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Abstract

A graph G = (V ,E ) is called a pairwise compatibility graph (PCG) if there exists
an edge-weighted tree T and two non-negative real numbers dmin and dmax

such that each leaf u of T corresponds to a vertex u ∈ V and there is an edge
(u, v) ∈ E if and only if dmin ≤ dT (u, v) ≤ dmax , where dT (u, v) is the sum of
the weights of the edges on the unique path from u to v in T . The tree T is
called the pairwise compatibility tree (PCT) of G. It has been proven that not
all graphs are PCGs. Thus, it is interesting to know which classes of graphs are
PCGs. In this paper, we prove that grid graphs are PCGs. Although there are a
necessary condition and a sufficient condition known for a graph being a PCG,
there are some classes of graphs that are intermediate to the classes defined by
the necessary condition and the sufficient condition. In this paper, we show
two examples of graphs that are included in these intermediate classes and
prove that they are not PCGs.

Keywords: Pairwise compatibility graph, Grid graph, Necessary condition,
Sufficient condition

1. Introduction

Let T be an edge-weighted tree of non-negative real-valued edge weights
with leaf set L. Let dT (u, v) be the sum of the weights of the edges on the path
from u to v in T , and dmin and dmax be two non-negative real numbers where
dmin ≤ dmax . The pairwise compatibility graph (PCG) of T is a graph G = (V ,E ),
where each leaf u ∈ L corresponds to a vertex u ∈V and there is an edge (u, v) ∈ E

if and only if dT (u, v) lies within the interval [dmin ,dmax ]. T is called the pairwise
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Figure 1: (a) An edge-weighted tree T , (b) a PCG G of T for dmin = 9, dmax = 13

compatibility tree (PCT) or the witness tree of G. Figure 1(a) represents an edge-
weighted tree T and Figure 1(b) represents a pairwise compatibility graph G of
T for dmin = 9 and dmax = 13.

Kearney et al. [1] introduced the concept of PCGs while working on the
phylogenetic tree reconstruction problem. They also found a relation about the
clique problem and the PCT construction problem for a given PCG. In a recent
research work, Long et al. [2] showed that PCGs can be applied to describe
rare evolutionary events and scenarios with horizontal gene transfer.

Kearney et al. [1] conjectured that all undirected graphs are PCGs. But Yan-
haona et al. [3] refuted the conjecture by constructing a fifteen vertex bipar-
tite graph which is not a PCG. The computational complexity of recognizing
a graph as a PCG is not known till now. Hossain et al. [4] gave a necessary
condition and a sufficient condition for a graph to be PCG. They also identified
four graph classes that are intermediate to the necessary condition and the suf-
ficient condition and gave examples of two graphs that belong to two of these
classes but are not PCGs. But finding examples of graphs that belong to the
remaining two classes and are not PCGs is still an open problem. However,
any complete characterization of PCGs is still unknown. Xiao et al. [5] gave
a complete characterization for a graph to be a PCG that admits a star as its
witness tree. Calamoneri et al. [6] found some characteristics of a PCG that
admits a caterpillar as its witness tree. In another work, Calamoneri et al. [7]
analyzed the closure properties of PCGs under different graph operations.

Researchers have also worked on some relaxations on the constraints of
PCGs. Their works have lead to some subclasses of PCG [7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17]. Ahmed et al. [18] defined multi-interval PCGs as a superclass of
PCG. A graph G is a k-interval PCG of an edge weighted tree T for mutually
exclusive intervals I1, I2, . . . , Ik of non-negative real numbers when each vertex
of G corresponds to a leaf of T and there is an edge between two vertices in G

if the distance between their corresponding leaves lies in I1 ∪ I2 ∪·· ·∪ Ik .
Constructing a PCT from a given graph G for a suitable dmin and dmax

