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Abstract
A colouring of a graph G = (V,E) is a mapping c : V → {1, 2, . . .} such that c(u) 6= c(v) for every
two adjacent vertices u and v of G. The List k-Colouring problem is to decide whether a graph
G = (V,E) with a list L(u) ⊆ {1, . . . , k} for each u ∈ V has a colouring c such that c(u) ∈ L(u)
for every u ∈ V . Let Pt be the path on t vertices and let K1

1,s be the graph obtained from the
(s+ 1)-vertex star K1,s by subdividing each of its edges exactly once.

Recently, Chudnovsky, Spirkl and Zhong (DM 2020) proved that List 3-Colouring is polynomial-
time solvable for (K1

1,s, Pt)-free graphs for every t ≥ 1 and s ≥ 1. We generalize their result to List
k-Colouring for every k ≥ 1. Our result also generalizes the known result that for every k ≥ 1 and
s ≥ 0, List k-Colouring is polynomial-time solvable for (sP1 + P5)-free graphs, which was proven
for s = 0 by Hoàng, Kamiński, Lozin, Sawada, and Shu (Algorithmica 2010) and for every s ≥ 1 by
Couturier, Golovach, Kratsch and Paulusma (Algorithmica 2015).

We show our result by proving boundedness of an underlying width parameter. Namely, we show
that for every k ≥ 1, s ≥ 1, t ≥ 1, the class of (Kk,K

1
1,s, Pt)-free graphs has bounded mim-width

and that a corresponding branch decomposition is “quickly computable” for these graphs.
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1 Introduction

Width parameters play an important role in algorithmic graph theory, as evidenced by various
surveys [12, 18, 19, 32, 33]. A graph class G has bounded width, for some width parameter,
if there exists a constant c such that every graph in G has width at most c. Mim-width
is a relatively young width parameter that was introduced by Vatshelle [37]. It is defined
as follows. A branch decomposition for a graph G is a pair (T, δ), where T is a subcubic
tree and δ is a bijection from V (G) to the leaves of T . Every edge e ∈ E(T ) partitions the
leaves of T into two classes, Le and Le, depending on which component of T − e they belong
to. Hence, e induces a partition (Ae, Ae) of V (G), where δ(Ae) = Le and δ(Ae) = Le. We
let G[Ae, Ae] be the bipartite subgraph of G induced by the edges with one end-vertex in
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Ae and the other in Ae. A matching F ⊆ E(G) of G is induced if there is no edge in G

between vertices of different edges of F . We let cutmimG(Ae, Ae) be the size of a maximum
induced matching in G[Ae, Ae]. The mim-width mimwG(T, δ) of (T, δ) is the maximum
value of cutmimG(Ae, Ae) over all edges e ∈ E(T ). The mim-width mimw(G) of G is the
minimum value of mimwG(T, δ) over all branch decompositions (T, δ) for G. See Figure 1
for an example.
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Figure 1 An example of a graph G with a branch decomposition (T, δ). The partition (Ae, Ae)
of V (G) in the rightmost figure witnesses that mimwG(T, δ) ≥ 1. It can be easily seen that
mimwG(T, δ) ≤ 1 and so mimw(G) = 1.

Vatshelle [37] proved that every class of bounded clique-width, or equivalently, bounded
boolean-width, module-width, NLC-width or rank-width, has bounded mim-width, and
that the converse is not true. That is, he proved that there exist graph classes of bounded
mim-width that have unbounded clique-width. This means that proving that a problem
is polynomial-time solvable for graph classes of bounded mim-width yields more tractable
graph classes than doing this for clique-width. Hence, mim-width has greater modeling power
than clique-width.

However, the trade-off is that fewer problems admit such an algorithm, as we explain
below by means of a relevant example, namely the classical Colouring problem. Moreover,
computing mim-width is NP-hard [36] and it is not possible to approximate in polynomial
time the mim-width of a graph within a constant factor unless NP = ZPP [36]. It remains a
challenging open problem to develop a polynomial-time algorithm for computing a branch
decomposition with mim-width f(k) for a graph with mim-width k. However, the latter has
been shown possible for special graph classes G. In such a case, we say that the mim-width
of G is quickly computable. We can then develop a polynomial-time algorithm for the problem
of interest via dynamic programming over the computed branch decomposition. We refer
to [1, 2, 3, 5, 6, 7, 13, 22, 23, 24, 25] for a wide range of examples of graph classes and
problems for which such dynamic programming algorithms have been obtained.

