 2-matching problem we additionally assume that the weights on the edges
are vertex-induced on each square of G, i.e. for any square s = (v1, v2, v3, v4) there exists a function
r : {v1, v2, v3, v4} → R such that for any edge e = (u, v) connecting two vertices of s it holds that
w(e) = r(u) + r(v). The aim in the weighted square-free (resp. C4-free) 2-matching problem is to
compute a maximum weight square-free (corr. C4-free) 2-matching of G.

We will use the classical notion of a b-matching, which is a generalization of a matching. For a
vector b ∈ NV , an edge set M ⊆ E is said to be a b-matching of G if degM (v) ≤ b(v) for every
v ∈ V . Notice that a b-matching with b(v) = 1 for every v ∈ V is a classical matching. A b-matching
of G of maximum weight can be computed in polynomial time. We refer to Lovász and Plummer [17]
for further background on b-matchings.

We are interested in computing a b-matching of a graph G where we are given vectors l, u ∈ NV

and a weight function w : E → R. For a vertex v ∈ V , [l(v), u(v)] is said to be a capacity interval of
v. An edge set M ⊆ E is said to be an (l, u)-matching if l(v) ≤ degM (v) ≤ u(v) for every v ∈ V . An
(l, u)-matching M is said to be a maximum weight (l, u)-matching if there is no (l, u)-matching M ′

of G of weight greater than w(M). A maximum weight (l, u)-matching can be computed efficiently.

Theorem 1 ([7]). There is an algorithm that, given a graph G = (V,E), a weight function w : E → R
and vectors l, u ∈ NV , in time O((

∑
v∈V u(v))min{|E(G)| log |V (G)|, |V (G)|2}), finds a maximum

weight (l, u)-matching of G.

Given an (l, u)-matching M and an edge e = (u, v) ∈M , we say that u is matched to v in M .

3 Outline of the Algorithm

The general scheme of the algorithm for each variant of the restricted 2-matching problem is the same
- we give it below.
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Algorithm 1 Computing a maximum weight restricted 2-matching of a subcubic graph G given a
weight function w : E → R≥0.

Step 1. Construct an auxiliary graph G′ = (V ′, E′) of size O(n) by replacing some triangles and/or
squares of G with gadgets containing half-edges. (Both gadgets and half-edges are defined later.)

Step 2. Define a weight function w′ : E′ → R and vectors l, u ∈ NV ′
such that u(v) ≤ 2 for every

v ∈ V ′.

Step 3. Compute a maximum weight (l, u)-matching M ′ of G′.

Step 4. Construct a 2-matching M of G by replacing all half-edges of M ′ with some edges of G in
such a way that w(M) ≥ w′(M ′).

Step 5. Remove the remaining triangles and/or squares from M by replacing some of their edges
with other ones without decreasing the weight of M .

Claim 1. Algorithm 1 runs in time O(n2 log n).

Proof. It will be easy to implement all steps of an Algorithm 1 except Step 3 in linear time. Hence, the
running time of our algorithm is equal to the running time of an algorithm for computing a maximum
weight (l, u)-matching of G′, i.e., it is equal to O((

∑
v∈V ′ u(v))min{|E′| log |V ′|, |V ′|2}). Recall

that |V ′|+ |E′| = O(n) and u(v) ≤ 2 for every v ∈ V ′. Hence, the running time of Step 3 is
O(n2 log n).

Let us also remark that in the unweighted versions of the problem Algorithm 1 runs in O(n3/2).

4 Triangle-free 2-matchings in subcubic graphs

In this section we solve a maximum weight triangle-free 2-matching problem in subcubic graphs. We
assume that each connected component of G is different from K4, i.e., different from a 4-vertex clique.

One can observe that, since G is subcubic, any edge e of G belongs to at most two different
triangles. Also, any triangle of G shares an edge with at most one other triangle or, in other words, any
triangle of G is not edge-disjoint with at most one other triangle.

Definition 1. A triangle t, which has a common edge with some other triangle t′ such that w(t) ≤
w(t′) is said to be unproblematic. Otherwise, t is said to be problematic.

