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Abstract

Let X = x1, x2, . . . , xn be a sequence of non-decreasing integer values. Stor-
ing a compressed representation of X that supports access and search is
a problem that occurs in many domains. The most common solution to
this problem uses a linear list and encodes the differences between consecu-
tive values with encodings that favor small numbers. This solution includes
additional information (i.e. samples) to support efficient searching on the en-
coded values. We introduce a completely different alternative that achieves
compression by encoding the differences in a search tree. Our proposal has
many applications, such as the representation of posting lists, geographic
data, sparse bitmaps, and compressed suffix arrays, to name just a few. The
structure is practical and we provide an experimental evaluation to show that
it is competitive with the existing techniques.
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1. Introduction

The storage of ordered sets of integers is a fundamental problem in com-
puter science that has applications in many domains. When space is not an
issue these sets can be stored in arrays, which support random access and
efficient searches. However, space is a constraining factor in most domains,
and the compression of these sets can save a considerable amount of space.
As compression techniques are usually based on variable length encoding,
random access and efficient searches become challenging.

Common solutions to this problem rely on the fact that differences be-
tween consecutive values in a sequence are often small numbers, and encode
these differences with encodings that favor small numbers. In order to effi-
ciently support random access and searches, these schemes are forced to store
sampled absolute values. These samples can be thought as an index built on
top of the data that requires more space the higher the sampling rate. As
the sampling rate is a parameter that provides a space-time trade-off, these
solutions are called parametric.

In this paper we propose a (non-parametric) compressed representation
for non-decreasing sets of integers that does not require us to build an index
on top of the data, and still offers efficient support for random access and
searches. In this sense our method is similar to a recent proposal by Teuhola
(2011), but the techniques are different and of independent interest. Let
X = x1, x2, . . . , xn be a sequence of non-decreasing integer values, we propose
a compressed representation of X that, in logarithmic time, supports:

• access(X, i): retrieve the value at position i in X .

• search(X, t): retrieve the position of the left-most stored value greater
or equal than t1.

This structure has applications in the representation of posting lists,
which are one of the two main components of the ubiquitous inverted in-
dex (Baeza-Yates & Ribeiro-Neto, 1999; Witten et al., 1999). A basic prim-
itive operation for these indexes is to find the intersection of posting lists,
which provides a solution to handle multi-word queries. Although this primi-
tive operation can be supported through sequential merging of the lists, some

1Note that we can also return the value stored in that position, thus solving the mem-
bership variant of the problem.
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of the most efficient approaches to solve intersection queries (Hwang & Lin,
1972; Demaine et al., 2000; Barbay & Kenyon, 2002; Baeza-Yates, 2004) take
advantage of the fact that some lists are much shorter than the others, and
make use of random access and search capabilities.

As another application, the partial sums problem can be thought of as
a particular instance of this problem. In the partial sums problem we are
given a sequence of n non-negative values, Y = y1, y2, . . . , yn, and we have
to support the following operations:

• sum(Y, i): retrieve the sum of all the values up to position i.

• search(Y, t): retrieve the smallest i such that sum(Y, i) ≥ t.

Note that X = x1, x2, . . . , xn can be defined as a sequence of partial sums
of values in the sequence Y = y1, y2, . . . , yn, so that xi =

∑i

j=1 yj. In this
way, sum(Y, i) reduces to access(X, i) and search(Y, t) reduces to search(X, t).
Partial sums can be applied, for example, to represent Rank/Select dictio-
naries (Okanohara & Sadakane, 2007).

The article is organized as follows. In Section 2 we survey the main
solutions to this problem and describe their basic properties. In Section
3 we describe our new solution to this problem. Section 4 discusses some
applications, and presents an experimental evaluation of our solution both
in general and for each particular application. Finally, Section 5 concludes
the paper with some brief remarks, and avenues for future research.

2. Related Work

As we mentioned above, common solutions to this problem encode the
differences between consecutive values with encodings that favor small num-
bers, such as γ-codes, δ-codes, or Rice codes (see Witten et al. (1999) for
a comprehensive survey). In order to efficiently support random access and
searches, these schemes store sampled absolute values, and the sampling rate
provides a space-time trade-off. A great deal of research has been carried out
on the development of new algorithms to encode small numbers (Moffat &
Stuiver, 2000; Anh & Moffat, 2005; Yan et al., 2009) and also on proposing
storage schemes for those samplings (Culpepper & Moffat, 2010). All these
techniques can be classified as parametric solutions, whereas our method is
non-parametric.
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Recently, Teuhola (2011) presented a non-parametric scheme based on
the encoding of a binary search tree of the sequence using a variation of
the interpolative coding (Moffat & Stuiver, 1996, 2000). The author turns
interpolative coding into an index by an address calculation that guaran-
tees enough space in the worst case (experiments show that the redundancy
added by this address calculation is only about 1 bit per symbol). Although
our proposal is also based on encoding the differences between values using a
search tree, there are some important differences. First, our work is not de-
pendent on a particular encoding (any encoding supporting efficient random
access may be plugged into our structure). Second, we extend the represen-
tation, and add new interesting operations; for example, a batched searching
operation used for intersecting inverted lists. We also provide a more elegant
solution for representing the tree when n is not a power of 2. Furthermore, we
extend this generalized result to trees of arbitrary constant degree, which is
suitable for secondary memory. Finally, we describe an approach for handling
general trees, with the potential of becoming dynamic.

