
ar
X

iv
:1

90
7.

08
39

9v
1

 [
cs

.D
S]

 1
9

Ju
l 2

01
9

Cluster deletion revisited

Dekel Tsur∗

Abstract

In the Cluster Deletion problem the input is a graph G and an integer
k, and the goal is to decide whether there is a set of at most k edges whose
removal from G results a graph in which every connected component is a
clique. In this paper we give an algorithm for Cluster Deletion whose
running time is O∗(1.404k).

Keywords graph algorithms, parameterized complexity, branching algorithms.

1 Introduction

A graph G is called a cluster graph if every connected component of G is a clique.
In the Cluster Deletion problem the input is a graph G and an integer k, and
the goal is to decide whether there is a set of at most k edges whose removal from
G results a clique graph.

A graph G is a cluster graph if and only if there is no induced P3 in G, where P3

is a path on 3 vertices. Therefore, there is a simple O∗(2k)-time branching algorithm
for Cluster Deletion: If the current graph is not a cluster graph, find an induced
P3 in the graph and create two new instances by removing each edge of the path.
Faster algorithms for Cluster Deletion were given in [1–4]. First, an O∗(1.77k)-
time algorithm was given in [4]. An O∗(1.53k)-time algorithm was given in [4], and
an O∗(1.47k)-time algorithm was given in [2]. Finally, Böcker and Damaschke [1]
gave an algorithm with a claimed running time of O∗(1.415k).

In this paper we show that there is an error in the analysis of the algorithm of
Böcker and Damaschke. We give a corrected analysis that shows that the running
time of the algorithm is O∗(1.415k) as claimed in [1]. Additionally, we give an
algorithm for Cluster Deletion whose running time is O∗(1.404k).

2 Preliminaries

For set of vertices S in a graph G, G[S] is the subgraph of G induced by S (namely,
G[S] = (S,E ∩ (S × S))). For a set of edges F , G − F is the graph obtained from
G by deleting the edges of F . For a vertex v, N(v) is the set of vertices that are
adjacent to v.

∗Ben-Gurion University of the Negev. Email: dekelts@cs.bgu.ac.il

1

http://arxiv.org/abs/1907.08399v1

Let P3 denote a path on 3 vertices, and C4 denote a chordless cycle on 4 vertices.
A graph G is an α-almost clique if there is a set X ⊆ V (G) of size at most α

such that G[V (G) \X] is a clique.

Lemma 1 (Damaschke [2]). Let α be a constant. There is a polynomial time algo-
rithm that given an α-almost clique G, finds a set of edges S of minimum size such
that G− S is a cluster graph.

3 The algorithm of Böcker and Damaschke

In this section we describe the algorithm of Böcker and Damaschke [1] and give a
corrected analysis of the algorithm. The algorithm is a branching algorithm. When
we say that the algorithm branches on sets S1, . . . , Sp, we mean that the algorithm
is called recursively on the instances (G− S1, k − |S1|), . . . , (G− Sp, k − |Sp|).

The algorithm uses the following branching rules.

(B1) Suppose that P is an induced path in G with at least 7 vertices, and let
e1, e2, . . . , ep be the edges of P (in order). Branch on {e1, e3, . . .} and {e2, e4, . . .}.

We note that Rule (B1) is a simplified version of the corresponding rule given
in [1]. To show the safeness of this rule, suppose that (G, k) is a yes instance and
let S be a solution of (G, k) (namely, G− S is a cluster graph and |S| ≤ k). Since
V (e1) ∪ V (e2) induces a P3 in G, S contains at least one edge from e1, e2. Suppose
that e1 ∈ S. The set V (e2) ∪ V (e3) induces a P3 in G, so either e2 ∈ S or e3 ∈ S.
Therefore, the set S2 = (S\{e2})∪{e3} is also a solution of (G, k) (since the deletion
of e3 from G does not generate new induced P3’s). By repeating this process we
obtain a solution S ′ such that {e1, e3, . . .} ⊆ S ′. Similarly, if e2 ∈ S we can obtain
a solution S ′ such that {e2, e4, . . .} ⊆ S ′. Therefore, Rule (B1) is safe.

