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Abstract

Conventional approaches to information retrieval search through all applicable entries
in an inverted file for a particular collection in order to find those documents with
the highest scores. For particularly large collections this may be extremely time
consuming.

A solution to this problem is to only search a limited amount of the collection
at query-time, in order to speed up the retrieval process. In doing this we can
also limit the loss in retrieval efficacy (in terms of accuracy of results). The way
we achieve this is to firstly identify the most “important” documents within the
collection, and sort documents within inverted file lists in order of this “importance”.
In this way we limit the amount of information to be searched at query time by
eliminating documents of lesser importance, which not only makes the search more
efficient, but also limits loss in retrieval accuracy. Our experiments, carried out on the
TREC Terabyte collection, report significant savings, in terms of number of postings
examined, without significant loss of effectiveness when based on several measures
of importance used in isolation, and in combination. Our results point to several
ways in which the computation cost of searching large collections of documents can
be significantly reduced.
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1. Introduction

As we continue to amass large collections of data, text, image, audio, video
etc., for work and for leisure reasons, if we wish to search through these collections
effectively and efficiently we make large demands on our search engines. An effective
search engine is one that can present only relevant documents to a user in response to
their search query, while an efficient search engine is one that can make the most out
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of the system resources available to it, i.e. memory, hard-disk space and CPU cycles,
and return results quickly. Although the effectiveness and efficiency of a system
are often in conflict as it is difficult to make an increase in one without degrading
the other and for the most part the two are treated independently, in our work we
consider both in order to strike a balance between the two.

Web search engines have to balance many parameters including the size and
growth rate of the web and the quality of the documents they index. Much of the
success of the Google search engine has been attributed to the incorporation of the
PageRank formula, which identifies “important” documents in the Web (based on
the web’s linkage structure) and gives these a prioritised ranking. We can view this
importance estimation of a document as one indicator of its overall quality, and if
we can discriminate between documents of higher and lower quality with a degree of
confidence, we may promote high quality documents and demote documents of lower
quality, in a search ranking. Furthermore, if we can identify high quality documents
and search only among these at query time, then not only should we be able to
improve the effectiveness of the search, but we should also reduce the amount of
processing required to perform a search.

In this paper we investigate a number of measures (including PageRank) which
may indicate the quality of a document in a query-independent manner. We use
these to filter out documents that may not be of high quality and to promote higher
quality documents. This means that the search process may be both more efficient
and more effective.

We begin by describing the specific stage of the information retrieval process that
we are interested in as well as detailing related research that has been done elsewhere
to date, and we do this in the next section. In Section 3 we discuss the need for quality
assessment in search systems and we introduce some quality assessment measures,
and then in Section 4 we describe a dozen query-independent measures that may be
used in detecting high quality documents in a collection.

Our experiments in Section 5 then use these measures as parameters and we assess
a number of these (both taken together and in combination), in order to investigate
their usefulness in reducing the collection at search time where usefulness is measured
in the reduced percentage of postings list entries to be searched. We experiment with
a number of different combination methods for these parameters at indexing and at
retrieval time. Our findings show that the Support Vector Machine (SVM) approach
provides an effective means by which to combine the query-independent measures
into a sorted inverted index. Also, with the use of our most effective sorted index we
can achieve at least the same retrieval performance in terms of precision at rank 10
by only examining the top 15% of the postings in the index.
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The experiments are then followed by a short discussion of the impact of our
contribution and we then present our conclusions and as some directions for future
work in Section 6.

2. Related Work

Within an information retrieval (IR) system, the process that we are chiefly
concerned with is the document retrieval component of the system. This process
receives a query, and using this query consults an inverted index in order to generate
a list of highly-scored documents which may be relevant to the query. The inverted
index consists of a lexicon, which holds each of the terms in the index of the system
as well as the location of the postings list associated with each of these terms. When
the system executes a query, the retrieval process consults the lexicon for each term
in the query. This provides the locations of each query terms’ postings list, and so
allows the postings to be retrieved for each term. Postings lists are then weighted
and combined according to a retrieval strategy providing a list of potentially relevant
documents to be returned to the user. This typically involves the examination of
all postings entries associated with each of the query terms; our area of interest
is in reducting of the number of these postings that need to be examined in order
to produce the final list of ranked results, while at the same time still retaining a
high quality list for retrieval. So, although our chief concern is in improving the
performance of the document retrieval component of the IR system, in order to best
support this we need to address how the inverted index is built, to allow the retrieval
component to perform more effectively.

We now describe some related work on approaches to reduce the “search space”,
while simultaneously aiming to maintain the same level of accuracy.

2.1. Nearest Neighbour Search

In the context of information retrieval, finding the “nearest neighbours” corre-
sponds to finding the n closest documents to a query, where “closeness” is measured
by a similarity measure. This can be done naively by performing a sequential search
through the complete collection and then selecting the top n documents or to use an
inverted file where the record keys are index terms such as t, and record entries are
the ft individual document identifiers containing the keyword index. In order to re-
duce the search time, it has been suggested that query terms be evaluated in a given
order, with terms with the lowest value of ft starting first. These are the index terms
with the lowest number of occurrences in the collection, and therefore (according to
most term-weighted retrieval strategies) of most influence in the document ranking
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process. Using this approach, inverted file records containing query term(s) with the
highest ft may not searched at all once an upperbound is reached [44].

An algorithm for efficiently calculating the nearest neighbours maintains two
sets: R and S, where R contains all documents which at any point are candidates
for the final set of nearest neighbours, and S contains all documents that have been
examined so far. When processing each of the postings, if the document is in the
set S it is ignored, otherwise it is added to S and a similarity value is calculated
between the document and the query. If this value is higher than any of the values
in R, then the document is also added to R. After processing all documents for a
given term, a maximum possible similarity value of the documents containing the
unprocessed query term(s) can be calculated, referred to as the upperbound. If this
upperbound is lower than the current best value, then the process can be terminated.
This means that whole postings lists for a particular term, or terms, may not need to
be processed in order to find the exact nearest neighbours, so allowing faster query
throughput. Although this has been shown to be effective, updating the collection
by adding new documents carries an additional overhead since the maximum term
frequency in each postings list must be maintained.

2.2. Self Indexing

For a conjunctive Boolean query, the maximum number of accumulators or regis-
ters that is required1 is the frequency of the least common query term. If the query
is processed in order of least to most common query term, only the documents that
are common to all need to be evaluated. This self-indexing approach [32] allows
inverted lists to be scanned quickly in order to retrieve these required postings. It
also allows postings that are not common to all query terms processed at that point
to be skipped (enabling faster evaluation of Boolean queries).

Moffat and Zobel [32] identify “the principal costs of ranking” as “the space
in random access memory, and the time required to process inverted lists”. In an
attempt to reduce the number of accumulators necessary to process a query, they
proposed two strategies: quit and continue: where an upper-bound is set on the
number of accumulators that are to be used in the processing of each query. The
quit strategy is carried out in a similar way to that of the nearest neighbour search:
ordering query terms by decreasing weight, and then stopping once a fixed number
of accumulators have been filled An alternative to the quit strategy is to continue
processing after the accumulators have been filled, allowing existing accumulators to

1Each accumulator keeps the score of a given document as the query is being processed
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be updated but not allowing new ones to be created: this is known as the continue
strategy.

2.3. Sorted indices

As an alternative to the document-ordered index, posting lists have been sorted
by various metrics in order to reduce the time and resources necessary to produce a
ranked set of results in response to a query. Some of these are now described.

2.3.1. Frequency sorted

Persin [38] introduced the idea of frequency-sorted indexes, where the posting
lists are each sorted by decreasing within-document term frequency dt,d. He suggests
that the majority of query time and memory is spent processing the most commonly
occurring terms, which are the least informative in terms of their contribution to
overall query-document similarity.