Among all the encoding techniques for integers there is one of special
interest for us because we use it as part of our solution. This technique was
introduced by Brisaboa et al. (2013) and is known as Directly Addressable
Codes (DACs). It performs a reorganization of variable-length codes in or-
der to allow efficient random access. This technique solves the problem of
supporting random access, but not the search problem. In order to support
searches, the same sampling scheme mentioned above can be used. The main
advantage of the use of DACs in these schemes is that, as they allow direct
access to any position, no pointers from each sample to the subsequent code
are necessary. Although this might mean a significant reduction of space,
in many applications the lower compression rate achieved by these codes
counteracts this improvement.

3. Differentially Encoded Search Tree (DEST)

The main idea behind our structure is to differentially encode the values
inside a search tree built over the sequence of non-decreasing values, X .
Every node stores the difference between its value and the one represented
by its parent node. By knowing whether the node is a left or right child (this
is for the binary case, we explore the general case further in this section),
one can determine whether the difference is positive or negative.
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The standard pointer-based tree representation has space requirements
that would defy the purpose of our structure, due to the space required by
the pointers, O(logn) bits per node. For this reason we use alternative repre-
sentations throughout this work. In order to better cope with this restriction
our structure separates the representation into two parts: tree representa-
tion and encoded values. The tree representation deals with navigating the
tree and queries the encoded values to retrieve the information stored in the
nodes. This allows us to plug different space-efficient tree representations
with suitable integer encoding techniques.

In order to present a representation-independent solution, we define an
abstract data type (ADT) tree T and enumerate the basic operations it sup-
ports (Section 3.1). In this section, we also explore two tree representations,
binary (Section 3.2) and multiary (Section 3.3), both based on the folklore
heap embedding in an array. In addition, we show how the multiary vari-
ant can be extended for general trees using succinct representations for trees
(Section 3.4). Finally, in Section 3.5 we explore different encodings: fixed
length at each level in the tree, Directly Addressable Codes (DACs), and
combinations of both. We note that the selection of a tree representation
and encoding is entirely application dependent.

3.1. Operations

Let X = x1, x2, . . . , xn be a sequence of non-decreasing integer values and
T be a differentially encoded search tree representing X . We assume T has
⌈n/k⌉ nodes, each of arity k + 1. The operations T supports are:

• rootT : obtain the root of the tree.

• fetchT (v, r): retrieve the value stored in node v at position r = 0 . . . k−
1. Recall that this is the difference between the real value, and that of
the parent node.

• childT (v, r): find the r-th child of node v in T . Unlike the previous
case, r = 0 . . . k.

• parentT (v): find the parent of node v in T .

• subtree sizeT (v): count the number of values in the sub-tree rooted at
node v.

• child rankT (v): compute the rank of node v among its siblings.
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• mapT (v, r): map the r-th value of node v to its position in the original
sequence X .

In the subsequent sections we present several tree representations and
encodings that support these basic operations in constant time. Here, we use
that assumption and analyze the two operations of interest (i.e. access(X, i)
and search(X, t)).

We also assume that at all times we have a finger v pointing at the
current node, which stores the real value w of the node (not its difference
with the parent). Therefore, any tree traversal will start by accessing the
root (v = rootT ) and storing its value in w. In the following discussion we
assume k is a constant, and thus, this takes constant time. Note that in a
multiary embedding w = (w0, . . . , wk−1) is a vector (the binary embedding
is a particular case w = (w0)). We can move from v to its r-th child also
in constant time. To do this, we set v = childT (v, r) and update w setting
wj = wr− fetchT (v, j) if r < k and wj = wr + fetchT (v, j) otherwise. We can
move to the parent of node v in a similar way. Note that we only have to
compute on the fly the values in w that we need, thus we are not forced to
pay O(k) every time we move.

Using the aforementioned operations and assumptions, we support the
access to the i-th value in the set (i.e. access(X, i)) in logarithmic time.
We only consider balanced trees. Otherwise, the complexities depend on the
height of the tree. This can be done by traversing the tree using binary search
at each node to determine the direction to move. These binary searches use
the mapT (v, r) operation to compare the target position i with the position
in X that corresponds with the r-th value of v. This takes O(log k) time at
each node, and thus the whole traversal takes ⌈logk+1 n⌉·O(log k) = O(logn)
time. Algorithm 1 shows the pseudocode for this operation.

The last operation we consider is searching among the values of the orig-
inal set X that is encoded in the tree T (i.e. search(X, t)). Note that this
operation is essentially searching for a position where the key t can be in-
serted in the tree while preserving the order of the sequence. We traverse
the tree in a similar way, but in this case we decide the direction to move
by binary searching the real values of the node. This takes O(log k) time
at each node for a total search time of O(logn). Algorithm 2 describes this
traversal. We can also iterate over the values starting from a given finger,
either forwards or backwards. This allows access to a range of contiguous
values in O(logn+ ℓ) time, where ℓ is the length of the range.
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Algorithm 1 access(X, i), T is the DEST representation of X

v ← rootT {v is the current node}
w ← 0 {w is the current value}
pos← −1 {pos is the position in X of the current value}
rightMostChild← true
while pos <> i do
c← successor search(v, i) {The successor search uses mapT (v, r) to map
each position r in node v to its corresponding position in X and compare
it with i}
pos← mapT (v, c)
if rightMostChild then
w′ ← w+ fetchT (v, c) {The root is a special case of rightMostChild}

else
w′ ← w − fetchT (v, c)

if pos = i then
return w′

if pos < i then
v ← childT (v, c+ 1)
rightMostChild← true

else
v ← childT (v, c)
rightMostChild← false

w ← w′

3.2. Binary Heap-Like Embedding

Our first representation uses a perfectly balanced tree where all levels of
the tree are full except the last one, in which only a contiguous prefix is filled
with values.