is an interesting problem and a lot of research works have been conducted
on identifying different classes of graphs as PCGs like complete graphs, trees,
cycles, block-cycle graphs, interval graphs, threshold graphs, threshold toler-
ance graphs, split matching graphs, ladder graphs, outer subdivision of lad-
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der graphs, triangle-free outer planar 3-graphs, Dilworth-1 graphs, Dilworth-2
graphs, every graph of at most seven vertices etc [3, 6, 7, 19, 20, 21, 22, 23, 24].
Subsequently, some other graphs are also discovered which are not PCGs like
wheel graphs with at least 9 vertices, certain bipartite graphs etc [25, 26, 27].
Azam et al. [28] formulated a method to enumerate all PCGs for a given num-
ber of vertices and found that all but seven graphs of eight vertices are PCGs.
Later, Azam et al. [29] gave an algorithm to enumerate all minimal nonPCGs
for a given number of vertices, where a minimal nonPCG is such a graph that
is not a PCG but each of its induced subgraph is.

It is still unknown whether grid graphs are PCGs or not. But it has been
proven that disk graphs, a superclass of grid graphs, are not PCGs [23] and
ladder graphs, a subclass of grid graphs, are PCGs [19]. The PCT of a ladder
graph, as constrcuted by [19], is a centepede where the order of leaves con-
nected to the spine is the row major order of the original ladder graph. Using
a similar idea, grid graphs have been shown as 2-interval PCGs by Papan et al.
[30]. In this paper, we take a different route to prove that grid graphs are PCGs.
We construct examples of the remaining two intermediate classes introduced
by Hossain et al. [4] and show that these two graphs are not PCGs.

The remaining of the paper is organized as follows. Section 2 gives the defi-
nitions of the terms that we use afterwards and revisits some previous findings
regarding the necessary and the sufficient condition of PCGs. In section 3, we
show that grid graphs are PCGs. In section 4, we construct novel negative
examples for two intermediate graph classes. Finally, section 5 concludes our
paper with discussions.

2. Preliminaries

In this section, we first define some terminologies which will be used through-
out this paper, referring to [31] for graph theoretic terminologies which are not
defined here. Afterwards, we discuss some previous results relevant to our
works.

2.1. Definitions

Let G = (V ,E ) be a simple, undirected graph with vertex set V and edge set
E . An isomorphism between two graphs G1 = (V1,E1) and G2 = (V2,E2) is a one-to-
one correspondence between the vertices in V1 and V2 such that the number of
edges between any two vertices in V1 is equal to the number of edges between
the corresponding two vertices in V2. If there is an isomorphism between two
graphs G1 and G2, then we say that G1 is isomorphic to G2. The complement of a
graph G = (V ,E ) is a graph Gc = (V ,E c) on the same vertex set V such that for
any two vertices u, v ∈V , (u, v) ∈ E c if and only if (u, v) ∉E . A caterpillar is a tree
in which the deletion of all leaves produces a path. The path is called the spine
of the caterpillar. A grid graph, Gk ,l , is such a graph that vertices correspond to
the grid points of a k×l grid in the plane and edges correspond to the grid line
segments between consecutive grid points. For 1 ≤ x ≤ k, 1 ≤ y ≤ l , we denote
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the vertex corresponding to the grid point (x, y) by ux,y . The following fact
holds for grid graphs.

u1,1 u1,2 u1,p u1,l

u2,1 u2,2 u2,p u2,l

uq,1 uq,2 uq,p uq,l

uk,1 uk,2 uk,p uk,l

Figure 2: A grid graph Gk,l

Fact 1. In a grid graph Gk ,l , there is an edge (ux,y ,ux′ ,y ′ ) if and only if either of the
following two conditions is satisfied
(C1): x = x′ and |y − y ′| = 1 or
(C2): |x − x′| = 1 and y = y ′.

2.2. Some Previous Findings

Hossain et al. [4] gave a necessary and a sufficient condition for a graph to
be a PCG.