As mentioned, in this paper we focus on Graph Colouring, a central problem in Discrete
Mathematics, Theoretical Computer Science and beyond. A colouring of a graph G = (V,E)
is a mapping c : V → {1, 2, . . .} that gives each vertex u ∈ V a colour c(u) in such a way
that, for every two adjacent vertices u and v, we have that c(u) 6= c(v). If for every u ∈ V we
have c(u) ∈ {1, . . . , k}, then we say that c is a k-colouring of G. The Colouring problem
is to decide whether a given graph G has a k-colouring for some given integer k ≥ 1. If k
is fixed, that is, not part of the input, we call this the k-Colouring problem. A classical
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result of Lovász [30] states that k-Colouring is NP-complete even if k = 3.
The Colouring problem is an example of a problem that distinguishes between classes

of bounded mim-width and bounded clique-width: it is polynomial-time solvable for every
graph class of bounded clique-width [27] but NP-complete for circular-arc graphs [14], a
class of graphs of mim-width at most 2 and for which mim-width is quickly computable [1].
When we fix k, we no longer have this distinction, as k-Colouring, for every fixed integer
k ≥ 1, is polynomial-time solvable for a graph class whose mim-width is bounded and quickly
computable [7].

We consider the following generalization of k-Colouring. For an integer k ≥ 1, a k-list
assignment of a graph G = (V,E) is a function L that assigns each vertex u ∈ V a list
L(u) ⊆ {1, 2, . . . , k} of admissible colours for u. A colouring c of G respects L if c(u) ∈ L(u)
for every u ∈ V . For a fixed integer k ≥ 1, the List k-Colouring problem is to decide
whether a given graph G with a k-list assignment L admits a colouring that respects L. Note
that for k1 ≤ k2, List k1-Colouring is a special case of List k2-Colouring and that by
setting L(u) = {1, . . . , k} for every u ∈ V , we obtain the k-Colouring problem.

Given an instance (G,L) of List k-Colouring, one can construct an equivalent instance
G′ of k-Colouring by adding a clique on new vertices u1, . . . , uk to G and adding an edge
between ui and v ∈ V (G) if and only if i /∈ L(u) (see, for example, [31]). Kwon [29] observed
that mimw(G′) ≤ mimw(G) + k and thus, as k-Colouring is polynomial-time solvable for
graph classes whose mim-width is bounded and quickly computable [7], for every fixed integer
k ≥ 1, this leads to the following:

I Theorem 1 ([29]). For every k ≥ 1, List k-Colouring is polynomial-time solvable for a
graph class whose mim-width is bounded and quickly computable.

In this paper we show that a number of known polynomial-time results for List k-Colouring
on special graph classes can be obtained, and strengthened, by applying Theorem 1.

The classes that we consider belong to the framework of hereditary graph classes. A
graph class is hereditary if it is closed under vertex deletion. It is well known and not difficult
to see that hereditary graph classes are exactly those classes characterized by a (unique) set
F of minimal forbidden induced subgraphs. If |F| = 1 or |F| = 2, we say that the hereditary
graph class is monogenic or bigenic, respectively. In a recent study [5], boundedness or
unboundedness of mim-width has been determined for all monogenic classes and a large
number of bigenic classes. These results imply that a monogenic graph class has bounded
mim-width if and only if it has bounded clique-width [5] but that this equivalence does not
always hold for bigenic graph classes. As we focus on hereditary graph classes, our work can
be seen as a continuation of the research in [5].

Related Work
We first need to introduce some more terminology. A graph G is H-free, for some graph H,
if it contains no induced subgraph isomorphic to H, that is, we cannot modify G into H by a
sequence of vertex deletions. For a set of graphs {H1, . . . ,Hp}, a graph is (H1, . . . ,Hp)-free
if it is Hi-free for every i ∈ {1, . . . , p}. We denote the disjoint union of two graphs G1 and
G2 by G1 +G2 = (V (G1) ∪ V (G2), E(G1) ∪E(G2)). We let Pr and Kr denote the path and
complete graph on r vertices, respectively.