It is well known that such a tree can be embedded in an array A[1 . . . n]2,
where position 1 represents the root. The left and right children of a node
at position v are at positions 2v and 2v+1, respectively, and its parent is at
position

⌊

v
2

⌋

. The operation child rankT (v) is computed as v mod 2. These
operations are the building blocks that allow us to navigate the tree. Some
issues that we need to address in order to give a complete description of the

2Note that indexes start from 1 here, as this simplifies the formulas for navigating A.
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Algorithm 2 search(X, t), T is the DEST representation of X

v ← rootT {v is the current node}
w ← 0 {w is the current value}
rightMostChild← true
while v is a node do
c← successor search(v, t) {The successor search uses w and fetchT (v, r)
to decompress each value at position r in node v}
if rightMostChild then
w′ ← w+ fetchT (v, c) {The root is a special case of rightMostChild}

else
w′ ← w − fetchT (v, c)

if w′ = t then
return mapT (v, c)

if w′ < t then
v ← childT (v, c+ 1)
rightMostChild← true

else
v ← childT (v, c)
rightMostChild← false

w ← w′

return n {The length of X , which indicates that t is greater than all the
values of X}

structure are how to compute subtree sizeT (v) and mapT (v, r), and how to
build this structure efficiently.

Supporting subtree sizeT (v). The tree has depth h = ⌈log2(n+ 1)⌉ and we
can determine in constant time the height of a given node v by computing
h(v) = ⌈log2(v + 1)⌉. For each internal node v, the height of the subtree
rooted at v is either h − h(v) + 1 or h − h(v). We know that the subtree
contains at least 2h−h(v) − 1 values, so we only need to count the number
of nodes in the last level. In order to do that, we compute the positions pℓ
and pr corresponding with the leftmost and rightmost descendants of node
v, respectively. Since the subtree rooted at v has height h − h(v) + 1, pℓ =
v2h−h(v) and pr = (v+1)2h−h(v)−1. By comparing pℓ with n, we can determine
whether there are any nodes in level h− h(v) + 1. If there are, we can count
them by computing min(n, pr) − pℓ + 1. Thus, we can compute the size of
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h− 1 h− 2

r

h− 1

r

h− 1

Figure 1: Illustration of possible cases in the binary heap-like embedding.

the subtree at any node in constant time.

Supporting mapT (v, r). In the binary case, we can picture the mapT (v, 0)
operation as computing the rank of the node (value) in the set, since every
node stores a single value. Instead of supporting the node rank operation
for an arbitrary node, the finger pointing to the current node stores its rank,
in addition to its real value. Thus, we only need to update the rank when
moving to another node and this can be done in constant time using the
subtree sizeT (v) operation.

Building the structure. Given a sorted array B[1 . . . n], we want to re-arrange
B to obtain A, which represents the binary search tree where B is embedded.
The main issue here is to determine the position in B where the root lies.
Determining the root is simple if n = 2h− 1, since it is exactly in the middle
of the array at position 2h−1. However, to give a practical construction
we need to handle the general case, when n is not a power of 2. Assume
2h−1 − 1 < n < 2h. Figure 1 shows the possible scenarios that could arise.
There are two cases:3

• Case n < 3× 2h−2: This corresponds to the case on the left in Figure 1
and, in this case, the root corresponds to position n−2h−2+1. Basically,
we have two full binary trees of height h − 2, plus the root, plus the
last level of the left subtree.

• Case n ≥ 3× 2h−2: This case is represented on the right side in Figure
1, and the root is at position 2h−1.

3Note that when n = 3 × 2h−2 − 1 the subtrees rooted at the children of the root are
complete trees of height h− 1, the left subtree, and h− 2, the right one.
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The value of h can be computed from n using the most significant bit of
n, which can be done in constant time with o(n) extra bits of space (Munro,
1996). Modern architectures also support this operation at hardware level.
One interesting observation is that the root is at position max(2ℓ, n−2ℓ+1),
where ℓ = ⌊log2(n/3)⌋ + 1. This is equivalent to the two cases considered
above. We note that we can even construct the embedding in place by
following cycles in the permutation defined by these cases (Fich et al., 1995,
Theorem 4).

Lemma 3.1. Given a sorted array of n values, we can embed its values into
a heap-like binary search tree or binary DEST in linear time.

3.3. Multiary Heap-Like Embedding

The case of a multiary heap-shaped embedding is similar to that of the
binary case. We consider a fixed constant fan-out of k + 1 for each node,
thus every node stores k values. The root is at position 1 in the array.