The branching vector of Rule (B1) is at least (3, 3) and the branching number is
less than 1.26.

For an edge e, let Fe be a set containing all edges e′ such that V (e) ∪ V (e′)
induces a P3.

(B2) If there is an edge e for which |Fe| ≥ 4, branch on {e} and Fe.
The branching vector of Rule (B2) is at least (1, 4) and the branching number is

less than 1.381.

(B3) Let v1, v2, v3, v4, v1 be an induced C4 in G. Branch on {(v1, v2), (v3, v4)} and
{(v2, v3), (v4, v1)}.

The branching vector of Rule (B3) is (2, 2) and the branching number is less
than 1.415.

The algorithm applies Rules (B1)–(B3) until none of these rule is applicable. If
G is a graph on which Rules (B1)–(B3) are not applicable and G is not a cluster
graph, the algorithm applies a new branching rule, denoted (B4), which is described
below.

In Rule (B4), the algorithm finds an induced P3 u, v, w. To describe the rule, we
define the following sets. Let A = {u, v, w}. Let B the set of all vertices not in A
with one or two neighbors in A. Let Bu (resp., Bw) be the set of all vertices b ∈ B
such that b is adjacent to exactly one vertex from u, v (resp., from w, v). Clearly,

2

B = Bu ∪ Bw. Let C be the set of all vertices with three neighbors in A. Let D be
the set of all vertices not in A ∪B ∪ C that have at least one neighbor in C.

For i ≥ 1, let Bi be a set containing every vertex x not in A ∪ B ∪ C ∪D such
that the minimum distance between x and a vertex in B is exactly i. Additionally,
denote B0 = B and B−1 = A. For a vertex x ∈ Bi, let Nnext(x), Nsame(x), and
Nprev(x) denote the sets of neighbors of x in Bi+1, Bi, and Bi−1, respectively. Note
that by definition, Nprev(x) 6= ∅ for every x ∈

⋃

i≥0Bi. For i ≥ 0, let Ei be the set
of all edges with one endpoint in Bi and the other endpoint in Bi+1.

The following lemmas are proved in [1].

Lemma 2. If G is a graph in which Rule (B2) is not applicable then |Bu| ≤ 2 and
|Bw| ≤ 2.

Lemma 3. If G is a graph in which Rule (B3) is not applicable then C is a clique.

Lemma 4. Let G be a graph in which Rule (B2) is not applicable and C is clique.
Then, |D| ≤ 3. Additionally, for every x ∈ D, C ⊆ N(x) ⊆ B ∪ C ∪D.

We now give several lemmas which will be used in the analysis of Rule (B4).

Lemma 5. If G is a graph in which Rule (B2) cannot be applied, |Nnext(x)| ≤ 2 for
every x ∈

⋃

i≥0Bi.

Proof. We first consider the case x /∈ B0. Let y ∈ Nprev(x) and z ∈ Nprev(y).
The set F(x,y) contains the edge (y, z) and the edge (x, x′) for every x′ ∈ Nnext(x).
Therefore, |Nnext(x)| ≤ |F(x,y)| − 1 ≤ 2.

We now consider the case x ∈ B0 = B. By the definition of B, there are vertices
y, z ∈ A such that y is adjacent to x and z, and z is not adjacent to x. Therefore,
the set F(x,y) contains the edge (y, z) and the edge (x, x′) for every x′ ∈ Nnext(x).
We obtain again that |Nnext(x)| ≤ 2.

By Lemma 5 we have that |B1| ≤ 2|B| ≤ 8 and |E0| ≤ 8.
Let j be the minimum index such that there is an edge e ∈ Ej for which |Fe| ≥ 3

(we note that while G does not have an edge e with |Fe| > 3, we will later use this
definition on graphs which can have such edges). If no such index exists, j = ∞.

Lemma 6. If j ≥ 1, |Nnext(x)| ≤ 1 for every x ∈ B1 ∪ · · · ∪ Bj.