The complexity of Colouring for H-free graphs has been settled for every graph H [28],
but there are still infinitely many open cases for k-Colouring restricted to H-free graphs
when H is a linear forest, that is, a disjoint union of paths. We refer to [15] for a survey and
to [8, 10, 26] for updated summaries. In particular, Hoàng et al. [20] proved that for every
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integer k ≥ 1, k-Colouring is polynomial-time solvable for P5-free graphs. Their proof is
in fact a proof for List k-Colouring. The result of [20] was generalized by Couturier et
al. [11] as follows:

I Theorem 2 ([11]). For every k ≥ 1 and s ≥ 0, List k-Colouring is polynomial-time
solvable for (sP1 + P5)-free graphs.

For r ≥ 1 and s ≥ 1, we let Kr,s denote the complete bipartite graph with partition classes
of size r and s. The graph K1,s is also known as the (s+ 1)-vertex star. The 1-subdivision
of a graph G is the graph obtained from G by subdividing each edge of G exactly once.
We denote the 1-subdivision of a star K1,s by K1

1,s; in particular K1
1,2 = P5. Very recently,

Chudnovsky, Spirkl and Zhong proved the following result:

I Theorem 3 ([10]). For every s ≥ 1 and t ≥ 1, List 3-Colouring is polynomial-time
solvable for (K1

1,s, Pt)-free graphs.

For every s ≥ 1 and t ≥ 2s + 5, the class of (K1
1,s+2, Pt)-free graphs contains the class of

(sP1 + P5)-free graphs. Hence, Theorem 3 generalizes Theorem 2 in the case k = 3. As K1,s

is an induced subgraph of K1
1,s, Theorem 3 also generalizes the following result in the case

r = 1:

I Theorem 4 ([17]). For every k ≥ 1, r ≥ 1, s ≥ 1 and t ≥ 1, List k-Colouring is
polynomial-time solvable for (Kr,s, Pt)-free graphs.

Our Results
We prove the following result:

I Theorem 5. For every r ≥ 1, s ≥ 1 and t ≥ 1, the mim-width of the class of (Kr,K
1
1,s, Pt)-

free graphs is bounded and quickly computable.

We may assume without loss of generality that an instance of List k-Colouring is Kk+1-
free, for otherwise it is a no-instance. Hence, combining Theorem 5 with Theorem 1 enables
us to generalize both Theorems 2 and 3:

I Corollary 6. For every k ≥ 1, s ≥ 1 and t ≥ 1, List k-Colouring is polynomial-time
solvable for (K1

1,s, Pt)-free graphs.

Corollary 6 is tight in the following sense. Let L1,s denote the subgraph obtained from K1
1,s

by subdividing one edge exactly once; in particular L1,2 = P6. Then, as List 4-Colouring
is NP-complete for P6-free graphs [16], we cannot generalize Corollary 6 to (L1,s, Pt)-free
graphs for k ≥ 4, s ≥ 2 and t ≥ 6. Moreover, the mim-width of (K4, P6)-free graphs is
unbounded [5] and so we cannot extend Theorem 5 to (Kr, L1,s, Pt)-free graphs, for r ≥ 4,
s ≥ 2 and t ≥ 6, either.

Theorem 5 has other applications as well. Firstly, as mentioned earlier, there are many
problems known to be XP parameterized by mim-width, so Theorem 5 implies that these
problems are polynomial-time solvable for this graph class; in particular, this is the case
for the broad class of problems known as Locally Checkable Vertex Subset and Vertex
Partitioning problems. For a graph G, let ω(G) denote the size of a maximum clique in G.
Chudnovsky et al. [9] gave for the class of (K1

1,3, P6)-free graphs an nO(ω(G)3)-time algorithm
for Max Partial H-Colouring, a problem equivalent to Independent Set if H = P1 and
to Odd Cycle Transversal if H = P2. In other words, Max Partial H-Colouring is
polynomial-time solvable for (K1

1,3, P6)-free graphs with bounded clique number. Moreover,
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they observed that Max Partial H-Colouring is polynomial-time solvable for graph
classes whose mim-width is bounded and quickly computable. Hence, Theorem 5 generalizes
their result for Max Partial H-Colouring to (K1

1,s, Pt)-free graphs with bounded clique
number, for any s ≥ 1 and t ≥ 1. However, the running time of the corresponding algorithm
is worse than nO(ω(G)3) (see [9] for details).
It remains to prove Theorem 5, which we do in the next section. In Section 3 we give some
directions for future work.