To move from node v to its r-th child, we compute v(k + 1) + rk. Note
that nodes are identified by the position of the first value, for example, for
k = 3 the 0-th child of the root is the node v = 4. We can also compute the

parent of node v as k
⌊

k2+v−1
k(k+1)

⌋

−(k−1). The computation of subtree sizeT (v)

is also similar to that of binary trees. We move to the leftmost and rightmost
descendants of position v, which are placed in the last level of a subtree of
height h − h(v) + 1, where h(v) = ⌈logk+1(v + 1)⌉. If the leftmost child is
at a position pℓ = v(k + 1)h−h(v), greater than n, we know that the size of
the subtree is that of a complete tree of height h − h(v). Otherwise, given
the position of the rightmost node, pr = pℓ + k(k + 1)h−h(v) − 1, the subtree
contains min(n, pr)− pℓ + 1 values.

We can compute mapT (v, r) in a similar way, but in this case we move
to the leftmost descendant of node v and to the rightmost descendant of the
r-th child of v to compute the number of values in the last level. We add this
number to the r values stored in node v up to position r plus the r complete
subtrees of height h− h(v) rooted at them.

The construction is slightly more complicated than in the binary case. We
can compute the height h = ⌈logk+1(n + 1)⌉, and each of the k + 1 subtrees
of the root has height either h− 1 or h− 2. The ones that have height h− 2
are complete trees. Thus, there are the equivalent of k + 1 complete trees of
height h − 2 and some extra values that form the last level, so that we end
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h− 1 h− 2

r v1, v2, . . . , vk

. . .. . .

k + 1

vj−1 < X < vj vj < X < vj+1

vj+1 < X < vj+2 vk < X
X < v1

Figure 2: Illustration of the (k + 1)-ary heap-like embedding.

up with j − 1 complete trees of height h− 1 (for some j ∈ [2..k + 2]) and at
most one possibly incomplete tree of height h− 1 (see Figure 2).

The number of values in a complete tree of height h− 2 is (k+1)h−2− 1.
Let β be the number of values that fill the last level of the subtrees with height
h− 1, we can write n as n = (k+1)h−1− 1+ β. The number of nodes in the
last level of a tree of height h−1 is k(k+1)h−2. From the previous paragraph,
we get that β = n + 1 − (k + 1)h−1, and we can determine the value of j

by computing j =
⌊

β

k(k+1)h−2

⌋

. Subtree j + 1 has γ = β mod
(

k(k + 1)h−2
)

values in level h− 1. The special case of γ = 0 means that the j-th subtree
has height h− 2, and all the subtrees to the left are complete trees of height
h− 1.

Finally, to construct the (k + 1)-ary tree from a sorted array B, we need
to locate the k nodes that go into the root and then recurse into the k + 1
chunks that represent the subtrees. To achieve this, we compute h, j, and
γ, then we select the first j values every (k + 1)h−1 − 1 values apart, then
we jump (k + 1)h−2 − 1 + γ to retrieve the next value, and finally, for the
remaining values, we jump (k + 1)h−2 − 1 between each. This construction
allows us to state the following lemma.

Lemma 3.2. Given a sorted array of n values, we can embed its values into
a heap-like (k + 1)-ary search tree or multiary DEST in linear time.

An observation about this particular tree shape is that it is suitable for
secondary memory. If we store the data structure on a disk that has block
size B, then we just need to set k = B − 1 and the search I/O complexity
becomes O(logB n).
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Theorem 3.3. Given n values stored in a disk whose block size is B, we
can build a multiary DEST that supports access and search operations in
O(logB n) I/Os.

Theorem 3.3 is particularly interesting in the context of space-efficient
data structures. Our proposal behaves well when used on disk (i.e. it matches
the lower bound in the I/O-model) without any special consideration. This is
not the case most of the time, as it has been discussed in the past (Ferragina,
2010).

3.4. General Trees

Note that we have not mentioned much about the operation fetchT (v, r).
This is because in the two previous representations it is quite straight-
forward4, since we can map a node to an array storing the encoded values.
Furthermore, the heap-embedding representation allows us to divide the ar-
ray into levels and still be able to determine which level and position to
access. This is not the case for general trees.

Most succinct tree representations support subtree sizeT (v) and can map
nodes to an identifier that would allow to embed the values in a single ar-
ray (Farzan, 2009; Sadakane & Navarro, 2010). The only issue is that the
mapping to positions in the array of encoded values is not arbitrary but
rather constrained by the tree representation. For example, using the Fully-
Functional representation (Sadakane & Navarro, 2010), we can obtain the
pre- or post- order of a node, and this requires 2n + o(n) bits beyond the
space required to represent the encoded array of integers. The operations in
the tree take constant time.

If we want to represent each level in a separate array the situation is more
complicated. This is because we can no longer support subtree sizeT (v), or
map a node to its rank in its level with a single tree representation (with the
representations existing at this time). A very simple approach to fix this is to
use two representations simultaneously: LOUDS (Jacobson, 1989), and Fully-
Functional (Sadakane & Navarro, 2010). Fully-Functional would be used to
answer, in constant time, all but computing the rank inside the level, which
can be done in constant time using LOUDS. Both provide constant time
navigation, so we can afford to navigate through both trees in a synchronized

4We comment more on this in the next section.
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fashion. The disadvantage of this solution is that it requires 4n+o(n) bits plus
the space required by the encoded values. Therefore, if encoding the arrays
separately by level saves more than 2n bits, then this approach outperforms
the representation of the previous paragraph.