Proof. Let y ∈ Nprev(x) and z ∈ Nprev(v). As in the proof of Lemma 5, |Nnext(x)| ≤
|F(x,y)|−1. Since the edge (x, y) is in E0∪· · ·∪Ej−1, by the definition of j, |F(x,y)| ≤ 2
and the lemma follows.

Lemma 7. If j ≥ 2, |Nsame(x)| ≤ 1 for every x ∈ B2 ∪ · · · ∪ Bj. Additionally, if
|Nsame(x)| = 1 then Nnext(x) = ∅.

Proof. Let y ∈ Nprev(x) and z ∈ Nprev(v). Since y ∈ B1 ∪ · · · ∪ Bj−1, by Lemma 6
we have that Nnext(y) = {x}. Therefore, for every x′ ∈ Nsame(x) we have that
(x, x′) ∈ F(x,y). Since F(x,y) also contains every x′ ∈ Nnext(x), we conclude that
‘|Nsame(x)|+ |Nnext(x)| ≤ |F(x,y)| − 1 ≤ 1, and the lemma follows.

3

Lemma 8. If j ≥ 3, |Nprev(x)| ≤ 2 for every x ∈ B3 ∪ · · · ∪ Bj. Additionally, if
|Nprev(x)| = 2 then Nnext(x) = Nsame(x) = ∅.

Lemma 9. If j ≥ 2, if x ∈ B2 and Nnext(x) 6= ∅ then |Nprev(x)| ≤ 2. Additionally,
let x′ be the unique vertex in Nnext(x). Then, N(x′) = {x}.

The proofs of Lemma 8 and Lemma 9 are similar to the proof of Lemma 7 and
were thus omitted.

From the lemmas above we obtain the following corollaries.

Corollary 10. |Ej| ≤ |Ej−1| ≤ · · · ≤ |E0|.

Corollary 11. If j ≥ 2, G[B2 ∪ · · · ∪ Bj] is a collection of at most |E1| disjoint
paths.

When we consider a subgraph G′ of G, we use G′ in superscript to refer to a set
(or an integer) defined for G′. For example, the set of all vertices b such that b /∈ A
and b is adjacent in G′ to one or two vertices in A is denoted BG′

.
We now describe Rule (B4). Recall that the algorithm first finds an induced

P3 u, v, w. The main idea is to disconnect u, v, w from the rest of the graph. If
j 6= ∞, the algorithm picks an arbitrary edge e ∈ Ej such that |Fe| ≥ 3. Then,
the algorithm branches on {e} and Fe. Namely, the algorithm builds two instances
(G1, k1) = (G − {e}, k − 1) and (G2, k2) = (G − Fe, k − |Fe|). This process is
repeated on each of these two instances: Let (Gi, ki) be one of the two instances.
If jGi 6= ∅, the algorithm picks an arbitrary edge ei ∈ EGi

jGi
such that |FGi

ei
| ≥ 3

and creates two new instances: (Gi1, ki1) = (Gi − {ei}, ki − 1) and (Gi2, ki2) =
(Gi − FGi

ei
, ki − |FGi

ei
|). This is repeated until every instance (Gi1···ip, ki1···ip) satisfies

jGi1···ip = ∞. An instance (Gi1···ip , ki1···ip) with jGi1···ip = ∞ generated by Rule (B4)
will be called a first stage instance.

Next, on each first stage instance (G′, k′) = (Gi1···ip , ki1···ip), the algorithm re-
peatedly applies Rule (B1) as follows. Since jG

′

= ∞, we have by Corollary 11 that
G′[

⋃

i≥2B
G′

i] is a collection of at most |EG′

1 | disjoint paths. On each path of these
paths that has at least 7 vertices, the algorithm applies Rule (B1). If there are q
such paths, this generates 2q instances from (G′, k′). These instances will be called
second stage instances.