In order to filter documents at query time, two thresholds are calculated for
each query term: “an insertion threshold kins and an addition threshold kadd, where
kins ≥ kadd”. During processing, a tf.idf score is calculated for each document in the
postings list, and if this tf.idf score is more than kins, the document is considered as
a candidate for inclusion in the final ranking. If the document is already present as a
candidate then this score is added to its previous score, otherwise a new accumulator
is created for this document. If tf.idf < kins, but tf.idf > kadd, and if this document
has an accumulator, tf.idf is added to the accumulator’s value. Finally, if the tf.idf
score is less than kadd this entry is ignored and the next posting is processed. The
skipped documents are considered as unimportant as if a large enough number of
documents are found with high similarity to the query, then those documents with
small partial similarities are unlikely to have a major impact on the outcome of the
final ranking. However if each of the postings lists are sorted in decreasing order of
dt,d, then there is no need to keep processing more postings once tf.idf < kadd, as all
postings below this point will have the same or lower tf.idf .

Using this type of index it has been shown that CPU time and disk traffic can be
reduced to approximately one third versus the case of an unsorted index. However, it
should also be noted that Persin’s experiments were carried out using queries ranging
in length from 35 to 130 terms, which would allow greater gains to be achieved using
this approach, rather than the much shorter queries that a user would typically use
in interactive searching.

2.3.2. Impact sorted

Impact-ordered indexes (introduced by Anh et al.) [3], are a form of inverted
index ordered by quantised weights (or impacts). This provides the facility to only
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decode postings with highest impact, thereby reducing query processing time while
at the same time improving retrieval effectiveness. Moffat and Zobel [32] proposed
filtering documents based on the idf component of the tf.idf term-weighting scheme,
similar to Persin [38] and Persin et al. [39] who sorted documents based on term
frequency as mentioned above, thus allowing filtering based on the tf.idf . Anh et
al. suggest sorting using a normalised tf.idf term weighting scheme, or based on the
impact of a term in a document, similar to Buckley and Lewit [9]. This is known
as the term impact. In further work on the impact sorted index, [4] explored the
use of ranks of the term frequencies in each document (rather than the frequencies
themselves). In [2] Anh et al. explored the use of document impacts in the BM25
method, showing that for short queries an improvement in retrieval effectiveness
could be achieved, while also reducing the number of tuning parameters necessary
for its calculation.

Anh and Moffat also experimented with early termination schemes, such as the
quit and continue schemes introduced by Moffat and Zobel [32]. Also, the use of
the quantised components of their tf.idf similarity measure allows for faster and
more memory-efficient calculation of similarity scores. However in [3], their term
impact sorted index did not perform as well (on a per postings processed basis),
when compared to a term frequency sorted index (as in [39]) when low numbers of
postings had been processed.

2.4. Document-Centric Pruning

The Document-Centric Pruning (DCP) approach proposed by Büttcher and Clarke
[10] retains only the terms in each document that are most likely to be queried. The
importance of a term to a document is determined by its contribution to the docu-
ment’s Kullback-Leibler divergence (KLD) from the entire collection. In addition to
the DCP, Büttcher and Clarke prune the most frequent terms of the (top 1,000,000
terms in [10]), resulting in a very small index which can be held in memory and is
supplemented by an unpruned index which can deal with rare query terms.

Ann and Moffat [4] also calculate their impact scores in a document-centric man-
ner, which essentially assigns impact scores to the terms within each document.
Similarly Carmel and Amita [12] have explored the used of document-at-a-time pro-
cessing, with successful results, using their WAND algorithm.

2.4.1. Access ordered

A further form of sorted index (introduced by Garcia et al. [22]), is an Access
Ordered Index, in which the postings lists are ordered based on previous queries.
Founded on the idea that even with a large number of different queries, the same
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documents are ranked highly, and postings are ordered so that the documents re-
turned by the retrieval system for most queries are towards the top of the lists and
the less highly ranked documents are stored towards the bottom. Again, using this
approach, not all postings need to be decoded as the most frequently accessed post-
ings will be evaluated first, and so effective retrieval can be achieved using much less
resources than in a conventional approach.

In order to generate the access counts, Garcia et al. firstly processed 1.9 million
web queries from an Excite search engine log, on a collection of 1.6 million documents.
For each of these queries they generated a ranked list of documents, using the Okapi
BM25 formula. For every time a document occurred within the top 1000 of this
ranked list for a query, its access count was incremented. Following the execution
of these queries, each document had an associated access count, so allowing each
postings list to be sorted in descending order, based on the document’s access count.

They experimented with various query pruning techniques, again including the
quit and continue strategies from [32]. They also introduced a number of other
strategies to take advantage of the access ordered index, in order to limit the number
of postings being processed. The most successful of these was their MAXPOST
scheme, in which a maximum number of postings are processed from each of the
postings lists for each of the terms in the query. This is the same scheme developed
by us independently and reported in [19, 20], although we referred to it as top subset
retrieval.

2.5. Index pruning

Another area to reduce the search space in retrieval is called index pruning, where
pruning methods are used to remove the least important postings from the index.
Pruning methods include stopword removal and static index pruning, both of which
are explained below.

Since frequently occurring words do not offer much in terms of discrimination
among documents they are often removed from the index. These are known as
stopwords, and since these are the most frequently occurring terms, their elimination
can result in a significant reduction in index size, up to 40%, according to [6].

The aim behind static index pruning is to effectively reduce the size of the inverted
index in such a way that retrieval performance is not affected, or at least is limited,
and it can essentially be viewed as a type of lossy compression. The way in which
this is done is to identify the postings that are unlikely to affect the overall accuracy
of the system.

Based on the fact that a scoring function assigns a score to each document for a
query so that the highest scores are the most relevant, Carmel et al. [14] proposed
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two methods for static index pruning. The uniform pruning method removes all
postings entries from the index whose score falls below a threshold, while the term-
based approach assigns thresholds to each term. Based on experiments in [14] it
was found that the term-based approach to pruning performed best, however in [13]
Carmel et al. found that the uniform-based approach performed better in terms of
similarity with the top 10 results of an unpruned index. Also in the area of index
pruning Long and Suel [31] investigate the use of pruned indexes with global page
ordering using PageRank scores for documents; although their work focusses on query
throughput, rather than on result quality.

2.6. Query Caching and Two-Tier Indexes

There has been a substantial amount of research carried out in the area of query
caching as well as two-tier index architectures. Both these approaches attempt to
maximise the queries that the search engine can respond to with information that
it stores in memory, rather than resorting to a second tier which generally contains
information regarding a larger number of documents than the first tier index or cache,
although it is generally slower to search. Therefore the aim is to answer the user’s
search by only consulting the top tier or cache.

In the area of intelligent caching Lempel and Moran [30] present a probability
driven approach to query caching, while Fagni et al. [18] uses a two levels of caching,
with results stored in either a top-level static section or a dynamic second-level
section. [51] takes the approach of improving both the query caching as well as the
compression techniques used in the index to increase query throughput.

Skobeltsyn et al. [43] propose the use of static index pruning in conjunction with
caching to improve performance: because a cache is employed a smaller pruned index
is required for queries not dealt with by the cache. The approach used by Skobeltsyn
et al. to generate a pruned index is similar to Ntoulas and Cho [34], which aims to
reduce the size of the index without degrading the overall results. In an approach
that is similar to the skipping used by Moffat and Zobel [32] (discussed in Section
2.2) Broder et al. [8] provide an efficient skipping of query words using their WAND
operator in a two-level architecture.

2.7. Summary of Existing Search Space Reduction Techniques

From our examination of all these index modification methods it is obvious that
they essentially all rely on different term weighting schemes to determine the im-
portance of a posting entry and then choose whether to eliminate that posting from
further processing based on this importance. Long and Suel [31] does offer an alter-
native to this by using Pagerank as a method for ordering posting lists, however as
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they state, their work is focussed ”on query throughput and response time, and in
our experiments we try to bypass the issue of result quality which is of course very
important”. Alternatively our approach is focussed on result quality, looking directly
at the impact that various different global sorting measures have on the result qual-
ity. This aims to produce a global measure that is more effective than standalone
measures such as Pagerank and so can then be used by approaches such as [31].