3.5. Encoding DEST

Throughout this section we assume that all the values in the tree are
stored in a contiguous region of memory using an encoding that supports
random access in constant time. Recall that the embedding defines a map-
ping from the nodes of the tree to their position in this region of memory.
For example, the mapping for the two heap-based embeddings presented is a
level-wise traversal of the tree (considering the nodes at each level in order).
Note that different encodings can be used to encode different chunks (e.g.
different encodings for each level).

Our first proposal, named DEST-DAC, uses the Directly Addressable
Codes (DACs) proposed by Brisaboa et al. (2013). Although these codes do
not guarantee random access in constant time, they are very efficient and the
worst case for random access is ⌈ log2 M

b+1
⌉, where M is the largest value of the

sequence and b is a parameter that defines the block size. Note that this can
be considered constant time for practical purposes. DACs are variable length
codes, thus compression is achieved provided small values are more frequent.
When the differences are larger, a reasonable alternative is to encode the
values using fixed length codes. In our second variant, named DEST- LVL,
we encode the values at each level of the tree using fixed length codes. This
encoding achieves constant time access in the word-RAM model.

Differences stored in lower levels of a DEST are expected to be smaller
than those stored in higher levels. This is because nodes in lower levels map
to positions in the original sequence close to the mapping of their parents.
For example, in a binary DEST the mapping of a node in the last level is
contiguous to the mapping of its parent. Therefore, a sensitive approach is
to combine the two previous approaches by taking this into consideration.
Our third alternative, named DEST-HYB, encodes the first levels of the tree
using a fixed length encoding and the rest using DACs. The number of
levels encoded with each variant provides a space-time trade-off. Finally, we
propose an optimal space variant, named DEST-OPT, which, at each level,
decides between either fixed length or DACs, and selects the one that uses
less space. Note that this is optimal for the combination of both encodings,
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there may exist other encodings that achieve better space offering the same
time complexities.

4. Applications and Experiments

In this section we present some applications of our structure and show its
practical performance. All the experiments presented here were performed in
an Intel Xeon E5520@2.27GHz, 72GB RAM, running Ubuntu server (kernel
2.6.31-19). We compiled with gnu/g++ version 4.4.1 using -O3 directive.

The implementations used in these experiments correspond with our own
source code for all the variants of our structure based on the binary heap-like
embedding (prefix DEST in the figures). These variants were described in
Section 3.5. We also implemented two solutions based on differentially encod-
ing the values stored in a linear list (plus sampling to support efficient access
and search operations). We use Rice codes as an example of a commonly used
approach that stores the offsets of the blocks (SAMP-RICE), and DACs as a
variant that does not need to store them (SAMP-DAC). INTERPOLATIVE
corresponds with the structure presented in Teuhola (2011), and we used the
source code provided by the author. Finally, SA is the sarray by Okanohara
& Sadakane (2007), which is available in Libcds

5.

4.1. Performance Overview

For our structure, we tested the four encodings proposed in Section 3.5,
named DEST-DAC, DEST-LVL, DEST-HYB, and DEST-OPT. Our empiri-
cal evaluation shows that two of them clearly outperform the others: DEST-
OPT is the most space-efficient variant and DEST-LVL is the fastest imple-
mentation. We only consider these two best performing implementations in
all the experiments, except in Section 4.2 (Figure 6), where we include them
all to give the reader an intuition regarding the difference between them.

As a first experiment, we repeat the measurements presented in Teuhola
(2011) including these two implementations of our structure. In Figure 3 we
show the compression efficiency of the structures in bits per source integer.
We use two synthetic datasets with 1,000,000 integers each. In the first one,
named Uniform, differences between consecutive values were uniformly gener-
ated in [0, 2q−1], with q = 1, . . . , 10. For the Exponential dataset, differences

5http://libcds.recoded.cl
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Figure 3: Compression efficiency in bits per integer. Datasets contain 1,000,000 integers
with differences distributed (a) uniformly and (b) exponentially.

were generated according to the inverse of the cumulative distribution func-
tion F (x, λ) = 1 − e−λx and λ was assigned values 1/64, 1/32, . . . , 8. Note
that larger values of λ skew the distribution, thus increasing the probability
of zeros.

For uniformly distributed integers both DEST-LVL and DEST-OPT,
which perform similar, require less space than any of the other data struc-
tures. However, the compression efficiency of these two variants is different
for exponentially distributed values. In this case, DEST-OPT is comparable
with the state-of-the-art, but DEST-LVL requires about 1 bit more per in-
teger. This is because DEST-LVL encodes all the values in the same level
using the same number of bits and, for exponential distributions, it is likely
to have at least one large value at each level and therefore the encoding can
not take advantage of small values. As noted in Teuhola (2011), for λ > 1
the INTERPOLATIVE method requires less space than any other method
due to its ability to represent long runs of zeros very compactly. Recall that
in this paper we call INTERPOLATIVE to the data structure presented in
Teuhola (2011), which is some times referred in that paper as address cal-
culation code to differentiate it from the interpolative encoding (which does
not support random access and efficient searches).