Let (G′′, k′′) be a second stage instance and let (G′, k′) be the first stage instance
from which (G′′, k′′) was generated. Note that G′′[

⋃

i≥2B
G′′

i] is a collection of at most

|EG′′

1 | = |EG′

1 | disjoint paths, where each path contains at most 6 vertices. Let H be
the connected component of v in G′′. We will later show that G′′ is an O(1)-almost
clique. The algorithm uses the algorithm of Lemma 1 to find a set SG′′

⊆ E(H) of
minimum size such that H − SG′′

is a cluster graph. Then, the algorithm makes a
recursive call on (G′′ − SG′′

, k′′ − |SG′′

|). Note that the size of S is at least 1 since
u, v, w is an induced P3 in H . This is repeated for every second stage instance. The
instances (G′′ − SG′′

, k′′ − |SG′′

|) will be called third stage instances.
We now show that H is an O(1)-almost clique. By Lemma 4, V (H) = A ∪

C ∪ D ∪
⋃

i≥0B
G′′

i . We have that |A| = 3 and |D| ≤ 3 (Lemma 4). Additionally,

BG′′

0 ∪ BG′′

1 ⊆ B0 ∪ B1 and therefore |BG′′

0 | + |BG′′

1 | ≤ |B0| + |B1| ≤ 12. Moreover,

4

|
⋃

i≥2B
G′′

i | ≤ 6|EG′′

1 | = 6|EG′

1 | and |EG′

1 | = O(1) (since every edge in EG′

1 is an edge
in G[B ∪B1]). Therefore, by Lemma 3, H is an O(1)-almost clique.

We note that in the analysis of Rule (B4) in [1], it is claimed that if (Gi1···ip, ki1···ip)
is a first stage instance then p ≤ 4. However, this is not true. Suppose that
B = {b1, b2, b3, b4}, B1 = {c1, c2, c3, c4}, B2 = {d1, . . . , d6}, N(b1) = {u, b2, c1, c2},
N(b2) = {u, b1, c1, c2}, N(b3) = {w, b4, c3, c4}, N(b4) = {w, b3, c4, c4}, N(c1) =
{b1, b2, c2, d1, d2}, N(c2) = {b1, b2, c1, d3}, N(c3) = {b3, b4, c4, d4, d5}, and N(c4) =
{b3, b4, c3, d6}. In this graph, Rule (B4) generates an instance (G11111111, k11111111)
by deleting one by one all 8 edges between B and B1.

We now bound the branching number of Rule (B4). We consider several cases.
In the first case, suppose that j ≥ 2 and j 6= ∞. Recall that the algorithm picks
an edge e = (x, y) ∈ Ej and generates the instances (G1, k1) = (G − {e}, k − 1)
and (G2, k2) = (G − Fe, k − |Fe|). Clearly, |EG1

j | = |Ej| − 1. We now show that

|EG2

j | ≤ |Ej | − 1. Since G2 is obtained from G by erasing the edges in Fe, and

all the edges in Ej−1 that are incident on x are in Fe, we have that x /∈ BG2

j .

Therefore, (x, y) /∈ EG2

j . We now claim that EG2

j does not contain an edge that is

not in Ej . Suppose conversely that e′ is such an edge. Then x must be in BG2

j+1

and e′ = (x′, x) for some x′ ∈ BG2

j . Therefore, in G we have x′ ∈ Nsame(x). This

contradicts Lemma 7. Thus, EG2

j does not contain edges that are not in Ej . It

follows that |EG2

j | ≤ |Ej |−1. By Corollary 10, |EGi

jGi
| ≤ |EGi

j | ≤ |Ej|−1 for i = 1, 2.