Unproblematic triangles can be easily got rid of from any 2-matching M of G by replacing some
of its edges with other ones as explained in more detail in the proof of Theorem 3.

Observe that any problematic triangle of G is vertex-disjoint with any other problematic triangle
of G.

We begin with the following simple fact.

Claim 2. Let t = (a, b, c) be a triangle of G, whose edges have weights w(a, b), w(b, c), w(c, a),
respectively. Then, there exist real numbers ra, rb, rc such that w(a, b) = ra + rb, w(b, c) = rb + rc
and w(c, a) = rc + ra.

If the weights of edges of t satisfy the triangle inequality, then Claim 2 has a geometric interpreta-
tion connected to how an incircle partitions the edges of a triangle - see Figure 1.
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Figure 1: Partition of the edges of a triangle by its incircle.

If G contains at least one problematic triangle, we build a graph G′ = (V ′, E′) together with a
weight function w′ : E′ → R, in which each problematic triangle t is replaced with a subgraph, called
a gadget for t. The precise construction of G′ is the following. We start off with G.

Let t = (a, b, c) be any problematic triangle of G. For each edge (p, q) of t we add two new
vertices vpq and vqp, called subdivision vertices (of t), and we replace (p, q) with three new edges:
(p, vpq ), (v

p
q , v

q
p), (v

q
p, q). Each of the edges (p, vpq ), (v

q
p, q) is called a half-edge (of (p, q) and also of

t). The edge (vpq , v
q
p) is called an eliminator (of (p, q)). The half-edges of edges of t get weights equal

to values of ra, rb, rc from Claim 2, i.e., w′(a, vab ) = w′(a, vac ) = ra, w′(b, vba) = w′(b, vbc) = rb and
w′(c, vca) = w′(c, vcb) = rc. The weight of each eliminator is 0. Additionally, we introduce four new
vertices ua, ub, uc, ut, called global vertices. For every d ∈ {a, b, c} we connect ud with ut and with
every subdivision vertex connected to d. Every edge incident to a global vertex has weight 0.

We define vectors l, u ∈ NV ′
as follows. We set a capacity interval of every vertex of the original

graph G to [0, 2] and we set a capacity interval of every other vertex of G′ to [1, 1], i.e., every vertex
of V ′ \ V is matched to exactly one vertex of G′ in any (l, u)-matching of G′.

The main ideas behind the gadget for a problematic triangle t = (a, b, c) are the following. An
(l, u)-matching M ′ of G′ is to represent roughly a triangle-free 2-matching M of G. If M ′ contains
both half-edges of some edge e, then e is included in M . If M ′ contains an eliminator of e, then e does
not belong to M (is excluded from M ). We want to ensure that at least one edge of t does not belong
to M . This is done by requiring that two of the global vertices ua, ub, uc are matched to subdivision
vertices. In this way two half-edges of t are guaranteed not to belong to M ′ and hence to M .

a b

c

t

a b

c

vab

vac

vba

vbc

vca vcb

ua ub

uc

ut

ra

ra

rb

rb

rc rc

Figure 2: A gadget for a problematic triangle t = (a, b, c).

In the theorem below we show the correspondence between triangle-free 2-matchings of G and
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(l, u)-matchings of G′.

Theorem 2. Let M be any triangle-free 2-matching of G. Then we can find an (l, u)-matching M ′ of
G′ such that w′(M ′) = w(M).

Proof. We initialize M ′ as the empty set. We add every edge of M that does not belong to any
problematic triangle of G to M ′. Consider any problematic triangle t = (a, b, c) of G. Since M is
triangle-free, there exists an edge of t that does not belong to M . If more than one edge of t does not
belong to M , we choose one of them. Suppose that we chose (a, b) /∈M . Then we add edges (vab , ua),
(vba, ub) and (ut, uc) to M ′. For every other edge e of t we proceed as follows. If e ∈M , we add both
half-edges of e to M ′, otherwise we add the eliminator of e to M ′. Since the weight of any edge of t
in G is equal to the sum of the weights of its half-edges in G′, we get that w′(M ′) = w(M).