Another exception to using only a term-weighting approach is the access count
measure – however, if these counts are generated by a search system that relies on
a term-weighting approach, as was the case in original paper by Garcia et al. [22],
it could also be argued that this too may be reliant on a term-weighting strategy.
Although term-weighting information is important in determining the importance of
a document, we suggest that the quality of a document itself should also be considered
in a query-independent manner. With regard to the related work on query caching,
although some caching techniques will utilise certain quality measures such as click-
through information, what we focus on is the affect that different query-independent
quality measures can have on a sorted index. Although we do not discount the
usefulness of caching approaches, we investigate the benefit of incorporating quality
measures into a sorted index. In the next section we introduce a number of such
measures.

Also to clarify, here we concentrate only on term-based pruning, rather than
document centric approaches such as those described previously [10, 4, 12]. Although
these have demonstrated the ability to significantly reduce the size of the inverted
index, for our own purposes of examining the global importance of documents, this
fits more naturally with a term-centric approach which we focus on in this work.

3. Search Quality

Information retrieval systems were originally developed to manage and retrieve
information in libraries, where not only would the information have been carefully
selected, but good document quality could be assumed from the reviewing process
used by the publishers of documents in those libraries. Because all information
would be of a high quality, retrieval approaches based purely on term distribution
statistics were reliable. However this is not the case with large collections of unedited
documents such as on the web, in blogs, in some enterprise collections or any of the
many fora where no reviewing process takes place when publishing a document. Not
only that, but as many of the queries issued to search engines may have hundreds
of thousands of returned documents (that may vary greatly in terms of quality), it
seems intuitive that the use of information regarding the quality of documents should
be of benefit in a ranking process in order to promote higher quality retrieval.
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In an effort to have their web documents ranked more highly by search engines,
some malicious users create spam documents. Since 80% of web searchers view no
more than the top 10 to 20 results [25], it is important for a web site to achieve a
high ranking for user searches. Not surprisingly many operators make use of Search
Engine Optimisation (SEO) techniques in order to gain a higher ranking. Given
that the amount of spam on the web is estimated at 13.8% for English-language
pages [35], the identification and elimination of such pages can save a large amount
of search engine resources (in terms of indexing and retrieval), as well as improving
the quality of the search results produced for the user.

The notions of quality and authority have been discussed in a number of studies
into relevance criteria including “goodness” [16], “perceived quality” [37], “actual
quality”, “expected quality” [47] and “authority” [16], although any assessment of
quality is dependent upon the needs of the individual seeking the information, as
well as on the nature of the source being evaluated.

While the quality of a web site is a matter of human judgement, there are major
factors influencing the notion of quality. In the late 1990s, a lot of work focused on
the use of link analysis algorithms to identify high quality documents, with [36], [29]
and [15], all exploiting the linkage structure of web documents. The aim of such
linkage analysis measures as PageRank [36] is to “measure the relative importance
of web pages”, or in other words their relative quality.

Zhu and Gauch [52] identify and investigate six quality metrics to incorporate into
the retrieval process: currency, availability, information-to-noise, authority, popular-
ity and cohesiveness. They evaluated performance using a small corpus, with 40
queries taken from a query log file. They observed some improvement in mean
precision, based on all the quality metrics although not all improvements were sig-
nificant. The smallest individual improvements were for Popularity and Authority
(both non-significant). The improvements obtained through the use of all other
metrics were significant and the largest individual improvement was observed for
the Information-to-noise ratio. Using all quality metrics, apart from Popularity and
Authority, resulted in a 24% increase in performance over the baseline document
ranking.

Amento et al. [1] evaluated a number of link and content-based algorithms, using
a dataset of web documents rated for quality by human topic experts. They found
that “three link-based metrics and a simple content metric do a very good job of
identifying high quality items.” However, surprisingly, they found that indegree
performed at least as well as the more advanced HITS and PageRank algorithms,
as well as a simple count of the pages on a site proving to be as successful as any
link-based methods.
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We now discuss in more detail some of the query-independent evidence that can
be used to measure the quality of retrievable information.

4. Index Ordering by Query-Independent Measures

In order to effectively judge the importance of a document in a query-independent
manner the use of term-frequency information alone is not ideal, as it is susceptible
to the basic spamming techniques described above. We investigate the usefulness
of query-independent measures for sorting an inverted index, both when used alone,
and in combination. Our goal is to produce a sorting of postings entries which
minimises the drop-off in retrieval accuracy as we process fewer postings in order
to retrieve documents in response to a user’s query maximising both efficiency and
effectiveness.

We judge effectiveness by the number of document postings that the system
processes rather than the time necessary to process each query. This is because we are
working with an uncompressed inverted index, as the traditional means of producing
a compressed inverted index is to utilise the d−gaps or run−lengths in the document
identifiers [48], which are more suitable for compression using schemes such as those
of [17] or [23]. These types of compression schemes (as well as others) have shown
to have a considerable impact on retrieval speed and so comparing an uncompressed
index with a compressed one would not allow for meaningful comparisons. Rather we
make our evaluations based on the number of postings processed assuming that the
further savings in processing speed obtainable by compression can also be applied to
our reduced index.

We now describe some query-independent methods useful in identifying a docu-
ment’s importance and also in sorting the index.

4.1. Linkage Analysis

Two well known measures of the popularity of a document, based on the hy-
perlink structure among documents are Indegree and Pagerank. The indegree of a
document is a count of the number of documents that link to it and is founded on
the assumption that a link between two documents carries an implicit vote between
them. PageRank [36] is a more advanced method to calculate the popularity of a
document, based on the linkage structure between documents. Both these measures
provide a query-independent measure of popularity or quality based on analysis of
the linkage structure connecting documents.
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4.2. Access Counts

As discussed in Section 2.4.1, access counts can be used as a means of determining
the likelihood that a document would be returned in response to a query. Similar
to Garcia et al. [22], we provide an access count measure generated from a different
Excite query log of 2.4 million queries (from December 1999), again incrementing the
access count of any document returned within the top 1,000 for each of the queries.

4.3. Information-to-noise ratio

The information-to-noise ratio can be computed as the number of terms in the
document after pre-processing, divided by the total length of the document [52]. It
is believed that a document with a lower information-to-noise ratio score is generally
of lower quality than a document with a higher score. This may (for example) be
a result of a small number of words in a document that contains a table, as well as
other HTML mark-up, and consequently this document would not contain as much
information for a user.

4.4. Document Cohesiveness

Document cohesiveness measures how closely related the information within a
document is. Overall, information may become incoherent with the incorporation of
unnecessary details, which may lead to confusion for a reader. Although incoherence
may occur naturally within a document, a high level may indicate that a document
is not of high quality, and a user may find it difficult to find relevant information
when it is surrounded by unrelated information.

4.5. Spam

Not all web document authors are truthful about the content of their web pages,
and some insert false content in order to gain increased exposure on the web. Such
spam documents are unlikely to be relevant to most users’ information needs thus
a static spam feature, which can give a spam score to each document based on the
prospect of it being spam, should be of use in order to promote non-spam documents.

4.6. Click-Through Data

For a typical query issued to a web search engine the user may only be interested
in one, or a very small number of the potentially millions of documents returned. As
“users do not click on links at random, but make a (somewhat) informed choice” [27],
and although these clicked-on documents may not provide a perfect annotation of
relevance (between a query and a document) they do provide information that may
be used in order to improve the results presented to a user. A click-through is
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recorded when a document in the result list (returned by an IR system) is clicked on
by a user indicating that the user is making an informed decision that the document
is at least of some interest.

4.7. Visitation Count

The visitation count of a document is a count of the number of times that a
document is visited. A visitation count corresponds to the total number of times
that a document is viewed, and not necessarily coming as a result of a search. This
is quite a valuable source of information regarding the popularity of documents,
however is also quite difficult to obtain as visitation counts can generally only be
obtained from internet providers, proxy servers, web browsers or operating systems,
and due to the potentially sensitive nature of this type of private information it is
generally kept confidential.