Using the same arguments, for every first stage instance (G′, k′) = (Gi1···ip, ki1···ip)
we have that |EG′

jG
′ | ≤ |Ej| − p. This implies that p ≤ |Ej |. Therefore, the number

of first stage instances generated by Rule (B4) is at most 2|Ej |.
Suppose for example that |Ej| = 2. In the worst case, Rule (B4) generates four

first stage instances: (G11, k11), (G12, k12), (G21, k21), and (G22, k22). Additionally,
k11 = k − 1, k12 = k21 = k − 4, and k22 = k − 6. Suppose that Rule (B1) is
not applied on any of the four instances above. Then, the algorithm generates a
third stage instance (Gi1i2 − SGi1i2 , ki1i2 − |SGi1i2 |) from each first stage instance
(Gi1i2 , ki1i2). Since |SGi1i2 | ≥ 1 for every i1, i2, we obtain that k11 − SG11 ≤ k − 3,
k12 − SG12 ≤ k − 5, k21 − SG21 ≤ k − 5, k22 − SG22 ≤ k − 7. In other words, the
branching vector of Rule (B4) in this case is at least (3, 5, 5, 7).

To analyze the case in which Rule (B1) is applied (at least once) on at least one
of the four first stage instances note that for the sake of the analysis, we can assume
for the sake of the analysis that the applications of Rule (B1) are done after the
application of Rule (B4). For example, suppose that Rule (B1) is applied only on
the instance (G11, k11) and it is applied once on this instance, generating instances
(G′

11, k
′
11) and (G′′

11, k
′′
11), where k′

11 = k′′
11 = k11 − 3. Therefore, the branching

vector of Rule (B4) in this case is at least (6, 6, 5, 5, 7). However, we can assume for
the analysis that Rule (B4) generates only four third stage instances, namely the
instances (Gi1i2 − SGi1i2 , ki1i2 − |SGi1i2 |), and then the algorithm applies Rule (B1)
on (G11−SG11 , k11−|SG11 |). The branching vectors for these two rules are (3, 5, 5, 7)
and (3, 3), respectively.

For a general value of |Ej|, we have that in the worst case Rule (B4) generates
2|Ej| third stage instances (as discussed above, we can assume that Rule (B1) was
not applied on the first stage instances). The branching vector is at least R(|Ej|),

5

where R(p) is a vector of length 2p in which the value p+ 1 + 2i appears
(

p

i

)

times,
for i = 0, . . . , p. We note that this bound is not good enough for our purpose.
Even for |Ej| = 5, we have that the branching vector R(5) has branching number of
approximately 1.406 and we need a branching number less than 1.404. The solution
is to give better bounds on the sizes of the sets SG′′ . This will be discussed below.

Now consider the case j = 1. In this case |EG1

1 | = |E1| − 1 as in the first case.
However, we now can have |EG2

1 | ≥ |E1|. This occurs if Nsame(x) ∩ Nprev(y) 6= ∅.
In this case, x belongs to BG2

2 , and for every x′ ∈ Nsame(x) ∩ Nprev(y), the edge
(x, x′) is in EG2

1 and not in Ej . Note that in this case we have that x and y are
not adjacent in G2 to vertices in BG2

2 ∪ BG2

3 (If z is adjacent in G2 to x or y then
z must be adjacent to both x and y, otherwise the edge between z and x or y is
in F(x,y). z is also adjacent to x and y in G. Therefore, z is in B1 or B2. By
Lemma 6, z /∈ B2, so z ∈ B1). Therefore, we can ignore the edges (x′, x) and (x′, y).
Formally, if the case above occurs, we mark the edges (x′, x) and (x′, y) for every
x′ ∈ Nsame(x) ∩ Nprev(y). We now change the definition of E1 to include all the
unmarked edges with one endpoint in B1 and the other endpoint in B2. For this
new definition we have |EG2

1 | ≤ |E1| − 1. Additionally, Corollary 10 remains true.
Therefore, the analysis of the case j = 1 is the same as the analysis for the case
j ≥ 2. That is, for a specific value of |E1|, the worst branching vector is at least
R(|E1|).