Next we focus on the space-time trade-off offered by the different data
structures for both access and search operations. Figure 4 shows a sum-
mary of these experiments. In these experiments we also used datasets with
1,000,000 integers. For the Uniform dataset, differences were generated in
the range [0, 1023] and for the Exponential dataset, we used λ = 1. Similar
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(b) Exponential - access(X, i)
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(c) Uniform - search(X, t)
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(d) Exponential - search(X, t)
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Figure 4: Space-time trade-off for the access(X, i) and search(X, t) operations in 1,000,000
integers with differences distributed uniformly in [0, 1023] and exponentially with λ = 1.

results were obtained with different configurations, but in the case of the
Exponential dataset, recall from Figure 3 that this experiment corresponds
to a configuration favorable to the INTERPOLATIVE structure. The main
conclusion is that both non-parametric structures (ours and Teuhola’s) pro-
vide interesting space-time trade-offs for both operations comparing with the
sampling-based structures. We also notice that our structure stands out for
uniform differences, but this flips around for exponentially distributed data.

Since we mainly focus on the search operation—we are compressing search
trees—we emphasize that, for search, our structure clearly outperforms the
state-of-the-art in the Uniform dataset and is competitive in the Exponen-
tial dataset (it requires less than 1 bit more than the INTERPOLATIVE
structure and is slightly faster). In Figure 5 we show timing results for this
operation for increasing n. We use the same configuration as in the pre-
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(b) Exponential
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Figure 5: Scalability of the data structures for the search(X, t) operation. Differences were
distributed uniformly in [0, 1023] and exponentially with λ = 1.

vious experiment. For the parametric structures (SAMP-DAC and SAMP-
RICE) we chose sampling rates that provide a space requirement comparable
with those of the non-parametric structures (around 12 bpi for the Uniform
dataset, and 3 bpi for the Exponential dataset). This experiment shows the
good scalability of our proposal.

4.2. Posting Lists

Posting lists are a main component of the ubiquitous inverted index
(Baeza-Yates & Ribeiro-Neto, 1999; Witten et al., 1999). They store the
occurrences (which can be documents, blocks, or offsets) of each word in the
vocabulary. Therefore, finding the intersection of posting lists is a basic prim-
itive operation as it can be used to perform multi-word queries. Although
there exist many algorithms to perform this primitive operation, they can be
broadly classified into those based on sequential merge, which perform better
when the lists are about the same size, and those that search the longest list
for each value of the shortest one (Hwang & Lin, 1972; Demaine et al., 2000;
Barbay & Kenyon, 2002; Baeza-Yates, 2004), which perform better when the
lengths of the lists are unbalanced. We call this variant Set-vs-Set (SVS).

Apart from the merge-wise alternative, the other algorithms are sup-
ported by any structure being navigable (i.e. support access to the successor
and predecessor of a certain value) and searchable (i.e. support member-
ship queries). These requirements are fulfilled when the values are stored in
raw encoding, but these posting lists should be compressed, since space is a
constraining factor for inverted indexes.
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Let P = p1, p2, . . . , pn be a posting list. A typical compressed represen-
tation of P constructs a sequence P ′ = p1, p2 − p1, . . . , pn − pn−1 of d-gaps
and stores each value in P ′ using a variable-length encoding (Witten et al.,
1999; Culpepper & Moffat, 2010). As we mention above, many algorithms
for list intersection require a navigable and searchable data structure. These
algorithms are not efficiently supported because the d-gaps have to be se-
quentially decompressed. This problem is usually overcome by sampling the
original posting list (Culpepper & Moffat, 2010). In the rest of the paper, we
refer to this scheme as a differential encoding of a linear list. Let the sam-
pling rate s be a parameter of the data structure. The array samples[1, ⌈n/s⌉]
stores a sample every s values such that samples[i] = pis. This adds up to
⌈n/s⌉⌈log2 pn⌉ bits. In addition, the offsets corresponding with the begin-
ning of each sampled block have to be stored in ⌈n/s⌉⌈log2N⌉ bits (N is the
length in bits of the encoded sequence). As we noted before, the use of DACs
(Brisaboa et al., 2013) does not require the offsets to be stored.

We implemented two variants of the SVS algorithm for intersection of
posting lists. The näıve variant (*-N in the graphs) is a direct implementa-
tion of SVS that can be described with the operations presented in Section
3.1. This algorithm iterates over the m values of the shortest list (using
amortized constant time per value) and searches the longest list for each of
that values in O(logn) time. Thus, this algorithm performs list intersection
in O(m logn) time. The second variant (*-T) exploits the fact that target
values are searched for in increasing order, and the result is summarized in
the following lemma.

Lemma 4.1. Suppose we are given a sorted list L1 of length m, and a second
list L2 of length n > m, both represented using DEST with the binary heap
embedding. By using O(logn) extra words of space, we can compute the
intersection between L1 and L2 in O

(

m(1 + log n
m
)
)

. We call this procedure,
supported by the DEST and O(logn) words of extra space, batch searching.

Proof. Let T be the binary-heap-shaped tree representing L2. We search
for each value in L1, in order, inside T . While performing the searches,
we store the trace of the nodes, and their corresponding values, where we
branched left during the previous search. There are at most ⌈log2(n + 1)⌉
such nodes and values. Subsequent searches start by finding in the trace the
root of the subtree where the target value is stored. This is done by scanning
the trace in the reverse order that nodes were visited.
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For simplicity in our analysis, we will assume that L2 is represented by a
full heap. If it is not, then we can add dummy nodes to the heap, and make
it full without affecting the asymptotic complexity. We also assume that all
searches end at a leaf in the tree representing L2. If this is not the case, and
the value is found in an internal node u, then we can traverse to the left-most
leaf of the subtree induced by u.