Lemma 1 (A Necessary Condition for PCGs). Let G be a graph. Let H1 and H2

be two disjoint induced subgraphs of Gc . If each of H1 and H2 is either a chordless
cycle of at least four vertices or C c

n for n ≥ 5, then G is not a PCG.

Lemma 2 (A Sufficient Condition for PCGs). Let G be a graph. If Gc has no cy-
cle, then G is a PCG.

In an attempt to characterize the intermediate graphs, Hossain et al. [4]
proposed four classes.

G
1 A graph G belongs to G

1 if Gc does not contain any chordless cycle.

G
2 A graph G belongs to G

2 if Gc consists of two induced chordless cycles,
where the cycles share some common vertices.

G
3 A graph G belongs to G

3 if Gc consists of two induced chordless cycles and
some edges that are incident to both cycles.

G
4 A graph G belongs to G

4 if Gc contains only one induced chordless cycle.

They provided examples of graphs in G
1 and G

3 classes that are not PCGs.
Whether all graphs contained in G

2 and G
4 classes are PCGs remained an open

problem [4, 23]. We construct examples in both G
2 and G

4 and prove them
not to be PCGs. To facilitate our construction, we need to revisit the negative
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Figure 3: The graph H , the first graph that was proved not to be a PCG.

example given by Yanhaona et al [3]. They showed a bipartite graph H of 15
vertices that is not a PCG. The vertices of the graph H can be divided into two
disjoint independent sets A = {a1, a2, ..., a5} and B = {b1,b2, ...,b10}. We call the
sets A and B the independent sets of H . Each vertex in A has edges with six
distinct vertices in B and each vertex in B has edges with three distinct vertices
in A. The neighborhood of each vertex is unique.

Hossain et al. [4] revisited the proof of H not being a PCG and reached the
following conclusion.

Lemma 3. Let H be the class of graphs consisting of all the graphs obtained from H

by adding edges between the vertices in the same independent set of H . Then none of
the graphs in H is a PCG.

We use Lemma 3 for constructing our negative example in Section 4.1.

3. Grid Graphs are PCGs

In this section we prove that grid graphs are PCGs by providing an algo-
rithm to construct a PCT of a given grid graph Gk ,l .

s1 s2 s3 si sk+l−1

u1,1 u2,1

u1,2 u1,3 u2,2

u3,1

u j ,i− j+1

u j+1,i− ju j+k−1,i− j−k+2 uk,l

w1,1

w1,2

w2,1

w1,3

w3,1

w2,2

wk,l

w j ,i− j+1

w j+k−1,i− j−k+2 w j+1,i− j

c c

sk+l−2

uk−1,l

wk−1,l

ul−1,k

wk,l−1

c

Figure 4: A PCT Tg of Gk,l

Figure 2 shows a grid graph Gk ,l . If k = 2 or l = 2, Gk ,l becomes a ladder
graph which is already proven to be a PCG. As Gk ,l is isomorphic to Gl ,k , here
we can consider 3≤ k ≤ l . We define a set of vertices, Di , as a diagonal set of Gk ,l

such that Di consists of each vertex ux,y ∈V (Gk ,l ) where i = x + y −1. It is trivial
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that the total number of diagonal sets in Gk ,l is k + l −1 and so 1 ≤ i ≤ k + l −1.
As k ≤ l , it is obvious that the total number of vertices in a diagonal set of Gk ,l

is at most k. One can observe that the diagonal sets induce a partition of the
vertex set of Gk ,l . That is,