4.8. Document Structure and Layout

One other important aspect of query-independent document importance (that is
often overlooked from a IR point of view) is the structure and layout of a page, and
how this relates to the quality of a document. We consider documents that follow
certain text layouts to be higher quality than those with the same content in a less
well organised fashion.

4.9. HTML Correctness

The level of detail contained within the HTML structure of a web document may
provide an insight into the level of quality of that document, in a query-independent
way. If a document is compatible with the HTML specifications [45], this gives an
indication of a higher quality document. If a document contains errors, such as
wrongly named tags, this could indicate that the document is of lower quality.

In order to investigate how useful the correctness of a document’s HTML is at
indicating the quality of that document, we processed each document in the collec-
tion, looking for compliance with the HTML specifications as defined by the World
Wide Web Consortium (W3C). This generated two lists, the number of errors and
the number of warnings for each document in the collection, where an error corre-
sponds to a serious error such as an HTML tag in the document that is not in the
W3C specifications, whereas a warning corresponds to something less severe such as
an absent closing tag for a specific element.

4.10. Document Currency

Document currency deals with how current, or up-to-date a document is. In its
simplest form this can take into account the date a document was last updated.
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4.11. URL Information

Important information can be extracted from the actual URL of a web document.
The hierarchal structure that is inherent in the URL is often ignored, even though this
is quite important and is often viewed as being closely related to the link structure
of the Web [49]. Due to the hierarchal structure that is used to organise documents,
those at the root of directories are usually more general (in terms of content) than
those found at the lower levels.

One simple query-independent measure derived from a web document, is its URL
depth. We view documents with a shorter URL depth as being more authorative
(within the overall context of the web). In our experiments we use this to assign an
importance measure to each document, derived from the URL depth as well as the
URL length (with the length measured in characters).

4.12. Document Length

In calculating the likelihood that a document is relevant to a query, the length
of the document may have an impact on this, taking for example ranking methods
such as BM25, although the fact that one document is longer than another is not
necessarily an indication that one is of higher quality.

4.13. Term-Specific Sorting

There are other query-independent measures for document importance based on
the index term occurring within them. For instance, a simple measure of significance
for a document, on a term-by-term basis is the number of times that term occurs
in the document. Persin [38] and Persin et al. [39] have used this measure to sort
the postings for each term. A more sophisticated way to measure the importance of
a document (on a term-by-term basis) is to use a term weighting approach, such as
BM25. For an adhoc retrieval task and ignoring any repetition of terms in the query
(as is the case for the vast majority of web queries) this function can be written as:

BM25(q, d) =
∑
tεq

log

(
N − dfi + 0.5

dfi + 0.5

)
× (k1 + 1)tfi

k1((1− b) + b dl
avdl

) + tfi
(1)

where dfi is the number of documents in the collection that contain the term i,
and k1 , k3 and b are parameters. When applied to each document (in each term’s
postings list separately) it provides a pre-calculated BM25 score for each posting
list. For a single term query this will provide the same ranking of documents as
that generated by BM25 at query time. The only missing element from calculating
a full query-dependent score (for multi-term queries) is the summation of each query
term’s scores. This of course is something that can only be done at query execution
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time. Therefore it is as close as we can get to a query-dependent estimation of the
query-dependent BM25 score.

If we are only concerned with calculating a score that is only to be used as a
means by which to sort postings and this is done on a term-by-term basis, there
is then no need to include any global term information, such as dfi (the number
of documents in the collection that contain the term i). This leaves the simplified
calculation as:

BM25(d, i) =
(k1 + 1)tfi

k1((1− b) + b dl
avdl

) + tfi
(2)

which gives a relative measure of importance for each document in each postings list.

4.13.1. Global BM25 Sorting

Although the previous BM25 sorting is carried out on a term-by-term basis,
we can also provide a static BM25 score of all the documents in the collection.
These scores are calculated similarly to the way in which term-specific scores are
generated, however we also keep track of the scores accumulated by each document
and increment their score after each term is processed. For this we use the BM25
formula, as in equation 1, which takes into account the relative importance of each
of the terms, unlike the scores calculated on a single term basis.

However, this basic global BM25 measure is likely to underachieve due to its up-
weighting of infrequently occurring terms in the collection, due to the idf component
of the BM25 formula. This gives a higher weight to terms that occur less frequently
within a collection, which is beneficial when we do not want to give high weights to
very frequently occurring documents, however it also gives abnormally high weights
to very infrequently occurring terms within a collection. As described by Zipf’s Law
[53] the most important terms are those that occur a moderate number of times.
Usually the case where the terms occur too frequently are taken into account with the
removal of stopwords, however identifying a pre-defined list of infrequently occurring
terms to be removed is more difficult to generate in a collection-independent manner
at least. In order to investigate the effect of this on the generation of our global
BM25 measure, we no longer consider terms that do not occur more than a specified
number of times within the collection. Varying this threshold gives us a clearer
indication of the effect of including infrequent terms on the generation of a static
BM25 measure.

We considered at what point would it be reasonable to impose such a threshold,
so that unimportant terms are not considered yet important rare terms are still con-
sidered. If we consider the terms that users are searching for as the most important
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in the collection, we can use these to determine and impose a similar threshold as
before. In order to do this we used a large query log (of 2.4 million queries) from the
Excite search engine from December 1999. We gathered all terms from the query log
and generated two alternative global BM25 measures based on the term statistics of
these queries.

• global BM25 Query Log Terms (QLT): with this approach we generate
the global BM25 scores by including only terms used in the query log. This is
a similar approach to the previous approach of using a threshold – except that
rather than the threshold being imposed based on the global term frequency,
it is imposed based on the occurrence of the term in the query log.

• global BM25 Query Log Term Frequency (QLTF): having removed the
most commonly occurring terms, we then consider the frequency that each
term occurs within the query log when calculating term importance (i.e. idf
component of the BM25 calculation).

We now report our experimental findings when using different measures to sort
inverted file postings entries.

5. Experiments

We evaluated the effectiveness of sorting an inverted index by a number of query-
independent measures in a set of experiments which we now describe. We first
use single measures, then later combine these together. We isolated the impact of
using a sorted index by comparing its results with that of a standard inverted index.
We first describe the experimental setup that we used, including the search engine,
the document collection and queries. In Section 5.2 we compare the effectiveness
of different query-independent measures, both static and term-based. Section 5.3
examines how to evaluate the effectiveness of different sorted indexes. Section 5.4
demonstrates the effect of combining different query-independent measures. Section
5.5 examines the trade-offs that are made by eliminating postings with this sorted
index approach. Section 5.6 investigates the impact that a sorted index has on the
effectiveness of the system, as well as the efficiency.

5.1. Experimental Setup

Our experiments are carried out with the F́ısréal search engine [19] using a single
search engine architecture in order to alleviate any additional factors that might come
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into play while using a distributed setup. The indexing and retrieval processing was
carried out a Pentium 4, 2.6 GHz PC with 1.5 GB of RAM.

The experiments were carried out on the GOV2 test collection from TREC, using
the queries (topic title only) from the TREC Terabyte track from 2004, 2005 and
2006. In order to compare sorting metrics, we provide a baseline measure to sort
the postings within each postings list in the inverted index by the BM25 formula (as
shown in equation 2) as well as a random sorting generated by assigning to each of
the documents in the collection a unique and randomly generated number.

In previous experiments we found that the most effective way to select postings
entries to process for each query term was to select the same (maximum) number
of postings from each query term, regardless of the overall size of that term’s list.
As the postings lists would be sorted, based on some measure, then those most
likely to be relevant (according to that measure) would be processed. We found
this approach worked better than choosing a variable number of postings to process
based a percentage or the overall size of the postings list, or based on terminating at
a certain score. This is the same approach that we used previously in [19, 20], which
was referred to as “top subset retrieval”, and is essentially the same as the maxpost
approach which Garcia et al. [22] also found to work best for early termination. In
an effort to consolidate the two, we will refer to the maximum number of postings
to be processed (for any one term), as the “maximum postings size”.