We use E to denote the set of all leaf nodes reached while searching for
the values in L1. The size of E is bounded by m. It is easy to see that
the algorithm described gives a traversal of the minimal subtree of T that
contains all nodes in E, and those are the only leaves accessed during the
traversal.

We use LCA(e1, e2) to denote the lowest common ancestor of nodes e1 and
e2 in T . Define the set S = {v ∈ T | v = LCA(e1, e2), {e1, e2} ⊆ E}. We will
split the cost of the traversal done by the searching algorithm into two parts,
t1 and t2: t1 corresponds to the number of distinct edges in paths between
values in S and the root, and t2 corresponds to the number of distinct edges
in paths between values in S and values in E that do not contain any other
values in S. The total cost of the traversal is at most 2(t1 + t2).

Consider a value s ∈ S whose parent, s̄, is not in S. Let s′ be the sibling
of s. Let e1 and e2 be the right- and left-most nodes whose LCA corresponds
to s, respectively. Without loss of generality, assume that s is the left child
of s̄; the other case follows by symmetry. Suppose we take e2 and we move it
to be a leaf of the subtree induced by s′, noting that no value in E belongs
to that tree, since s̄ is not in S. Then t1 decreases by at most 1, since we
remove the edge connecting s and s̄. Moving e2 increases t2 by at least 1,
since we add at least the edge between s̄ and s′.

This shows that the worst case distribution of values in E is when the
parent of every node in S is also in S. In other words, S corresponds to a
heap-shaped tree with m/2 leaves covering the top of the tree representing
L2, therefore, t1 = O(m). The value t2 can be computed as well, since it
corresponds to m disjoint paths starting at the lowest values in S towards
the leaves. Each path has length log2 n − ⌈log2m⌉ = O(1 + log n

m
). So

t2 = O(m+m log n
m
), and this concludes the proof. �

In Figure 6 (a), we show an empirical comparison of all the variants of our
structure. The set of posting lists come from a parsing of the collections FT91
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(a) DEST implementations.
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Figure 6: Posting lists. Space-time trade-off for pairwise intersection.

to FT94 from TREC-46. This parsing generates 502,259 posting lists but we
only consider those lists with a hundred values or more. As expected, two of
our variants stand out from the others: DEST-OPT is the most space-efficient
variant and DEST-LVL is the fastest implementation. The improvement
achieved in the SVS algorithm by storing the trace is also remarkable. This
is more evident in the DEST-DAC and DEST-HYB implementations where
the cost of accessing a value in the tree is higher.

In Figure 6 (b), we include other structures existing in the literature. We
corroborated the hypothesis of the lower compression achieved by the DACs.
They require more space even though the offsets are not stored. Regarding
our structure, it stands out in the time comparison in exchange for a higher
space consumption.

4.3. Sparse Bitmaps

The well-known problem of Rank/Select dictionaries involves the repre-
sentation of an ordered set X ⊂ {1, 2, . . . , n} supporting rank(X, v) (the
number of values in X no greater than v) and select(X, i) (the position of
the i-th smallest value in X) operations. When the values in the ordered
set X come from the positions of the 1 bits in a sparse bitmap B = [1, S],
the most practical representation we are aware of is the sarray proposed by
Okanohara & Sadakane (2007).

6http://trec.nist.gov
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Figure 7: Time for 1,000,000 queries on a bitmap of length 108 with 1% of 1 bits.

We noticed that this problem can be reduced to the partial sums problem,
so we formalize the reductions in the following lemma:

Lemma 4.2. Let Y = y1, y2, . . . , yn be a sequence representing the positions
of the 1 bits in a sparse bitmap B = [1, S]. Any solution to the searchable
partial sums problem over Y provides a solution to the Rank/Select problem
on B using the following reductions: rank(B, v) = search(Y, v) − 1, and
select(B, i) = sum(Y, i).

In Figure 7 we compare the space-time trade-off offered by several struc-
tures. We note that the sarray (SA) is the fastest structure both for rank
and select operations. However, this experiment shows a new practical
trade-off: the SAMP-RICE solution. In addition, both our structure and
Teuhola’s structure, which perform similarly, provide an interesting time
performance when compared to SAMP-RICE, which is the only structure
competing around that part of the trade-off.

4.4. Geographic Data

Due to the increasing demand of geographic services in the Web (e.g. geo-
located business, geographic advertising, etc.), the indexing of geographic
data has become very popular in the last decade. The most common (and
simple) geographic data type is a two-dimensional point, which can be repre-
sented by a pair of coordinates. Recently, Arroyuelo et al. (2011) presented
the first data structure to index points that supports a range query algorithm
adaptive to a certain measure of difficulty of the instance.
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In that paper, the authors present a practical data structure for orthog-
onal range queries over two-dimensional point datasets. Their structure is
based on partitioning the input into a set of non-crossing monotonic chains.
The structure is adaptive to the number of chains that are needed to repre-
sent the input, and their experimental evaluation shows that it is competitive
with the state-of-the-art.