We now consider the case j = 0. To handle this case (and to get a better bound
on the branching number for the case j ≥ 1), we use a Python script. The script goes
over possible cases for the graph G[A∪B ∪B1∪B2] and for each case it computes a
branching vector that gives an upper bound on the branching number for this case.
Formally, a configuration graph is a graph J whose vertices are partitioned into 4
sets: (1) A set AJ that contains 3 vertices u′, v′, w′ which form a P3. (2) A set BJ

that contains vertices that are adjacent to 1 or 2 vertices of AJ . (3) A set BJ
1 that

contains vertices that are adjacent to at least one vertex in BJ and are not adjacent
to vertices in AJ . (4) A set BJ

2 such that every vertex in BJ
2 has exactly one neighbor

and this neighbor is in BJ
1 . Additionally, |F

J
e | ≤ 3 for every edge e with at least one

endpoint in AJ ∪ BJ . We note that the restriction on the degree of the vertices in
BJ

2 is required in order to restrict the number of configuration graphs.
Let G be a graph with an induced P3 u, v, w. We say that G matches a configu-

ration graph J if there is a bijection φ : A∪B ∪B1 → AJ ∪BJ ∪BJ
1 such that (1) φ

is an isomorphism between G[A∪B ∪B1] and J [AJ ∪BJ ∪BJ
1]. (2) φ maps u, v, w

to u′, v′, w′, respectively. (3) For a vertex c ∈ B1, the number of neighbors of c in
B2 is equal to the number of neighbors of φ(c) in BJ

2 .
The script goes over all possible configuration graphs. For each configuration

graph J , the script builds a vector whose branching number is an upper bound on
the branching number of Rule (B4) when it is applied on a graph G which matches
J .

For each configuration graph J the script generates a branching vector R as
follows. Suppose that G is a graph that matches J . The script generates graphs of
the form Ji1···ip like the generation of first stage instances in Rule (B4), except that
now the process ends when jJi1···ip > 0. A graph Ji1···ip with jJi1···ip > 0 generated
by the script will be called a first stage configuration graph. Consider some first

6

stage configuration graph J ′ = Ji1···ip. This graph corresponds to the instance
(G′, k′) = (Gi1···ip , ki1···ip) that Rule (B4) generates when it is applied on the graph
G and the induced path u, v, w. Note that if jJ

′

6= ∞ then (G′, k′) is not a first
stage instance and Rule (B4) will continue generating instances from (G′, k′). By
the analysis of the case j ≥ 1 above, at the worst case, the number of first stage

instances generated from (G′, k′) is 2|E
G′

1
| = 2|E

J′

1
|. The vector R(|EJ ′

1 |) gives a lower
bound on the differences between the parameter ki1···ip and the parameters of these

2|E
G′

1
| instances. Therefore, the vector R can be the concatenation of R(|E

Ji1···ip
1 |)

for every first stage graph Ji1···ip . We can get a better branching vector by giving
a better bound on |SG′′

| for the graphs G′′ of the second stage instances (G′′, k′′)
that are generated by Rule (B4) from an instance (G′, k′) = (Gi1···ip, ki1···ip), where
G′ matches the first stage configuration graph J ′ = Ji1···ip . For our purpose, we
it was suffices to give a simple bound based on the edges between AJ ′

and BJ ′

.
For example, suppose that there are vertices b′1, b

′
2 ∈ BJ ′

such that N(b′1) ∩ AJ ′

=
{u′} and N(b′2) ∩ AJ ′

= {w′}. Then, in G there are vertices b1, b2 ∈ B such that
N(b1)∩A = {u} and N(b2)∩A = {w}. The edges (b1, u) and (b2, w) remain in every
graph G′′ of a second stage instance (G′′, k′′) generated from (G′, k′). Therefore, each
such graph contains two edge disjoint induced P3s (b1, u, v and b2, w, v). Therefore,
|SG′′

| ≥ 2. We use similar lower bounds in case of other edges between AJ ′

and BJ ′

.
All the branching vectors generated by the script have branching numbers less

than 1.393. Therefore, the branching number of Rule (B4) is less then 1.393.
Since all the branching rules of the algorithm have branching numbers less than

1.415, it follows that the running time of the algorithm is O∗(1.415k).