Theorem 3. Let M ′ be any (l, u)-matching of G′. Then we can find a triangle-free 2-matching M of
G such that w(M) ≥ w′(M ′).

Proof. We initialize M as the empty set. We add every edge of M ′ that belongs to G to M . For every
problematic triangle of G we will add some of its edges to M .

Consider any problematic triangle t = (a, b, c) of G. Notice that exactly two of the vertices
ua, ub, uc are matched to subdivision vertices, because ut is matched to one of ua, ub, uc. This cor-
responds to excluding two half-edges of t from M . Since every subdivision vertex is required to be
matched to exactly one vertex in G′, we get that an even number and at most four subdivision vertices
of t are matched to the vertices a, b, c. This indicates, which half-edges of t are going to be included in
M . Observe that the two subdivision vertices that are matched in M ′ to vertices ua, ub, uc are adjacent
to two different vertices of t. Thus, we have:

Claim 3. If M ′ contains exactly four half-edges of t, then the two half-edges of t that do not belong to
M ′ are not adjacent to the same vertex of t.

Every other subset of half-edges of t containing an even number of at most four half-edges of t can
occur in M ′.

In each of these cases, we proceed as follows (see Figure 3):

1. Exactly zero subdivision vertices of t are matched to a, b, c. We do not include any edge of t in
M .

2. Exactly two subdivision vertices of t are matched to a, b, c.

(a) The two subdivision vertices of t are matched to two different vertices u, v of t. Then we
include the edge (u, v) in M .

(b) The two subdivision vertices of t are matched to the same vertex u of t. Then we include
in M two edges of t incident to u. (This is the only case where w(M) may be greater than
w′(M ′) when it comes to half-edges of t. Notice that for any two vertices u, v of t we have
that ru + rv ≥ 0).

3. Exactly four subdivision vertices of t are matched to a, b, c. Then, by Claim 3, two of these
vertices are matched to the same vertex u of t and the other two are matched to the remaining
two vertices of t. In this case we include in M two edges of t incident to u.

Since half-edges incident to the same vertex have the same weight, we get that w(M) ≥ w′(M ′).
The resulting 2-matching M can contain some unproblematic triangles. We remove them one

by one. Let t = (a, b, c) be any such triangle. From Definition 1 there exists another triangle t′ =
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(a, b, d), which shares an edge with t and such that w(t′) ≥ w(t). Hence, either w(a, d) ≥ w(a, c) or
w(b, d) ≥ w(b, c). Assume that w(a, d) ≥ w(a, c). We replace the edge (a, c) with the edge (a, d)
without decreasing the weight of M .

a b

c

a b

c

(a)

a b

c

a b

c

(b)

a b

c

a b

c

(c)

a b

c

a b

c

(d)

Figure 3: The construction of a maximum weight triangle-free 2-matching of G from a maximum
weight (l, u)-matching of G′.

5 Square-free 2-matchings in subcubic graphs

In this section we solve a maximum weight square-free 2-matching problem in subcubic graphs. Recall
that this problem is NP-hard for general weights, therefore we assume that weights are vertex-induced
on every square, i.e., for any square s = (a, b, c, d) of G there exist real numbers ra, rb, rc, rd, called
potentials of s such that for any edge e = (u, v) connecting two vertices of s it holds that w(e) =
ru + rv. (Note that if a given edge e = (u, v) belongs to two different squares s and s′, then potentials
of s and s′ on u and v may be different.)

We also assume that each connected component of G is different from K4.
For a square s = (v0, v1, v2, v3) of G, edges (v0, v1), (v1, v2), (v2, v3) and (v3, v0) are said to be

native edges of s.
One can observe that, since G is subcubic, any two different squares of G are vertex-disjoint or

have either one or two edges in common.

Definition 2. A square s of G is said to be unproblematic if there exists another square s′ such that
(i) s shares exactly one edge with s′ or (ii) s shares two edges with s′ and w(s) ≤ w(s′). Otherwise, s
is said to be problematic.

Observe that any problematic square of G is vertex-disjoint with any other problematic square of
G.

The following simple observation shows that squares which have exactly one common edge with
another square do not pose any problem for computing a maximum weight square-free 2-matching of
G.