2 The Proof of Theorem 5

We first state two lemmas. The first lemma shows that given a partition of the vertex set
of a graph G, we can bound the mim-width of G in terms of the mim-width of the graphs
induced by each part and the mim-width between any two of the parts.

I Lemma 7. Let G be a graph, and let (X1, . . . , Xp) be a partition of V (G) such that
cutmimG(Xi, Xj) ≤ c for all distinct i, j ∈ {1, . . . , p}, and p ≥ 2. Then

mimw(G) ≤ max
{
c

⌊(p
2

)2
⌋
, max

i∈{1,...,p}
{mimw(G[Xi])}+ c(p− 1)

}
.

Moreover, if (Ti, δi) is a branch decomposition for G[Xi] for each i, then we can construct,
in O(p) time, a branch decomposition (T, δ) for G with

mimw(T, δ) ≤ max
{
c

⌊(p
2

)2
⌋
, max

i∈{1,...,p}
{mimw(Ti, δi)}+ c(p− 1)

}
.

Proof. We construct a branch decomposition (T, δ) for G with the desired mim-width as
follows. Let T0 be an arbitrary subcubic tree having p leaves `1, . . . , `p. Fix for each
i ∈ {1, . . . , p} a branch decomposition (Ti, δi) for G[Xi]. For each i ∈ {1, . . . , p}, we choose
an arbitrary leaf vertex vi of Ti, we identify vi with `i calling the resulting vertex `i, and we
create a new pendant edge incident to `i, where the new leaf vertex adjacent to `i is called vi.
Then T is a subcubic tree whose set of leaves is the disjoint union of the leaves of Ti for each
i ∈ {1, . . . , p}. See Figure 2, for example. For a leaf v of T , we set δ(v) = δi(v), where v is a
leaf of Ti. Now (T, δ) is a branch decomposition for G, and clearly this branch decomposition
can be constructed in O(p) time. It remains to prove the upper bound for mimw(T, δ).

Consider e ∈ E(T ) and the partition (Ae, Ae) of V (G). If e ∈ E(T0), then Ae =
⋃

j∈J Xj

for some J ⊆ {1, . . . , p}. If e ∈ E(Ti) for some i ∈ {1, . . . , p}, then either Ae or Ae is properly
contained in Xi. The only other possibility is that e is one of the newly created pendant
edges, in which case either Ae or Ae has size 1.

First suppose e ∈ E(T0), so Ae =
⋃

j∈J Xj for some J ⊆ {1, . . . , p}. We claim that
cutmimG(Ae, Ae) ≤ c

⌊(
p
2
)2
⌋
. Let M be a maximum-sized induced matching in G[Ae, Ae].

Let K = {1, . . . , p} \ J . For each j ∈ J and k ∈ K, there are at most c edges of M with one
end in Xj and the other end in Xk, since cutmimG(Xj , Xk) ≤ c. Thus cutmimG(Ae, Ae) ≤
c|J ||K|, where |J |+ |K| = p. As c|J ||K| ≤ c

⌊(
p
2
)⌋ ⌈(

p
2
)⌉

= c
⌊(

p
2
)2
⌋
, the claim follows.

Now suppose e ∈ E(Ti) for some i ∈ {1, . . . , p}, so, without loss of generality, Ae is
properly contained in Xi. We claim that cutmimG(Ae, Ae) ≤ mimw(G[Xi]) + c(p − 1).
Consider a maximum-sized induced matching M in G[Ae, Ae]. As Ae ⊆ Xi, all the edges of
M have one end in Xi. For each j ∈ {1, . . . , p} with j 6= i, there are at most c edges of M
with one end in Xj , since cutmimG(Xi, Xj) ≤ c. Since there are at most mimw(G[Xi]) edges
of M with both ends in Xi, we deduce that cutmimG(Ae, Ae) ≤ mimw(G[Xi]) + c(p− 1), as
claimed. The lemma follows. J
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Figure 2 An example of the construction of T in the proof of Lemma 7.