5.2. Query-Independent Sorting

We now present experiments using query-independent sorting measures intro-
duced previously. We first show how these measures perform individually, presenting
the performance of both the BM25 sorted index, as well as an inverted index whose
postings are sorted in a random order, to provide upper and lower baseline sortings
respectively. We present the performance of each of the indexes in terms of MAP
and P10 as we increase the maximum postings size from 10,000 per query term up to
the point where all postings are processed for all query-terms. This effectively allows
a sorting measure to show its performance as the number of postings are increased,
allowing for comparison of different sorted indexes based on their retrieval accuracy
versus the number of postings processed.

We evaluate the efficacy of BM25 as well as other query-independent measures in
this section using the topics 701-850 from the TREC Terabyte ad hoc search task.
Note that although each of the inverted indexes are sorted using different measures,
at retrieval time we use the same BM25 retrieval strategy.
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5.2.1. Term-Specific Sorting

Term-specific methods of sorting postings lists provide scores for documents on
a term-by-term basis, rather than providing a single static score for each document.
BM25 sorting, as previously discussed, is an example of a term-specific means of
sorting these posting lists. In order to compare the performance of this against other
term-specific methods we look at the performance of an index sorted based on the
within-document term frequency (TF ): i.e. TF being the number of times that the
term occurs within a document. This was the type of index proposed by Persin et
al. [39]. The performance of this measure is shown in Table 1 where once again we
see excellent performance, though slightly below that of sorting by BM25.

10k 50k 100k 200k 300k 400k all

MAP
BM25 0.2028 0.2558 0.2734 0.2869 0.2915 0.2965 0.3106
TF 0.1864 0.2402 0.2613 0.2775 0.2847 0.2891 0.3106

P10
BM25 0.4839 0.5450 0.5470 0.5597 0.5691 0.5718 0.5732
TF 0.4812 0.5315 0.5503 0.5658 0.5671 0.5664 0.5732

Table 1: MAP and P10 performance of BM25 and TF sorting.

5.2.2. Static Sorting

In contrast to the term-specific methods of sorting, the static (or global) measures
provide a score associated with each document and so remain static across different
terms. Because of this they are unlikely to prove as effective as the term-specific
means of sorting, however the aim is to eventually combine these with the term-
specific measures.

5.2.3. Comparing Standalone Measures

By comparing the results in Tables 1 and 2 we can clearly see that the term-
specific sortings perform better than any of the static measures. This is not partic-
ularly surprising, as we expect that a sorting that is tailored for each specific term
should out-perform a single global sorting. In general from these results we can see
that some of these, such as sorting by access counts, offer real tradeoff possibilities of
performance against effectiveness. The next step is to see how these perform when
used in combination

From Table 1 we observe that high P10 scores can be achieved processing rela-
tively few of the postings; Table 3 shows the percentage of all postings processed at
each cut-off point and looking at the cut-off point of 200,000 for example, we see that
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10k 50k 100k 200k 300k 400k all

MAP

Random 0.0727 0.142 0.1587 0.1878 0.2055 0.2204 0.3106
Glob. BM25 0.0789 0.1406 0.1742 0.2113 0.2373 0.2477 0.3106
Glob. BM25/QLT 0.0878 0.1579 0.1837 0.2237 0.2424 0.2554 0.3106
Glob. BM25/QLTF 0.0904 0.1519 0.1806 0.2171 0.2367 0.2486 0.3106
Indegree 0.0721 0.1338 0.1579 0.1850 0.1970 0.2071 0.3106
PageRank 0.0786 0.1433 0.1700 0.2078 0.2275 0.2429 0.3106
Access counts 0.0980 0.1710 0.2074 0.2405 0.2633 0.2763 0.3106
URL depth 0.0841 0.1432 0.1756 0.2139 0.2319 0.2434 0.3106
URL length 0.0864 0.1492 0.1802 0.2138 0.2323 0.2491 0.3106
Info-to-noise 0.0844 0.1467 0.1721 0.2154 0.2392 0.2531 0.3106
Warning no. 0.0795 0.1398 0.1687 0.2014 0.2210 0.2357 0.3106
Error no. 0.0616 0.1243 0.1515 0.1728 0.1906 0.2020 0.3106
Doc. length 0.0803 0.1426 0.1713 0.2086 0.2280 0.2394 0.3106

P10

Random 0.2517 0.392 0.4376 0.4805 0.5128 0.5248 0.5732
Glob. BM25 0.2295 0.4027 0.4705 0.5470 0.5564 0.5503 0.5732
Glob. BM25/QLT 0.2980 0.4564 0.4993 0.5577 0.5604 0.5705 0.5732
Glob. BM25/QLTF 0.2879 0.3966 0.4711 0.5195 0.5470 0.5497 0.5732
Indegree 0.2584 0.3624 0.3933 0.4309 0.4416 0.4517 0.5732
PageRank 0.2866 0.4134 0.4664 0.5101 0.5430 0.5537 0.5732
Access counts 0.2826 0.4570 0.5107 0.5490 0.5611 0.5678 0.5732
URL depth 0.2490 0.3805 0.4208 0.4839 0.5047 0.5235 0.5732
URL length 0.2906 0.4020 0.4537 0.5067 0.5215 0.5329 0.5732
Info-to-noise 0.2557 0.4054 0.4611 0.5450 0.5497 0.5597 0.5732
Warning no. 0.2557 0.3859 0.4356 0.4987 0.5315 0.5456 0.5732
Error no. 0.1309 0.2517 0.3013 0.3235 0.3705 0.3987 0.5732
Doc. length 0.2403 0.4074 0.4570 0.5242 0.5409 0.5470 0.5732

Table 2: MAP and P10 performance of static sorting measures.
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less than 14% of all postings are evaluated, As can be seen from Table 1, this results
in a drop-off in MAP performance of only 0.0238 (7.6%) vs. MAP performance when
all postings are processed. Looking at the trade-off in P10 at the same cut-off point
results in an even smaller degradation in performance of only 0.0135 (2.3%).

10k 50k 100k 200k 300k 400k all
% Processed 0.86% 3.92% 7.34% 13.48% 19.01% 24.02% 100%

Table 3: Percentage of postings processed at each cut-off point.

As there is a significant saving in terms of the number of postings entries eval-
uated, we must look at the trade-off in terms of retrieval accuracy and decide if
this trade-off is worthwhile. For web search applications in particular, where users
are often only concerned with the top ranked documents and want results returned
quickly, we suggest that a general web user would prefer to receive faster results
from a search engine, and be willing to accept a small degradation in accuracy. Also
looking at Table 2 we observe that for some of the top performing measures such
as Global BM25/QLT, again from the 200,000 threshold onwards there is only a
relatively small gain in P10, even though much more postings are being evaluated
for each query. This indicates that with an effective combination of static measures
it maybe possible to reduce the number of posting that are being examined without
degrading the accuracy of the results.

5.3. Index Creation and Evaluation

In order to produce an evaluation of a measure for sorting posting indices us-
ing MAP and P10 we first must generate a complete sorted inverted index and
then run a set of queries through the search system which are then evaluated using
the query relevance judgements (QRELs) provided by TREC. This process is quite
time consuming due, in most part, to the creation of the inverted index, which also
takes up a considerable amount of disk-space for large collections like the Terabyte
collection from TREC. This may be acceptable in evaluating a limited number of
query-independent measures, such as those shown in the previous section, however
when we experiment with the combination of these measures we have a large number
of variants to be evaluated, and it is not feasible to generate a new inverted index
for each experiment even though this is the strategy used by Garcia et al. [22] and
Ferguson et al. [20].