⋃k+l−1

i=1
Di =V (Gk ,l ), and for 1 ≤ i , j ≤ k+ l −1 and i 6= j ,

Di ∩D j =;. In addition, |y − x| < l for each 1 ≤ x ≤ k and 1 ≤ y ≤ l .
We now give an algorithm to construct an edge-weighted caterpillar Tg cor-

responding to a grid graph Gk ,l . For each 1 ≤ i ≤ k + l −1, we set a vertex si on
the spine of Tg corresponding to diagonal set Di in Gk ,l . Then for each vertex
ux,y of Gk ,l in diagonal set Di , we draw a leaf vertex ux,y and an edge (si ,ux,y )

in Tg . Figure 4 shows the construction of Tg . We denote the weight of the edge
(si ,ux,y ) ∈ E (Tg ) by wx,y where wx,y = r − (−1)i (y − x) for each 1 ≤ i ≤ k + l − 1,
1≤ x ≤ k, 1 ≤ y ≤ l and r = k+l +1. Since |y−x| < l < r , all values of wx,y are non-
negative. For each 1 ≤ i ≤ k+ l −2, we set the weight of the edge (si , si+1) ∈E (Tg )

as c where c = 4k + 4l + 4. We now prove that Tg is a PCT of Gk ,l as in the
following theorem.

Theorem 4. Gk ,l is a PCG of Tg for dmin = 2r + c −1 and dmax = 2r + c +1 where
r = k + l +1 and c = 4k +4l +4.

PROOF. Since the diagonal sets induce a partition of the vertex set of Gk ,l , our
construction implies that there is a bijection between the set of leaves of Tg and
the set of vertices of Gk ,l . Let ux,y and ux′ ,y ′ be two leaves in Tg .

It is sufficient to prove the following two claims to establish that Tg is a PCT
of Gk ,l with the mentioned values of dmin and dmax .

Claim 1. If ux,y and ux′ ,y ′ are not adjacent in Gk ,l , then
dTg (ux,y ,ux′ ,y ′ ) ∉ [dmin ,dmax ].

Claim 2. If ux,y and ux′ ,y ′ are adjacent in Gk ,l , then
dTg (ux,y ,ux′ ,y ′ ) ∈ [dmin ,dmax ].

We first prove Claim 1.
When the leaves ux,y and ux′ ,y ′ belong to the same diagonal set Di , the cor-

responding vertices are not adjacent in Gk ,l . Our construction entails that x+y =

x′+y ′ = i+1 and dTg (ux,y ,ux′ ,y ′ ) = wx,y +wx′,y ′ = r −(−1)i (y−x)+r −(−1)i (y ′−x′) ≤

2r+|y−x|+|y ′−x′| < 2r+l+l < 2r+4k+4l+3 = 2r+c−1 = dmin . Since dmin < dmax ,
dTg (ux,y ,ux′ ,y ′) ∉ [dmin ,dmax ].

Now let the leaves ux,y and ux′ ,y ′ belong to the different diagonal sets Di and
Di ′ respectively. Let si and si ′ be the nodes on the spine of Tg which are adjacent
to ux,y and ux′ ,y ′ , respectively. Then, from the construction of caterpillar Tg , for
each 1 ≤ x, x′ ≤ k, 1≤ y, y ′ ≤ l , 1 ≤ i , i ′ ≤ k + l −1 and i 6= i ′, we can write,

dTg (ux,y ,ux′ ,y ′) = wx,y +wsi ,si ′
+wx′,y ′ . (1)

Since wx,y = r − (−1)i (y − x), wsi ,si ′
= |i − i ′|c and wx′,y ′ = r − (−1)i ′ (y ′ − x′),

equation (1) can be written as:

dTg (ux,y ,ux′ ,y ′ )= r − (−1)
i
(y − x)+|i − i ′|c + r − (−1)

i ′
(y ′

− x′
). (2)
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Let |i − i ′| ≥ 2. By Fact 1, the leaves ux,y and ux′ ,y ′ are not adjacent. Then
dTg (ux,y ,ux′ ,y ′) ≥ r −|y − x|− |y ′− x′|+2c > r − l − l +c +c = k + l +1−2l +4k +4l +

4+ c = 5k +3l + c +5 > 2k +2l +2+ c +1 = 2r + c +1 = dmax . Since dmin < dmax ,
dTg (ux,y ,ux′ ,y ′) ∉ [dmin ,dmax ].