A clique in a graph is a set of pairwise adjacent vertices. An independent set is a set
of pairwise non-adjacent vertices. A dominating set is a set D of vertices such that every
vertex not in D is adjacent to at least one vertex in D. Ramsey’s Theorem states that for all
positive integers k and `, there exists an integer R(k, `) such that every graph on at least
R(k, `) vertices contains a clique of size k or an independent set of size `. A well-known,
rough bound for R(k, `) is R(k, `) ≤

(
k+`−2

k−1
)
≤ (k + `− 2)k−1.

For r ≥ 1 and s, t ≥ 1, let M(r, s, t) = (1 +R(r+ 1, R(r+ 1, s)))t−2. The next lemma has
been proven by Chudnovsky, Spirkl and Zhong [10] for the case where r = 3. The proof of
the lemma is analogous to the proof in [10] for the case where r = 3: replace each occurrence
of “4” in the proofs of Lemmas 13 and 15 in [10] by “r + 1”.

I Lemma 8 (cf. [10]). For every r ≥ 1, s ≥ 1 and t ≥ 1, a connected (Kr+1,K
1
1,s, Pt)-free

graph contains a dominating set of size at most M(r, s, t).

We are now ready to prove Theorem 5. We in fact prove the following theorem, Theorem 9,
which gives an explicit bound on the mim-width; Theorem 5 then follows from this.

I Theorem 9. Let r ≥ 1, s ≥ 1 and t ≥ 1, and let G be a (Kr,K
1
1,s, Pt)-free graph. Then

mimw(G) ≤ g(r, s, t) where g(r, s, t) = 2(r + s− 1)2(r+1)2(t+1), and a branch decomposition
(T, δ) of G with mimw(T, δ) ≤ g(r, s, t) can be found in polynomial time.

Proof. We may assume without loss of generality that G is connected. We use induction
on r. If r ≤ 2, then G is K2-free, so mimw(T, δ) = 0 for any branch decomposition (T, δ) of
G, whereas g(r, s, t) is positive for all s, t ≥ 1; so the theorem holds trivially in this case.

Suppose that r ≥ 3. By Lemma 8, we find that G has a dominating set D of size at most
M(r − 1, s, t). Moreover, we can find D in polynomial time by brute force (or we can apply
the O(tn2)-time algorithm of [10]). We let p = |D|, so p ≤M(r − 1, s, t).
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Let f(r, s, t) = (r+ s− 1)2(r+1)2(t+1). We will show that there is a branch decomposition
(T ′, δ′) of G − D with mimw(T ′, δ′) ≤ f(r, s, t). The theorem will then follow: to see
this, observe that if (T ′, δ′) is such a branch decomposition, then we can readily extend
(T ′, δ′) to a branch decomposition (T, δ) for G with mim-width at most f(r, s, t) + p ≤
f(r, s, t) +M(r − 1, s, t) ≤ g(r, s, t). Namely, we can obtain T in polynomial time from T ′

and an arbitrary subcubic tree T ′′ with p+ 2 leaves by identifying a leaf of T ′ with a leaf of
T ′′. So it remains to prove that mimw(G−D) ≤ f(r, s, t), and that we can find a branch
decomposition witnessing this bound, in polynomial time.

Let V = V (G). We partition V as follows. We first fix an arbitrary ordering d1, . . . , dp on
the vertices of D. Let X1 be the set of vertices in V \D adjacent to d1. For i ∈ {2, . . . , p}, let
Xi be the set of vertices in V \D adjacent to di, but non-adjacent to any dh with h ≤ i− 1.
Then {D,X1, . . . , Xp} is a partition of V (where some of the sets Xi might be empty).
Moreover, we found this partition in polynomial time.

By construction, di is adjacent to every vertex of Xi for each i ∈ {1, . . . , p}. As G
is Kr-free, this implies that each Xi induces a (Kr−1,K

1
1,s, Pt)-free subgraph of G. By

the induction hypothesis, mimw(G[Xi]) ≤ f(r − 1, s, t) + M(r − 2, s, t), and a branch
decomposition witnessing this mim-width bound can be computed in polynomial time, for
every i ∈ {1, . . . , p}.