On closer analysis we find that the problem with this approach is that although
the index is sorted by some measure (X), this sorting is then re-sorted by BM25 at
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query-time in order to produce the ranked set of results. The sorting by measure X
therefore becomes more and more diluted as the maximum number of postings being
evaluated for each term is increased. Also, if for example the sorting produced by
X is effective at promoting highly relevant documents, and if these documents are
ranked lowly by BM25, then these will be pushed down its ranked list and so will
not allow for a proper evaluation of the sorting produced by measure X.

An alternative approach suggests that the system looks only for the known rel-
evant documents for particular queries in the postings lists of the query terms and
evaluates how highly measure X ranks those documents. Using this approach elim-
inates the dilution of the sorting produced by measure X when combined with an
additional sorting algorithm at query-time. We call this evaluation Index Precision
(IP), as it calculates a precision score by analysing the postings lists of the inverted
index. This is similar to the way in which traditional precision is calculated for a list
of search results, except that now the sorting is calculated on the ranked postings
instead. This score is calculated over each query-term’s postings list as follows:

IP =

∑n
r=1

nrfr
r

n
(3)

where n is the number of postings associated with the term being processed, r is
the current position (or rank) in the postings list and nrfr is the number of relevant
documents that have been found up to the current rank r. To get the average IP
score for a query we divide by the number of postings lists that were evaluated for
that query.

In addition to the benefit of providing a precision score directly correlating to how
highly a sorting measure ranks relevant documents, this also dramatically reduces
the time required to evaluate a postings sorting measure because we can evaluate
without creating a new inverted index.

Before we combine index sorting measures we reduced them to the following on
the basis that these are the strongest (based on IP scores) and the ones eliminated
are variants of the ones retained anyway: Access counts, Document length, Error
number, Global BM25/QLTF, Indegree, Information-to-noise ratio, PageRank, URL
length, Warning number.

5.4. Combination of Measures for Ranking Postings Entries

We experimented with different types of combination approaches, including linear
combination, as well as combination using a Dempster-Shafer (D-S) approach, Here
we present the results of combination using Support Vector Machines (SVMs), which
seems to work best.
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SVMs are a set of machine learning algorithms that have been used in the areas
of classification and regression. SVMs were first suggested by Vapnik in the 1960s
for classification, and were formally introduced by Boser et al. [7].

The binary independence model, introduced by Robertson and Spärck Jones [42],
viewed IR as a classification problem. They considered retrieval in terms of classifying
documents into two classes: relevant or non-relevant. Their approach essentially
classified documents into these two classes at query-time, basing their classification
on the query. Adopting this viewpoint of classifying documents as relevant or non-
relevant in a query-independent manner, we use SVMs in order to solve this binary
classification problem.

Providing suitable training examples for both relevant and non-relevant doc-
uments allows us to extract the scores for these documents from suitable query-
independent features for use in estimating quality documents (e.g. PageRank and
info-to-noise ratio, etc.). The SVM can then use these training examples to generate
a model that can be used to estimate a document’s likelihood to belong to either the
class of relevant or non-relevant documents. We use the SVM light software package
[26], which is an implementation of the SVM described in [46].

Focusing on the use of SVMs for two-class classification, here the SVM learns by
example to assign labels, e.g. either positive (+1), or negative (-1), to data. In order
to do this, the SVM is firstly given a set of l training examples in the form (xi, yi),
where i = 1, 2, . . . , l, each xi is a p-dimensional real vector (list of p numbers), and
y ∈ {1,−1}. The task for the SVM is to learn the mapping from x → y, choosing
from the set of all possible hypotheses the one that minimises the risk of error in the
classification of a new (unseen) example.

We use the SVM to classify documents into relevant and non-relevant sets. One
of the major difficulties to overcome when using this approach is how to generate
representative sets of relevant and non-relevant documents in order to generate an
effective SVM model to classify documents. For this we must choose a source of
representative high quality documents, as well as a source of low quality documents.
Then from these two sources we then take two different sets of documents to build
the SVM’s training and testing files.

The problem of choosing representative high quality documents can be solved by
using the known-relevant documents associated with a set of TREC topics. Using
these we generated a set of positive training examples from the TREC topics (701-
750) and a different set of positive testing examples from a different set of TREC
topics (751-800). The problem of generating a set of negative (i.e. low quality) doc-
uments is a more difficult challenge. As a first attempt we could use the documents
returned by TREC for each topic and marked as non-relevant, however these would
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not be representative because they were returned by at least one TREC participat-
ing group’s system in response to that topic. So although these documents are not
relevant for the specified topic they should not be considered as the least likely to
be relevant (of all documents) to any topic. One possible way of generating more
representative negative examples would be to look again at the access count measure
though now we are looking for documents with the least number of access counts.
There are a large number of documents that do not receive any access count for
the 2.4 million queries that we used and so from these we randomly generate two
different lists (negative training and negative testing) from the set of documents with
zero access counts. As an alternative to these negative examples we also generated
negative training and negative testing sets in a similar way from the lowest-scored
documents in the global BM25/QLTF measure. In order to assess the effectiveness
of these negative examples we also generated alternative negative sets for training
and testing using a random selection of documents from the entire collection. Note
that all these negative example sets are the same size as the positive example sets to
give an equal distribution of positive and negative documents – in order to prevent
the class imbalance problem [41]. This leaves us with four alternative training and
testing sets, where the positive examples are the same but the negative documents
differ:

• Positive + Negative QRELs (PN)

• Positive + Low Access counts (PLA)

• Positive + Global BM25 QLTF (PBM)

• Positive + Random (PR)

We can now generate an SVM model and assess the models’ effectiveness in
correctly classifying documents in the testing set.

5.4.1. Classification Training

The conventional approach to training an SVM for the task of classification is
to generate an SVM model using the training set of positive and negative example
documents, and then use this model to classify the documents in the testing sets.
Based on the accuracy of the model at classifying the documents in the testing set
we can assess the accuracy of the model (for classification purposes) and tune the
SVM’s parameters accordingly – using SVM light [26] with a linear kernel.

Using each of these SVM models we can then classify all the documents in the
collection, which gives us a likelihood score for each document that they should
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belong to the positive or negative class. We then use these scores as a new query-
independent measure, which we can use to re-sort an index and evaluate their IP
scores.

In order to evaluate these we then calculated the average IP scores for each of
these over the same topics that we used in the testing phase for the SVMs (topics
751-800) – these average IP scores are displayed in Table 4.

Measure Average IP Scores

PN 0.0155
PLA 0.0181
PBM 0.0167
PR 0.0180

Table 4: IP Scores trained using classification accuracy.

To allow us to create more effective SVM models we should turn our attention
from tuning based on the classification performance, to tuning based on the sorting
performance, and in order to measure this (sorting performance) we use the IP
measure.

5.4.2. IP Training

This is similar to the previous experiment in that we use the same SVM training
files, however, instead of running the SVM classification process on the appropriate
testing set we classify all the documents in the collection and generate a query-
independent measure. We then evaluate the effectiveness of this measure by re-
sorting the inverted index using this measure and calculate an average IP score over
a set of topics. This is obviously a much more computationally expensive process as
we generate several query-independent measures for each approach (PLA, PBM and
PR) in order to tune the SVM’s parameters, however, we believe that this will give
us a more effective sorting measure.

As can be seen from Table 5, the performance of the different approaches differ
somewhat from the previous approach of tuning parameters based on the classifica-
tion accuracy. In particular PR performs quite well in comparison to both the PBM
and the PLA approaches.

We now introduce the RBF kernel into the SVM, so that the input vectors may
be mapped into a higher dimensional space where separation between positive and
negative examples may be more successful. For this we tuned the parameters C
(trade-off between training error and margin) and g (gamma in rbf kernel) using the
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IP score as previously described. Table 5 shows a comparison between the three
approaches using the linear kernel (as before) and now using a RBF kernel.