Claim 4. Consider any two squares s = (a, b, c, d) and s′ = (c, d, e, f) of G which share exactly one
edge. Let M1 be a 2-matching of G that contains s. Then there exists a 2-matching M2 of G, which
does not contain s or any square not already contained in M1 and such that w(M2) ≥ w(M1).

Proof. We set M2 = M1 \{(c, d), (e, f)}∪{(c, f), (d, e)}. Note that we can assume that M1 contains
the edge (e, f), because G is subcubic and M1 contains neither (c, f) nor (d, e). It is straightforward
to check that M2 is a 2-matching of G that does not contain s. Furthermore, the given construction
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does not introduce any additional squares into M2. Observe that w(M2) ≥ w(M1), since w is vertex-
induced on s′.

We show the construction of a gadget for a problematic square s = (a, b, c, d). We use the notation
introduced in Section 4. For every native edge (p, q) of s, we introduce two subdivision vertices vpq , v

q
p

and replace (p, q) with two half-edges (p, vpq ) and (vqp, q) and an eliminator (vpq , v
q
p). (We do not replace

any diagonal of s.) Additionally, we introduce two new global vertices u1s and u2s. We connect u1s with
all subdivision vertices adjacent to either a or c. Symmetrically, we connect u2s with all subdivision
vertices adjacent to either b or d.

The half-edges incident to a, b, c and d get weight ra, rb, rc and rd, respectively, where ra, . . . , rd
are potentials of s. All other edges of the gadget get weight 0. We set a capacity interval of every
vertex of s to [0, 2] and we set a capacity interval of every other vertex of the gadget to [1, 1].

a b

cd

s

a b

cd

vab vba

vbc

vcb

vcdvdc

vda

vad
u1s u2s

ra

ra rb

rb

rc

rcrd

rd

Figure 4: A gadget for a problematic square s = (a, b, c, d).

Theorem 4. Let M be any square-free 2-matching of G. Then we can find an (l, u)-matching M ′ of
G′ such that w′(M ′) = w(M).

Proof. We initialize M ′ as the empty set. We add every edge of M that does not belong to any
problematic square of G to M ′.

Consider any problematic square s = (a, b, c, d) of G. Assume that (a, b) does not belong to M .
We add edges (vab , u

1
s) and (vba, u

2
s) to M ′. For every other native edge e of s we proceed as follows.

If e ∈M , we add both half-edges of e to M ′, otherwise we add the eliminator of e to M ′.

Theorem 5. Let M ′ be any (l, u)-matching of G′. Then we can find a square-free 2-matching M of G
such that w(M) ≥ w′(M ′).

Proof. We initialize M as the empty set. We add every edge of M ′ that belongs to G to M . For every
problematic square of G we will add some of its edges to M . Next we will replace some edges of M
with other ones to remove unproblematic squares.

Consider any problematic square s = (a, b, c, d) of G. Notice that there exists a native edge (p, q)
of s such that u1s and u2s are matched in M ′ to two subdivision vertices, one of which is adjacent to p
and the other to q. W.l.o.g. assume that (p, q) = (a, b). We consider the following cases:
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1. u1s and u2s are matched in M ′ to vab and vba, respectively. We add every native edge of s whose
both half-edges belong to M ′ to M . Notice that for every other native edge e of s, the eliminator
of e belongs to M ′.

2. Either u1s is matched to vab or u2s is matched to vba in M ′, but not both of them. Assume that u1s is
matched to vab . Therefore, edges (u2s, v

b
c) and (b, vba) belong to M ′. We replace these two edges

with (u2s, v
b
a) and (b, vbc) without changing the weight of M ′. Then we proceed as in case 1.

3. u1s and u2s are matched to vad and vbc , respectively, in M ′. If (vab , v
b
a) does not belong to M ′,

we connect u1s and u2s with vab and vba, respectively, similarly as in case 2, and we proceed as in
case 1. Assume now that (vab , v

b
a) belongs to M ′. Notice that (d, vda) and (c, vcb) belong to M ′.

We add (a, d) and (b, c) to M . Additionally, if both half-edges of (c, d) belong to M ′, we add
(c, d) to M .