Consider two sets Xi and Xj with i < j. We claim that cutmimG(Xi, Xj) < c =
R(r − 1, R(r − 1, s)). Towards a contradiction, suppose that cutmimG(Xi, Xj) ≥ c. Then,
by definition, there exist two sets A = {a1, a2, . . . , ac} ⊆ Xi and B = {b1, b2, . . . , bc} ⊆ Xj ,
each of size c, such that {a1b1, . . . , acbc} is a set of c edges with the property that G does
not contain any edges aibj for i 6= j (note that edges aiaj and bibj may exist in G).

As G[Xi] is Kr−1-free, and |A| = c = R(r−1, R(r−1, s)), Ramsey’s Theorem tells us that
G[A] contains an independent set A′ of size c′ = R(r−1, s). Assume without loss of generality
that A′ = {a1, . . . , ac′}. Let B′ = {b1, . . . , bc′}. As G[Xj ] is Kr−1-free, G[B′] contains an
independent set B′′ of size s. Assume without loss of generality that B′′ = {b1, . . . , bs}.
By construction, di is adjacent to every vertex of {a1, . . . , as} ⊆ Xi and non-adjacent to
every vertex of {b1, . . . , bs} ⊆ Xj . Hence, {a1, . . . , as, b1, . . . , bs, di} induces a K1

1,s in G, a
contradiction. We conclude that cutmimG(Xi, Xj) < c.

Now, by Lemma 7, we have

mimw(G−D) ≤ max
{
c
⌊(

p
2
)2
⌋
,maxi∈{1,...,p}{mimw(G[Xi])}+ c(p− 1)

}
≤ max

{
cp2, f(r − 1, s, t) +M(r − 2, s, t) + cp

}
.

Recall that R(k, `) ≤ (k+`−2)k−1. We observe that R(k,R(k, `)) ≤ (k+`−2)k(k−1). Hence,
c = R(r−1, R(r−1, s)) ≤ (r+s−3)(r−1)(r−2) and p ≤M(r−1, s, t) = (1+R(r,R(r, s)))t−2 ≤(
1 + (r + s− 1)r(r+1))t−2 ≤

(
(r + s− 1)r(r+1)+1)t−2. Thus

cp2 ≤ (r + s− 3)(r−1)(r−2)
(

(r + s− 1)r(r+1)+1
)2(t−2)

≤ (r + s− 1)(r+1)2
(r + s− 1)2(r+1)2(t−2) ≤ (r + s− 1)2(r+1)2t ≤ f(r, s, t), and
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f(r − 1, s, t) +M(r − 2, s, t) + cp

≤ (r + s− 2)2r2(t+1) +
(
(r + s− 2)(r−1)r+1)t−2 + (r + s− 3)(r−1)(r−2) ((r + s− 1)r(r+1)+1)t−2

≤ (r + s− 1)r2(t+1)
(

(r + s− 1)r2(t+1) + 1 + (r + s− 1)(r+1)(t−1)
)

≤ (r + s− 1)r2(t+1)
(

(r + s− 1)r2(t+1)+1
)

= (r + s− 1)2r2(t+1)+1

≤ f(r, s, t).

So mimw(G−D) ≤ f(r, s, t) and the theorem follows by induction. J

3 Conclusions

We proved in Corollary 6 that for every k ≥ 1, s ≥ 1 and t ≥ 1, List k-Colouring
is polynomial-time solvable for (K1

1,s, Pt)-free graphs by showing that the mim-width of
these graphs is bounded and quickly computable. Huang [21] proved that 4-Colouring is
NP-complete for P7-free graphs and that 5-Colouring is NP-complete for P6-free graphs.
It is also known that List 4-Colouring is NP-complete for P6-free graphs [16]. However,
the List 3-Colouring problem is polynomial-time solvable for P7-free graphs [4] and the
computational complexities of 3-Colouring and List 3-Colouring are open for Pt-free
graphs if t ≥ 8. In particular, we do not know any integer t such that 3-Colouring or
List 3-Colouring are NP-complete for Pt-free graphs. Recently, Pilipczuk, Pilipczuk and
Rzążewski [35] gave, for every t ≥ 3, a quasi-polynomial-time algorithm for 3-Colouring
on the class of {Ct+1, Ct+2, . . .}-free graphs; note that this class contains, for t ≥ 2, the class
of Pt-free graphs as a subclass. Hence, an extension of Corollary 6, which will require more
research into the structure of Pt-free graphs, might still be possible for k = 3. We leave this
for future work.
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