4 New algorithm

Our algorithm first applies Rule (B1) and Rule (B2) until these rule cannot be
applied (note that Rule (B3) is not applied). Let G be a graph in which these rules
cannot be applied. If G does not contain induced C4 then the algorithm applies
Rule (B4). Otherwise, the algorithm applies a new branching rule, denoted (B5),
which is as follows. The algorithm picks an induced C4 u, v, w, u′, u. Note that
u, v, w is an induced P3. Let Bu and C be the sets defined in the previous section.
We have that |Bu| ≥ 1 since u′ ∈ Bu. If C is a clique then the algorithm applies
Rule (B4) on u, v, w. Otherwise, let x, y ∈ C be two non-adjacent vertices. Note
that u, x, w, y, u is an induced C4. The algorithm applies Rule (B3) on the cycle
u, x, w, y, u. This generates two instances: (G1, k1) = (G − {(u, x), (w, y)}, k − 2)
and (G2, k2) = (G− {(x, w), (y, u)}, k− 2).

Consider an instance (Gi, ki) and note that u, v, w is an induced P3 in Gi. If
Rule (B2) is applicable on (Gi, ki), the algorithm applies Rule (B2). Now suppose
that Rule (B2) is not applicable. In Gi, the vertex x is adjacent to v and not
adjacent to u. Therefore, x ∈ BGi

u . We also have u′ ∈ BGi
u , so by Lemma 2 we

have that BGi
u = {u′, x}. Additionally, x, y /∈ CGi . If CGi is a clique then the

algorithm applies Rule (B4) on the graph Gi and the path u, v, w. Now suppose
that CGi is not a clique. let xi, yi ∈ CGi be two non-adjacent vertices. We have that
u, xi, w, yi, u is an induced C4 in Gi. The algorithm applies Rule (B3) on the cycle

7

u, xi, w, yi, u. This generates two instances: (Gi1, ki1) = (Gi−{(u, xi), (w, yi)}, ki−2)
and (Gi2, ki2) = (Gi − {(xi, w), (yi, u)}, ki − 2). Consider the instance Gi1. Again,
we have that u, v, w is an induced P3 in Gi1. We now have that BGi1

u = {u′, x, xi}.
By Lemma 2, Rule (B2) is applicable on (Gi1, ki1). Using the same arguments,
Rule (B2) is applicable on (Gi2, ki2). Thus, the algorithm applies Rule (B2) on
(Gi1, ki1) and on (Gi2, ki2).

We now analyze the branching number of Rule (B5). There are three cases that
we need to consider. In the first case, the algorithm generates four instances G11,
G12, G21, and G22, and then applies Rule (B2) on each of these instances. Therefore,
the branching vector in this case is (5, 8, 5, 8, 5, 8, 5, 8) and the branching number
is less than 1.404. In the second case, the algorithm generates, without loss of
generality, the instances G11, G12, and G2. The algorithm then applies Rule (B2)
on G11 and G12, and applies Rule (B2) or Rule (B4) on G2. The worst case is when
Rule (B2) is applied on G2. The branching vector in this case is (5, 8, 5, 8, 3, 6), and
the branching number is less than 1.402. In the third case, the algorithm generates
the instances G1 and G2 and applies Rule (B2) or Rule (B4) on each of these
instances. The worst branching vector in this case is (3, 6, 3, 6) and the branching
number is less than 1.398. Therefore, the branching number of Rule (B5) is less
than 1.404.

Since all the branching rules of the algorithm have branching numbers less than
1.404, it follows that the running time of the algorithm is O∗(1.404k).

References

[1] S. Böcker and P. Damaschke. Even faster parameterized cluster deletion and
cluster editing. Information Processing Letters, 111(14):717–721, 2011.

[2] P. Damaschke. Bounded-degree techniques accelerate some parameterized graph
algorithms. In Proc. 4th International Workshop on Parameterized and Exact
Computation (IWPEC), pages 98–109, 2009.

[3] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated generation
of search tree algorithms for hard graph modification problems. Algorithmica,
39(4):321–347, 2004.

[4] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data clus-
tering: Exact algorithms for clique generation. Theory of Computing Systems,
38(4):373–392, 2005.

8

	1 Introduction
	2 Preliminaries
	3 The algorithm of Böcker and Damaschke
	4 New algorithm