Measure Average IP Scores
PLA (linear) 0.0175
PLA (RBF) 0.0184
PBM (linear) 0.0167
PBM (RBF) 0.0183
PR (linear) 0.0180
PR (RBF) 0.0188

Table 5: Training SVM using IP scores with a RBF kernel.

It is clear from Table 5 that the RBF kernel improves results significantly over
the linear kernel and the PR approach performs the best, followed by PLA and then
PBM.

Although the PR approach produces the best results here, we believe it has a
distinct disadvantage, in that it is tuned very specifically to a certain set of positive
and negative examples and for the (randomly selected) negative examples this is
probably an untrue reflection of a correct selection of more accurate negative exam-
ples. When we evaluate the average IP scores on a set of unseen topics (801-850) as
in Table 12, we see that the performance of the PR approach degrades significantly
in comparison to both PLA and PBM, which is as expected, since it was trained to
an unrealistic set of negative examples.

Measure Average IP Scores
PLA 0.0073
PBM 0.0067
PR 0.0055

Table 6: IP scores with a RBF kernel on an unseen set of topics.

5.4.3. Combining at Index Creation Time

Having combined the static measures into a single measure we now combine this
with a high-performing term-specfic measure such as BM25. In order to combine
these, like combining the static measures, we can choose from a number of combina-
tion methods, but we focus on the use of the D-S method of combination to combine
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the term-specific and static measures. We do this not only because of its prior suc-
cess, but also as a new inverted index would need to be created for each combination
that we investigate, and as this is a very time consuming process. Our D-S approach
is applied to combining two sources in essentially the same way proposed by Jose et
al. [28] as well as Plachouras and Ounis [40]

We combined the static measure PLA with BM25 for each postings list in the
inverted index using the D-S approach, where we varied the weights given to each
measure from 0.1 to 0.9 (in increments of 0.1). We then calculated the average IP
scores for the topics 801-850 and selected the highest performing index, which is
shown in Table 7.

Measure IP Score
BM25 0.0351
PLA + BM25 0.0356

Table 7: Combining static and term-specific measures.

As the results show, the combination of the PLA measure with BM25 gains
an increase in performance over that of the BM25 measure alone (with statistical
significance value of 0.0028, using a paired t-test).

Having produced a method that outperforms the BM25 measure using the average
IP, we now revert back to using more conventional measures such as MAP and P10
to see if the use of the IP measure that we adopted will also perform well with these.

5.4.4. Conventional IR Evaluation

Here we set out to evaluate the inverted index created using our optimal com-
bination of BM25 with the PLA measure, and evaluate this using MAP and P10.
This requires us to revert back to our previous approach of ranking documents using
BM25, while limiting the number of postings that are evaluated for each query-term,
using the maximum postings size cut-off approach (using the same cut-off thresh-
olds). As discussed previously we feel that the cut-off point of 200,000 (postings per
query-term) is a reasonable cut-off point that eliminates a large number of postings
from processing, while allowing a satisfactory level of accuracy. Table 8 shows that
by selecting the 200,000 cut-off point the system processes less than 15% of all the
postings for each of the query-terms. This will save our system from examining a
large number of postings, which will lead to a faster query-time as well as reducing
the necessary system resources, such as memory and CPU clock cycles. The goal
is then to limit the trade-off made between system accuracy and processing more
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postings, as we process only a small number (e.g. 15%) of the overall postings for
each query term.

10k 50k 100k 200k 300k 400k all
% Processed 1.04% 4.6% 8.4% 14.9% 20.7% 25.9% 100%

Table 8: Percentage of postings processed at each cut-off point on topics 801-850.

Table 9 shows the performance of the index in terms of MAP and P10 by using
the same optimal combination of BM25 with the PLA measure (from Section 5.4.3),
when compared with the standalone BM25 measure. Although the combined index
does prove to be more effective, both for MAP and P10 at the 200,000 cut-off,
overall there is little to separate performance from the two indexes. For MAP the
two indexes perform quite similarly, while for P10 the BM25 index performs above
the combined index at earlier cut-off points.

10k 50k 100k 200k 300k 400k

MAP
BM25 0.1873 0.2546 0.2694 0.2785 0.2834 0.2903
BM25 + PLA 0.1926 0.2513 0.2702 0.2844 0.2909 0.2929

P10
BM25 0.4980 0.5460 0.5480 0.5500 0.5560 0.5620
BM25 + PLA 0.5060 0.5240 0.5400 0.5700 0.5640 0.5640

Table 9: Evaluating BM25 + PLA index using MAP and P10 (topics 801-850).

However there may be an unfair bias towards BM25 with this evaluation because
in the creation of the index we re-rank the postings using a combination of the BM25
and PLA measures, and at retrieval we rank documents using only BM25 so diluting
the effect of the PLA measure as we increase the size of the cut-off. In order to fairly
evaluate the contribution of both measures we believe that the measures must also
be combined at retrieval time.

5.4.5. Combining at Retrieval Time

At index creation stage the BM25 scores were calculated in isolation for each term,
while at retrieval time BM25 combines the scores for each query term. So rather
than combining after each term’s scores are calculated, the combination is carried
out after all BM25 calculations have been made. We use D-S for combination, and
we evaluate different weights for each of the elements being combined, choosing two
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weights so that they sum to 1, starting at 0 and incrementing by 0.05. In optimising
these weights we favour the P10 performance because of the nature of our type of
retrieval; we are trying to speed up query time while presenting the best top 10
results that we can, as for example, in a Web search scenario. Table 10 presents
the MAP and P10 performance figures for this approach, where the combination
occurred only in the index (index combination) and now in this approach where the
combination is done at both the index and retrieval stages (full combination).

10k 50k 100k 200k 300k 400k

MAP
BM25 0.1873 0.2546 0.2694 0.2785 0.2834 0.2903
Index Combination 0.1926 0.2513 0.2702 0.2844 0.2909 0.2929
Full Combination 0.1930 0.2514 0.2707 0.2817 0.2833 0.283

P10
BM25 0.498 0.546 0.548 0.55 0.556 0.562
Index Combination 0.506 0.524 0.540 0.57 0.564 0.564
Full Combination 0.504 0.534 0.556 0.594 0.596 0.592

Table 10: Evaluating BM25 + PLA at both the index and retrieval stages (topics
801-850).

Here we can see that although there is relatively little change between the scores for
MAP, in the case of P10 there is a clear improvement, and yet another gain is made
over standalone BM25 index. For our 200,000 cut-off point there is a 8% increase in
P10 and the difference between the P10 values is also statistically significant with a
value of 0.014.

5.5. Examining Performance Trade-offs

Table 11 compares the performance of a conventional IR system, where all post-
ings are examined and then ranked using BM25, with a sorted index created using
our approach which combines the SVM PLA measure with BM25 at both index
creation and retrieval time and has a cutoff of 200,000 which is 15% of the postings.
While this equates to a 6.9% loss in MAP, it is also an increase of 6.1% in P10
performance – even though the system is processing only 15% of the postings. This
is an attractive trade-off in MAP for a search system where users are primarily
concerned with the accuracy of the top 10 results, as well as the responsiveness of the
system, and our approach provides both these traits. A drop in MAP performance
is to be expected since we are processing far fewer documents and inevitably a small
number of relevant documents will be missed, so the drop is most likely due to a
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Index Type MAP P10
Conventional Index 0.304 0.560
Sorted Index (only processing 15%) 0.282 0.594

Table 11: Trade-off between a conventional index and a “pruned” sorted index (top-
ics 801-850).

drop in recall. For a Web search scenario, where the typical user does not look past
the top ten results this drop in recall will not be noticed.

As we are primarily interested in judging the effectiveness of our P10 performance
for our fully combined sorted index, we compare this with the results of another
search system. For this we look to the results produced from the publicly available
Zettair search engine which was used by the RMIT group in the TREC terabyte
track [21]. Their Zetabm run from their TREC 2006 submission, uses the same Okapi
BM25 ranking which should be comparable to our baseline BM25 performance, while
we also include their more effective Zetadir run which uses a language model with
Dirichlet smoothing [50]. We also provide the results from three additional (officially
submitted) runs from the University of Waterloo (UwmtFadDS ) [11], Melbourne
University (MU06TBa2 ) [5], IBM Haifa Research Lab (JuruT ) [12] . These give
a comparison between our proposed approach and other systems, using the same
queries on the GOV2 collection: note that we selected runs that we selected runs
comprising of topic title queries and without the enhancement of relevance feedback
mechanisms.