What remains for proving Claim 1 is the case when ux,y and ux′,y ′ are not
adjacent in Gk ,l and |i −i ′| = 1. This part will be proved by contraposition. Here
i and i ′ has opposite parity. Without the loss of generality, let i be even and i ′

be odd. It follows that dTg (ux,y ,ux′ ,y ′ ) = r − (y − x)+c + r + (y ′− x′) = 2r +c + (y ′−

y)+ (x − x′). Here dmin = 2r +c −1 and dmax = 2r +c +1. Let (y ′− y)+ (x − x′) = 0.
Then |i −i ′| = |(x−x′)−(y ′−y)| = |−2(y ′−y)| = 2|y ′−y | = 1 which is not realizable.
Again, for ux,y and ux′ ,y ′ to be adjacent in Gk ,l , either (C1) or (C2) from Fact 1
must hold.

Thus, to prove Claim 1, it suffices to prove that if (y ′−y)+(x−x′) =±1, either
(C1) or (C2) holds true. We will consider each value of (y ′− y)+ (x − x′) for

i − i ′ = (x + y)− (x′
+ y ′

) =−(y ′
− y)+ (x − x′

) = 1 (3)

Let (y ′− y)+ (x − x′) = −1. Adding with Equation 3, we get 2(x − x′) = 0 =⇒

x = x′ and y ′− y =−1 and (C1) is satisfied. Now let (y ′− y)+ (x− x′) = 1. Adding
with Equation 3, we get 2(x−x′) = 2 =⇒ x−x′ = 1 and y ′ = y and (C2) is satisfied.

Now we will consider similar cases for

i − i ′ = (x + y)− (x′
+ y ′

) =−(y ′
− y)+ (x − x′

) =−1 (4)

Let (y ′− y)+ (x − x′) =−1. Adding with Equation 4, we get 2(x − x′) =−2 =⇒

x− x′ =−1 and y ′ = y and (C2) is satisfied. Now let (y ′− y)+ (x− x′) = 1. Adding
with Equation 4, we get 2(x−x′) = 0 =⇒ x = x′ and y ′−y = 1 and (C1) is satisfied.
Thus Claim 1 is proved.

We now prove Claim 2. Here we assume that ux,y and ux′ ,y ′ are adjacent
in Gk ,l . Then either (C1) or (C2) from Fact 1 holds. In either case |i − i ′| = 1.
Without the loss of generality, let us again assume i is even and i ′ is odd. From
Equation 2,

dTg (ux,y ,ux′ ,y ′ ) = r − (y − x)+c + r + (y ′
− x′

) = 2r +c + (x − x′
)+ (y ′

− y)

Since either (C1) or (C2) holds, dTg (ux,y ,ux′ ,y ′ ) = 2r +c ±1 ∈ [dmin ,dmax ]. �

We can construct a PCT of a given grid graph using the above algorithm
which clearly runs in linear time. This construction of caterpillar Tg also sup-
ports a finding of Calamoneri et al. [6] as Gk ,l is a triangle-free graph.

4. Negative Examples

In this section, addressing the open problems in [4], we show negative ex-
amples in some classes of graphs that are intermediate to the classes defined
by the necessary and the sufficient condition given by Hossain et al. [4].
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a1

a2

a3 a4

a5

b10

b1
b6

b7

b9 b8

b2

b3 b4

b5

Figure 5: A negative example graph H2 in the class G
2. The thick edges were already in H . The

thin edges are newly introduced.

4.1. Negative Example for G
2

We take the graph H (in Figure 3) which was proved not to be a PCG. We
add edges so that the vertices in A form a 5-cycle and vertices in B form a 10-
clique. Let this graph, presented in Figure 5, be H2. By Lemma 3, the graph H2

is not a PCG. We prove the following theorem by showing that the graph H2 is
in the class G

2.

Theorem 5. The class G
2 contains some graphs which are not PCGs.