It is obvious that when this kind of structure is used for the Web, space
is a constraining factor. Although the original proposal requires linear space,
constants are not negligible for practical purposes. We show how to modify
their approach by representing each chain using an instance of our structure,
yielding a more space-efficient data structure.

It is interesting to notice that for this range searching data structure,
the DEST for the x coordinates has the same shape as the one for the y
coordinates. Furthermore, corresponding pairs of points are mapped to the
same node in the tree. This allows us to embed both in the same tree/array.
The navigation is quite similar to the one already presented.

We implemented this structure and compared it with a practical variant
of the chain structure presented in Claude et al. (2010). Our implementation
is based on the DEST-DAC described in Section 3.5. Table 1 summarizes the
obtained results. We included two of the datasets used in the original paper:
Italy and China, which are provided by the Georgia Tech TSP Web page7.
Time results in Table 1 were obtained with the tiny query set (see Fig. 1 in
Claude et al. (2010)) and are showed in seconds to perform 1,000,000 queries.
Note that in their paper the real coordinates of the points are stored in the
chains. We use a well-known technique by Gabow et al. (1984) to work with
rank of the coordinates and not with the coordinates themselves. These real
coordinates are stored in sorted arrays in order to translate the queries to the
rank space. Results reported in Table 1 do not consider this space because
is the same for both variants.

These results are promising because our structure considerably reduces
the space while keeping competitive query times. This is especially interest-
ing when we factor in that the original structure is already quite efficient in
its space consumption when compared to the state-of-the-art (Claude et al.,
2010). In addition, we observe two beneficial properties of our variant. First,
the usage of an instance of our structure to represent each chain entails a

7http://www.tsp.gatech.edu
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Table 1: Experimental comparison of the original chains data structure and our DEST-
based variant.

Italy China
Space (KB) Time (s.) Space (KB) Time (s.)

Claude et al. (2010) 135.30 12.12 562.45 13.78
DEST 110.08 70.06 353.17 185.17

space overhead. This overhead is negligible when the datasets are very large
(the common scenario in real applications) but even in small datasets, such as
Italy, the structure achieves good results. Second, a reduction in the number
of chains also reduces the space of the structure (the aforementioned over-
head is reduced and, in addition, the differences in the tree will be smaller).
This is important because the query time of this structure is adaptive to the
number of chains, and thus, an improvement in this number reduces both
space and time.

5. Concluding Remarks

Space-efficient storage for non-decreasing sets of integers has previously
been achieved by encoding differences between consecutive values in their
linear list representation. This family of solutions requires sampling to pro-
vide efficient random access and searches. These solutions have been called
parametric because of the sampling rate parameter, which provides a space-
time trade-off. Non-parametric solutions have been recently introduced by
Teuhola (2011).

We have presented an alternative non-parametric representation that pro-
vides space-efficient storage by exploiting the monotonicity of the sequence,
while keeping a good time performance, especially for searching. Although
similar in spirit, these two non-parametric solutions use different techniques
that are of independent interest (see Konow et al. (2013) for a recent appli-
cation of our techniques). We have shown some advantages of our proposal,
such as independence on the encoding, a richer set of operations (e.g. batched
queries), and a more elegant solution for representing the tree when the num-
ber of elements is not a power-of-2. In addition, our experimental evaluation
has shown that our solution is competitive in a broad range of applications
(e.g. representing posting lists and sparse bitmaps).
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Throughout the paper, we have presented different variants of our struc-
ture that offer benefits in specific scenarios, both in theory and practice. For
example, the multiary embedding is suitable for secondary memory and the
variant based on general trees can adapt the shape of the tree to the dis-
tribution of the data, thus improving the compression ratio. This raises an
interesting question that we leave as an open problem: given an encoding,
what is the optimal shape for the tree in the static case? Another interesting
line of future work is whether a dynamic version of our structure can be devel-
oped. This is especially important in some applications of our structure, for
example, to integrate our solution for geographic data in spatial databases.
Finally, our experimental evaluation has been presented as a proof of concept
and more effort could be spent on engineering the implementation of differ-
entially encoded search trees. For example, it would be interesting to develop
a space-efficient spatial index and perform extensive experimentation to test
its performance.
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A., Munro, J. I., Nicholson, P. K., Salinger, A., & Skala, M. (2011). Un-
tangled monotonic chains and adaptive range search. Theor. Comput. Sci.,
412 , 4200–4211.

Baeza-Yates, R. A. (2004). A Fast Set Intersection Algorithm for Sorted
Sequences. In Proc. 15th CPM (pp. 400–408).

Baeza-Yates, R. A., & Ribeiro-Neto, B. A. (1999). Modern Information
Retrieval . Addison Wesley.

24



Barbay, J., & Kenyon, C. (2002). Adaptive intersection and t-threshold
problems. In Proc. 13th SODA (pp. 390–399).

Brisaboa, N. R., Ladra, S., & Navarro, G. (2013). Dacs: Bringing direct
access to variable-length codes. Inf. Process. Manage., 49 , 392–404.

Claude, F., Munro, J. I., & Nicholson, P. K. (2010). Range queries over
untangled chains. In Proc. 17th SPIRE (pp. 82–93).

Culpepper, J. S., & Moffat, A. (2010). Efficient set intersection for inverted
indexing. ACM Transactions on Information Systems , 29 , 1.
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