The resulting 2-matching M can contain some unproblematic squares. We remove squares, which
share exactly one edge with another square from M one by one using Claim 4. We remove the rest
of unproblematic squares in a similar way as we got rid of unproblematic triangles in the proof of
Theorem 3. Each such removal does not introduce any squares into M , therefore M is a square-free
2-matching in the end.

6 C4-free 2-matchings in subcubic graphs

In this section we solve a maximum weight C4-free 2-matching problem in subcubic graphs. We as-
sume that weights are vertex-induced on every square. We also assume that each connected component
of G is different from K4.

We say that a cycle C of G is short if it is either a triangle or a square. We say that a short cycle C
of G is unproblematic if it shares exactly one edge with some square of G or if it fits Definition 1 or
Definition 2. A short cycle, which is not unproblematic is said to be problematic.

We have the analogue of Claim 4, which justifies considering triangles sharing one edge with a
square unproblematic:

Claim 5. Consider two short cycles: a triangle t = (a, c, d) and a square s′ = (c, d, e, f) of G which
share exactly one edge. Let M1 be a 2-matching of G that contains t. Then there exists a 2-matching
M2 of G, which does not contain t or any short cycle not already contained in M1 and such that
w(M2) ≥ w(M1).

Observe that any two different short problematic cycles that are not vertex-disjoint must form a
pair consisting of a square s = (a, c, b, d) and a triangle t1 = (a, c, d) with exactly two common
edges. We call a subgraph induced on vertices of such s and t1 a double triangle T = (a, b, c, d). In
G′ we build the following gadget for every double triangle.

Consider any double triangle T = (a, b, c, d). We remove c and d from G′ and we add a vertex uT
to G′. We connect v1T with v2T and we connect uT with both a and b. Let M i

j(T ) denote the weight
of a maximum weight C4-free 2-matching of T in which a has degree i and b has degree j. We set
the weight of edges (v1T , v

2
T ), (uT , a) and (uT , b) to M1

1 (T ), M
2
1 (T )−M1

1 (T ) and M1
2 (T )−M1

1 (T ),
respectively. We set capacity intervals of a, b and uT to [0, 1]. We set capacity intervals of v1T and v2T
to [1, 1].

For every problematic short cycle that is not part of any double triangle we add a corresponding
gadget presented in Section 4 or Section 5.

Theorem 6. Let M be any C4-free 2-matching of G. Then we can find an (l, u)-matching M ′ of G′

such that w′(M ′) ≥ w(M).

9



a

b

c d
t1
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a[0, 1]

b[0, 1]
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M2
1 (T )−M1

1 (T )

M1
2 (T )−M1

1 (T )

Figure 5: A gadget for a double triangle T = (a, b, c, d).

Proof. We initialize M ′ as the empty set. We add to M ′ every edge of M that belongs to no problem-
atic short cycle.

Consider any double triangle T = (a, b, c, d) of G. We add (v1T , v
2
T ) to M ′. Let M̂ = M ∩E(T ).

If degM̂ (a) = 2, then we add (uT , a) to M ′. If degM̂ (b) = 2, then we add (uT , b) to M ′. Note that
degM̂ (a) ≤ 1 or degM̂ (b) ≤ 1, therefore degM ′(uT ) ≤ 1.

For every problematic short cycle that is not part of any double triangle we add edges of a corre-
sponding gadget to M ′ in the same way as we did in the proofs of Theorem 2 and Theorem 4.

Theorem 7. Let M ′ be any (l, u)-matching of G′. Then we can find a C4-free 2-matching M of G
such that w(M) ≥ w′(M ′).

Proof. We initialize M as the empty set. We add to M every edge of M ′ that belongs to G.
Consider any double triangle T = (a, b, c, d) of G. Let i and j denote the number of edges of

the gadget for T incident to a and b, respectively. Notice that i + j ≤ 1. We add to M a maximum
weight C4-free 2-matching of T in which a has degree i+ 1 and b has degree j + 1.

For every short cycle that is not part of any double triangle we proceed in the same way as in the
proofs of Theorem 3 and Theorem 5.
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