Table 12 compares our baseline (using BM25 ranking, from Table 11), as well
as our sorted index at the 200,000 cut-off point, with the other TREC Terabyte
submissions. As we can see from this that our sorted index yield an increase in P10
performance.

Table 11 gives an objective view of the effectiveness of our system, and shows
that our ranking provides a relatively strong baseline on which we have been able
to subsequently improve performance. Although our MAP score is not our primary
concern, for completeness Table 13 shows a comparison of our MAP performance
against the same TREC runs. Again we can see that our both our baseline and our
truncated sorted index perform quite competitively.

Carmel et al. [14] experienced a similar increase in P@10 for their term-based
pruning method, although for them their results degraded after removed less than
40% of their index, in comparison to our reduction of 85%. Since the term-based
approach that we use is designed to minimise any adverse impact to the results at the
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Index Type P10
Our BM25 baseline 0.560
Sorted Index (only processing 15%) 0.594
Zetabm 0.498
Zetadir 0.532
UwmtFadDS 0.518
MU06TBa2 0.530
JuruT 0.572

Table 12: Comparing performance with different search systems (P10) (topics 801-
850)

top of the result list, by removing low-quality documents and those that are unlikely
to appear in the result list, it is not necessarily surprising to see stable P10 figures
with the use of a pruned index. However to see an increase in P10 performance with
the use query-independent measures is encouraging, next we show how our query-
independent measures can also be applied to a conventional index at query-time to
improve P10 performance.

Index Type MAP
Our BM25 baseline 0.304
Sorted Index (only processing 15%) 0.282
Zetabm 0.241
Zetadir 0.305
UwmtFadDS 0.288
MU06TBa2 0.289
JuruT 0.329

Table 13: Comparing performance with a different search systems (MAP) (topics
801-850).

5.6. Our Contribution and the Impact of the Sorted Index

In order to measure the impact that a sorted index has on improving the system
performance, we combined our best static measure (PLA) with our baseline BM25
search (which processes all postings) at retrieval, so we can see if the resulting system
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can achieve the same effectiveness (in terms of P10), even though it will be much
less efficient as it processes all postings for each query-term. This will show us if the
use of a sorted index contributes to the effectiveness of the system as well as to its
efficiency.

For this we combined the BM25 scores with our PLA measure using the D-S
approach in the same way as we combined our sorted index’s results with PLA pre-
viously. We determined the top-performing combination using a number of weights
combinations and Table 14 shows the P10 performance for the baseline BM25 rank-
ing, as well this same baseline combined with our PLA measure at retrieval time,
and our fully combined sorted index (using PLA and BM25).

Index Type P10 Score
Conventional Index 0.560
Conventional Index + PLA measure 0.584
Sorted Index (processing only 15%) 0.594

Table 14: Impact of using a sorted index (P10) (topics 801-850).

This shows that even though the incorporation of the static measure improves
performance over using BM25 alone, it still does not achieve the same level of per-
formance as the sorted index which uses the same measure, highlighting a further
usefulness of the sorted index. We believe this is because the sorted index filters
out lower quality documents that a term-weighting ranking function such as BM25
does not account for and so by processing fewer postings using the sorted index,
those that are not selected are less likely to be relevant and retrieval accuracy and
efficiency are both improved. However, the improvement is gained by combining the
PLA measure with the conventional index (only at query-time) illustrates the use-
fulness of effective query-independent measures, which could offer potential benefits
to retrieval performance regardless of the underlying index or ranking method.

6. Conclusions and Future Work

In this paper we have presented a case for the use of query-independent mea-
sures as a means of determining the more important documents in a collection and
using only those in calculating the top-ranked for retrieval. We proposed a number
of static measures, and experimented with several of these in order to investigate
their effectiveness in eliminating candidate documents for retrieval from inverted file
postings, through the use of a sorted inverted index.
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We also proposed the use of an Index Precision (IP) measure to calculate the
effectiveness of using different query-independent measures to sort the inverted index.
This is a more direct way of assessing the performance of a sorted index compared
with analysing its performance in a weighted term ranking such as BM25 at various
cut-off points. The Index Precision approach also eliminates the dilution effect caused
by assessing a ranking after applying another query-time ranking such as BM25, and
it also allows combinations to be evaluated faster, and without the need for creating
additional inverted indexes.

Our experiments found that there are static measures that can be combined with
a term-based measure to provide an increase in effectiveness in terms of IP. When
we combined the static measures at both indexing and retrieval time, the system was
also able to gain a significant increase in P10 performance, even though it processed
less than 15% of all available postings for the terms in the queries compared with
the conventional approach of processing all postings for each query-term.

Although the Access Count measure proved to be quite an effective measure, if
this were to be used in a live search engine an up to date query log would also be
needed to generate the access counts. This would attempt to ensure that currently
hot or trending topics are not removed from the index. Also it may be possible to use
additional sources such, Twitter for example, to supplement query logs and identify
new topics of interest.

As a means of comparing the efficiency of different variants of sorted indexes that
we produce, we do this based on the number of postings that are processed at query-
time. Traditional document-ordered inverted indexes gain significant compression by
taking the difference between adjacent document numbers, resulting in faster pro-
cessing. With our inverted indexes the posting lists are ordered based on different
query-independent measures and so these same compression schemes are no longer
possible. However, once an effective measure is chosen based on the number of num-
ber of postings that are being processed this index can be pruned (for example with
a max posting size of 200,000) and then sorted in the traditional document-ordered
manner. Garcia et al. [22] have shown this same process with their access-pruned
index, which allows time savings of 25% - 40% over a conventional index while main-
taining almost the same accuracy. Clearly the same approach can be applied to
our measure to generate a fully compressed pruned index to demonstrate meaning-
ful query throughput measures based on query-time as well as saving substantial
disk-space. The focus of this paper has been on the generation of a more effective
query-independent measure, which we have demonstrated to outperform a number of
standalone measures (such as access counts and PageRank), although the generation
of standalone pruned index, or its incorporation into a two-tiered index system is
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planned as part of our future work.
Similar the work by Büttcher and Clarke [10], who propose a method for pruning

the index by over 90% so that it can fit into main memory with only a minor decrease
in effectiveness, our approach would allow similar reductions in index size. From
Table 8 we can see that at the 100,000 posting level only 8.4% of postings are being
processed, then from comparing the results in Table 10 that there is only a small
drop in P10 performance. It may also be possible that as an extension to document-
centric pruning (such as [10]) may allow a more dynamic type of pruning, so that more
information may be retained for what is perceived as being an important document,
as proposed by our approach.

One of the advantages of using a sorted index (without pruning), is that it al-
lows the cut-off point for termination to be changed. This may be of benefit when
answering potentially difficult queries, where there are few relevant documents, and
so using a larger (or no) cut-off point may be of benefit. This would require us to
pre-determine the potential difficulty of a query and then dynamically choose the
number of postings to process for each query term. There has been a significant
amount of work carried out in this area: Hauff et al. [24] provide an assessment
of 22 pre-retrieval query performance predictors as well as assessing these on three
different TREC collections, while Mothe and Tangui [33] analyse the correlation be-
tween query difficulty and certain linguistic features. It seems likely that some of
these query prediction mechanisms could be used in addition with a sorted index to
provide a more adaptive search system.

We will also explore the scenario where the user may wish to specify the amount
of information that is to be processed in response to the query. For example, at
one extreme, for certain searches it may be important that all available documents
are returned (i.e. high recall) or for some applications retrieval speed may be more
important in which case pruning may be used.
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