PROOF. We already have a graph H2 which is not a PCG. It is sufficient to show
H2 is in G

2, i. e., its complement graph H c
2

has two chordless cycles with some
common vertices. The complement graph H c

2
is shown in Figure 6 where there

are two chordless cycles C1 = {a1, a4, a2,b10} and C2 = {a1, a3, a5,b7}. Since two
cycles have the vertex a1 in common, the graph H4 belongs to the class G

2.
Since the graph H4 is not a PCG, the proof is completed. �

4.2. Negative Example for G
4

We now take the graph H1 proven not to be a PCG as a negative example
of the class G

1 in [23]. Like H , it has two sets of vertices A = {a1, a2, ..., a5} and
B = {b1,b2, ...,b10}. The vertices in A form a 5-clique. We introduce a new set of
vertices C = {c1,c2, ...,c5} that form a C c

5
, the complement graph of a 5-cycle. In

addition, from every vertex v in the set A ∪B , we add an edge to every vertex
in C . We call the resultant graph H4. To prove that the graph H4 is not a PCG,
we restate the following lemma from [7].
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a1

a2

a3 a4

a5

b10

b1
b6

b7

b9 b8

b2

b3 b4

b5

Figure 6: The complement graph Hc
2

of H2. Two chordless cycles C1 = {a1,a4 ,a2 ,b10} and C2 =

{a1,a3 ,a5 ,b7} share a common vertex a1.

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

Figure 7: The graph H1 that was proven not to be a PCG.

Lemma 6. If a graph G is not a PCG, then every graph containing G as an induced
subgraph is also not a PCG.

Corollary 7. The graph H4 is not a PCG.

PROOF. The subgraph of the graph H4 induced by vertices in A ∪B is isomor-
phic to H1, which is not a PCG. Hence, by Lemma 6, the graph H4 is also not a
PCG. �

We now show that the graph H4 belongs to the class G
4 by showing that its

complement graph H c
4

has only one chordless cycle.

Lemma 8. The graph H4 belongs to the class G
4.

PROOF. In the graph H4, from every vertex v in the set A ∪B , there exists an
edge to every vertex in C . Hence, in the graph H c

4
, from no vertex v in the

set A ∪B , there exists an edge to any vertex in C . Hence, in the graph H c
4
, the

vertices in C and the vertices in A∪B be in different connected components.
The connected component of the graph H c

4
consisting of vertices in the set

C is the complement of C c
5
, i. e., C5, a chordless cycle.
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The subgraph of the graph H4 induced by the vertices in the set A∪B is iso-
morphic to the graph H1. Therefore, the connected component(s) of the graph
H c

4
consisting of vertices in A∪B become the complement of H1, i. e., H c

1
. Since

H1 ∈G
1, there is no chordless cycle in H c

1
.

Hence, in total, the graph H c
4

has only one chordless cycle and the proof is
completed. �

From Corollary 7 and Lemma 8, we get the following theorem.

Theorem 9. The class G
4 contains some graphs which are not PCGs.

5. Conclusion

In this paper, we have proven that grid graphs are PCGs by giving a lin-
ear time algorithm to construct the PCT of a given grid graph. Since we have
given a caterpillar construction for the PCT of a grid graph, this construction
may help to find a complete characterization of PCGs admitting caterpillars as
their witness trees. However, there are different superclasses of grid graphs
like partial grid graphs, 3D grid graphs, king graphs etc and we do not know
whether they are PCGs or not. An interesting future work might be to find all
the properties of the PCTs of triangle free PCGs. Moreover, we have proven
that two of the graph classes intermediate to the classes defined by the neces-
sary condition and the sufficient condition are not PCGs leading to a conclu-
sion that neither of the four intermediate graph classes defined by Hossain et
al. [4] are PCGs. These proofs may be helpful for a complete characterization
of PCGs and finding the complexity class of the PCG recognition problem.
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